
Characterization of the Jason Multiagent

Platform on Multicore Processors

Pascual Pérez-Carro, Francisco Grimaldo*, Miguel Lozano

and Juan M. Orduña

Departament d’Informàtica, Universitat de València

Av. de la Universitat, s/n, 46100, Burjassot, Spain,

Tel: +34 963544487, Fax: +34 963544768, francisco.grimaldo@uv.es

Abstract

Multiagent platforms need to be evaluated focusing on the underlying

computer architecture in order to allow developers to exploit the paral-

lelism available in multicore processors. This paper presents the charac-

terization of Jason, a well-known Java-based multiagent platform, when

executed on distributed shared memory architectures. Since this kind of

architecture is already present in current multicore processors, this should

be the first step for the characterization of this platform on distributed

systems. To this end, we propose the execution of a set of benchmarks re-

cently proposed for evaluating multiagent platforms. The results obtained

show that Jason can be used to program CPU-intensive multiagent ap-

plications without loosing the Java scalability over multicore processors.

Though, Jason’s performance for communication-intensive applications

depends on the traffic pattern generated by the agents, the layout of the

cores and the selected execution mode (i.e. synchronous or asynchronous).

Keywords: Multiagent platforms, Performance evaluation, Jason,

Agent infrastructure benchmarks

1



1 Introduction

Java-based multiagent platforms are currently used to develop multiagent sys-

tems (MAS), since they mainly provide portability as well as an interesting

reduction of the development cost. Although these tools work well with a lim-

ited number of agents, they do not manage to provide good performance in

large-scale implementations [15, 12, 10]. In fact, the absence of clear results has

led many researchers to test the performance of general purpose multiagent plat-

forms [20, 26, 1] during the last years. These studies have been mainly focused

either on the services or on the messaging layer offered by multiagent platforms

involving two or more hosts, thus trying to fully exploit the parallelism in a

distributed system. However, no attention has been paid to the architecture

of the processor(s) in each host, preventing the multiagent platforms from ex-

ploiting the parallelism currently available in the existing multicore (distributed

shared-memory) processors.

Therefore, some key issues present in up-to-date processors have not yet

been taken into account such as: multicore processors, multi-threaded operat-

ing systems, thread mapping, context switch overheads, etc. Notwithstanding,

multiagent platforms should take advantage of these features in order to in-

crease their performance even in their centralized versions (i.e. when they are

executed on a single host). Since multicore processors are usually present in

current computers, the behavior of multiagent platforms should be character-

ized (and properly tuned) on these processors, so they can become truly efficient

platforms for MAS development.

The purpose of this paper is to evaluate the performance of the Jason plat-

form [5] on multicore processors. Jason is a well-known Java-based multiagent

platform that is extensively used both in teaching1 and in doing research on

MAS2. In spite of that, to the best of our knowledge no other work has yet

1For a non exhaustive list of universities teaching Jason see
http://jason.sourceforge.net/wp/teaching/

2For instance, it has been used in all editions of the Multi-Agent Programming Contest
(http://multiagentcontest.org/), also winning in 2006 and 2012.

2



described the behavior of Jason in regard to multicore systems, which is a rele-

vant issue for the community of agent-oriented programmers in general and for

Jason programmers in particular. We have used a set of specific benchmarks

that have been proposed for evaluating both general (multithreaded) Java ap-

plications [18] and multiagent platforms [24], in an attempt of establishing a

reference in the performance for some standard applications. By tuning the Ja-

son multiagent platform and the Java Virtual Machine (JVM), we show how the

performance and scalability of Jason greatly depends on the computation and

communication requirements of the application executed. On the one hand, the

Jason platform can be used to program CPU-intensive multiagent applications

without loosing the Java scalability over multicore processors. On the other

hand, communication-intensive applications can obtain different performances

depending on agent synchronization and on the traffic pattern generated by the

agents. Thus, a list of recommendations is provided for increasing the perfor-

mance of Jason on multicore systems. Otherwise, the overall performance may

be impaired by the inefficient use of each processor.

The rest of the paper is organized as follows. Section 2 covers related work

on multiagent platforms and their performance. Section 3 shows the characteri-

zation setup of the Jason platform and the benchmarks we use. Next, Section 4

details the performance evaluation results. Finally, Section 5 states the con-

cluding remarks and future work.

2 Related work

Multiagent platforms are software frameworks that aim to allow the implementa-

tion and running of MAS. A great number of them exists (e.g. Jade [2], MadKit

[17], AgentScape [7], Jason [5], JACK [14], etc.), which are different in terms

of scope and objectives. Regardless of these differences, these platforms mostly

provide developers with common facilities such as agent languages, organiza-

tional models, communication layers, execution infrastructures or monitoring

3



tools, that ease multiagent programming [4].

During the last years, a lot of work has focused on testing the performance

of existing multiagent platforms[1, 8, 9, 12, 20, 24, 26]. One of the main per-

formance metrics considered has been the response time (i.e. round-trip delay)

for the messages exchanged among agents. A comparison study of four different

Java-based multiagent platforms [26] shows that Jade provides the most effi-

cient messaging service, whereas ZEUS [11] would be the worst one. Another

comparative evaluation of three multiagent platforms [8], that again focuses on

the messaging service, also concludes that Jade provides the best performance

because it is built on Java RMI.

Some other work focuses on the different services provided by a given mul-

tiagent platform. For instance, some researchers have studied the Jade services

of messaging, agent creation and migration [10]. Though, these tests focusing

on messaging services only consider eight pairs of agents, which is rather a low

load. Other authors have measured the scalability and performance of the Jade

messaging service [12], but they have not provided hints about the behavior of

these platforms when executed on multicore computer architectures.

More recent proposals have made a deeper comparative study of three open-

source multiagent platforms (namely Jade, AgentScape and MadKit), focusing

not only on messaging and service directory services, but also on the memory

usage and the network bandwidth required by the platforms [20, 1]. These

approaches have again concluded that Jade provides the best performance when

MAS are to be run on a distributed setting.

Particularly relevant to this paper is the previous work on the characteriza-

tion and tuning of Jason for running interactive multiagent simulations [15, 16].

This work has described the performance of Jason when using the Jade infras-

tructure for distributed executions and it has detected some issues related to

the JVM that can prevent Java-based multiagent platforms to provide good

performance and scalability for the sort of applications considered (e.g. crowd

simulations). Nevertheless, the performance evaluation of the Jason platform

4



on multicore processors was yet to be done and it is the main goal of this paper.

3 Characterization Setup

Jason [5] is a Java-based interpreter for an extended version of AgentSpeak [22],

a BDI agent-oriented logic programming language. The BDI (Belief-Desire-

Intention) model of rational agency has been widely relevant in the context of

artificial intelligence and MAS due to its strong philosophical assumptions, such

as: the intentional stance [13], the theory of plans, intentions and practical rea-

soning [6] and the speech acts theory [23]. These three notions of intentionality

[19] provide suitable tools to describe agents at an appropriate level of abstrac-

tion and, at the level of design, they invite to develop computer programs as if

they had a mental state.

According to the agent-based paradigm, MAS are basically composed of mul-

tiple intelligent agents interacting within a shared environment, which represent

the two main components present in Jason. Combining this paradigm with

organisation-oriented programming and environment-oriented programming [3]

has been lately proposed for modelling and designing virtual environments that

involve dynamic sets of artifacts of different kinds, aside to the models and

platforms used to program agents. Although evaluating artifacts falls out of the

scope of this article, the characterization of the core Jason platform presented

here is the first step towards the evaluation of this new programming paradigm,

which remains as future work. Thus, this paper uses version 1.3.10 of the Jason

platform, which is the latest stable release available to the community at the

moment of writing this paper.

3.1 Jason infrastructures

Jason currently provides two infrastructures to execute MAS: Centralized and

Jade [2]. Whereas the Centralized infrastructure places all the components of

the MAS in the same host, it is also possible to distribute these components

5



in several hosts using the Jade technology. As already mentioned, this paper

focuses on the Centralized infrastructure when executed on multicore processors,

as a first necessary step for the characterization of this multiagent platform on

distributed infrastructures. For further details on how Jason uses distributed

infrastructures see [15].

When using Jason’s Centralized infrastructure all MAS components (i.e.

the agents and the environment) are placed on a single host. Figure 1 shows a

scheme of the Centralized infrastructure, where different threads are assigned to

perform concrete tasks. On the one hand, the environment has its own execution

thread and it is provided with a configurable pool of threads (PThE) devoted to

executing the actions requested by the agents. By default, this pool is composed

of four threads, thus allowing the environment to deal with several agent requests

concurrently. On the other hand, each agent owns by default a thread in charge

of executing the agent reasoning cycle, which is broken down into the steps of:

perceive, reason and act. In this manner, all the agents can also run concurrently

within the MAS. As such, this approach could limit the number of agents that

can be executed, since the total number of threads would be limited by the

JVM heap size. However, Jason offers the option of having a configurable pool

of threads (PThA), so that the agents can share the threads in this pool at

the cost of reducing the level of concurrency. The number of threads in both

PThE and PThA is initialized during the start-up of the MAS and it is not

changed along its execution. By default, the PThE holds 4 threads whereas the

PThA is disabled, so that each agent will have its own execution thread. Agent-

agent as well as agent-operating system communication is performed through

event passing in the Centralized infrastructure. That implies that messages

are not serialized and sequentially sent through a network but their content is

cloned within the JVM heap and object references are passed between sender

and receiver threads.

Aside from the infrastructure, the Jason platform offers three different execu-

tion modes: asynchronous, synchronous and debugging [5]. In the asynchronous

6



mode, which is the one used by default, an agent goes to its next reasoning cycle

as soon as it has finished its current cycle. Instead, in the synchronous mode

all agents perform one reasoning cycle at every “global execution step”. This

mode waits until all agents have finished their reasoning cycles and then sends

the “carry on” signal to them. Finally, the debugging execution mode is similar

to the synchronous mode, except that Jason waits until the user clicks a “Step”

console button before sending the “carry on” signal to the agents.

The execution mode is a parameter that can have significant effects on the

performance of the multiagent platform. Also, the existence and the size of the

PThA pool of threads will play an important role on the performance of the

Jason when it is executed on a multicore processor. Therefore the effects of

these two parameters will be studied in section 4.

3.2 Tests description

Since multiagent systems can support either computation-intensive or communi-

cation-intensive applications, we have considered both for characterization pur-

poses. The purpose of the tests described below is to measure (characterize)

the behavior (performance) that can be obtained with the Jason multiagent

platform when executing these types of applications. In particular, we want to

discover to which extent Jason can take advantage of the multicore architecture

that is present in most of the current processors. In order to achieve this goal,

we have performed tests that have been accepted as standard benchmarks for

multithreaded Java applications and that represent the two extreme points of

the computation-communication spectrum, ensuring that any application will

fit within the range considered for this characterization study.

3.2.1 Computation Test

In order to evaluate the performance achieved with Jason for computation-

intensive tasks, we have adapted a simple multithreaded CPU benchmark that

was originally created to evaluate the multicore capacity of general (multi-

7



threaded) Java applications [18]. The test simply measures the CPU cycles

consumed by each thread when executing arithmetic operations on a 109 size

data structure. The sum of the total CPU cycles consumed by all the threads

should be equal to the total execution time multiplied by the number of cores

used. Any difference between these two values is due to the overhead imposed

by the configuration of the JVM and/or the operating system kernel.

We have adapted this test to Jason by implementing simple agents that

perform the computations corresponding to each thread in the considered test.

We have run this test with different number of threads (agents) for population

sizes ranging from 1 to 1024 agents. We have repeated the execution for different

platforms, containing from 2 to 16 processing cores. We have computed the

ratio between the total CPU time of the threads and the total elapsed time of

the execution. This factor shows the acceleration (speed-up) provided by the

considered multicore configuration (number of cores).

3.2.2 Communication Tests

In order to evaluate the performance achieved with Jason for communication-

intensive tasks, we have applied two of the benchmarks proposed in [24] for

testing Jason when running on a single host using the Centralized infrastructure.

These benchmarks consist of a number of agents exchanging echo-like messages

by following different communication patterns. Additionally, there is also a

controller agent in charge of synchronizing the start and the finalization of the

execution. Figure 2 depicts the communication scenario reproduced by each

benchmark.

• Communication Test 1 - Number of agents: This test consists of a set of

agents as shown in Figure 2a. All agents behave in the same way, and they

are labeled as Agent1 up to AgentN (with N being the number of agents

set by the user). The Agenti starts sending an echo request message to

Agenti+1 and waits for the echo reply. Then, it proceeds circularly with

Agenti+2, Agenti+3, and so on. Each agent keeps on sending messages

8



in this way until it sends the number of messages chosen by the user.

The purpose of this test is to measure the capacity of Jason for sending

messages to different agents placed in the same host. The test attempts

to determine how the platform behaves when the number of agents is

increased. This test involves a lot of message exchanges between every

pair of agents in the multiagent system.

• Communication Test 2 - Massive Reception: In this test, there is a set of

sender agents and a set of receiver agents (see figure 2b). Both the number

of sender agents (N) and receiver agents (M) are parameters to be set by

the user. However, each sender agent exclusively sends messages to its

corresponding receiver agent. On the contrary, each receiver agent echoes

the arriving messages to the subset of senders from which it receives echo

request messages. Therefore, this test can model scenarios where there are

one or many hot-spot traffic patterns generated by one or many overloaded

agent(s) (e.g. service provider(s)). This test evaluates Jason response in

massive reception configurations. When M = 1, the purpose of this test

is to measure the platform throughput when an agent has a high rate of

message exchanges. When setting N = M , this test checks the scalability

and efficiency of Jason, thus showing how the performance of Jason evolves

in large-scale systems for balanced traffic patterns. Finally, for assesing

the coherence of the test results, when fixing the value for N and ranging

the value of M from 2 to N the results should show symmetric behavior

with the ones in the test of M = 1.

The performance evaluation carried out in section 4 measures the average

round trip time (RTT) of the messages exchanged amongst the agents, that is,

the time elapsed between an agent sending an echo request and receiving the

echo reply from the receiver agent. The final RTT value of a test execution will

then be the average of the RTT obtained by each agent for each message sent.

The number of messages sent per agent is a parameter that the final user of the

9



test can configure in order to achieve the needed accuracy level. Regarding the

number of agents, in this paper we show values ranging from 8 to 256 agents

(or pairs of agents). The performance of Jason when less than 8 agents are

present showed no significant differences and it is considered irrelevant for the

characterization purposes of this paper, as it implies a very low system load.

The other two benchmarks proposed in [24] consider different traffic distri-

butions for a distributed infrastructure. However, when using a Centralized

infrastructure all these cases are represented by the Test 2 explained above.

3.3 Processor architecture and Java tuning

The tests described in section 3.2 have been executed on a distributed shared

memory 16-core processor (AMD Opteron 8218, 1.0 GHz) with 32 GB of RAM,

running a 64-bit version of Linux and the Sun’s HotSpotTMJVM release 1.7.0 25.

Concretely, the hardware platform used in these tests is a Sun Fire X4600. The

computer architecture of this server consists of eight dual-core processors, inter-

connected among them as shown in Figure 3. According to the manufacturer

[25], average hop distance increases when building eight-socket systems when

compared to that of four-socket systems. Minimizing the number of hops is ideal,

and Sun Fire X4600 servers accomplish minimum hop distance by enhancing the

ladder and twisted ladder topologies as shown in Figure 3. Nevertheless, dif-

ferent hop distances will be present when communicating 2, 4, 8 or 16 cores,

depeding on the assignments of threads to processor cores. These differences

can have signifficant performance effects, as shown in section 4.

From version 1.5, the JVM incorporates a technology that tunes itself and

is referred to as Ergonomics. Even though Ergonomics significantly improves

the performance of many applications, optimal results often require manual

tuning to better fit the application as well as the underlying hardware [21].

Following the general Java tuning recommendations, obtained from previous

work for running multiagent simulations over Jason [16], we have performed the

following tuning:

10



• We have enlarged the JVM heap size up to 2 GB (greater values have

demonstrated not to provide better results) instead of using the default

values, which would have been 1/64th of the machine’s physical memory

for the initial heap size and 1/4th of the machine’s physical memory for

the maximum heap size. In addition, we have set minimum and maximum

heap sizes equal for a faster startup. To set the minimum and maximum

heap size we use the -Xms2048M and -Xmx2048M JVM command-line op-

tions.

• We have parallelized garbage collection by using the throughput Garbage

Collector (GC) in order to reduce GC pause times. We have used the JVM

command-line option -XX:+UseParallelGC, thus setting the number of

collector threads equal to the number of processor cores, that is, we use

16 collector threads.

• We have increased the size of the young generation up to 90% of the JVM

heap size, thus reducing the size of the tenured generation responsible for

slow major collections. The reason behind this tune relies on how Jason

represents agent’s beliefs and actions. Both are implemented as objects

that are discarded and created again whenever there is a change in a belief

or a new action is requested to the agent environment. Due to the huge

amount of objects that “die young”, enlarging the young generation will

benefit garbage collection. To do it we use the -XX:NewSize=1842 JVM

command-line option.

Summing up, the Jason multiagent platform benefits from the following JVM

setup: (i) the JVM heap size should be enlarged up to 2 GB and both the

minimum and the maximum heap sizes should be set to this value for a faster

startup; (ii) the throughput Garbage Collector should be selected, with a number

of collector threads equal to the number of processor cores, so to parallelize

garbage collection and reduce GC pause times; and, (iii) the size of the young

generation of the JVM heap size should be increased up to 90%, thus fastening

11



garbage collection by reducing the number slow major collections.

4 Performance Evaluation

In this section, we focus on the performance of the centralized infrastructure of

Jason when it is executed on a multicore processor. The results discussed here

have been obtained by running the tests 3 explained in section 3.2 using Jason

(version 1.3.10), the Java HotSpotTMJVM (version 1.7.0 25) and the processor

architecture described in section 3.3.

Since we are considering the two extreme points of the computation-communi-

cation spectrum any MAS application is located in, the evaluation involves

several tests. First, we compare the performance obtained for a computation-

intensive test by both Java and Jason. Second, we present the results for the

communication-intensive tests explained in section 3.2. In this case, we have

tested the two execution modes provided by Jason (i.e. the synchronous and the

asynchronous mode) and we have also studied the effects of the pool of agent

threads (PThA) present in the asynchronous mode.

All the values in the figures shown in this section have been computed as

the average value of ten different executions of the same configuration.

4.1 Computation Test

Figure 4 plots the speed-up obtained by two implementations (Java vs Jason)

of the computation test described in section 3.2.1 when executed with different

numbers of cores. This figure shows the achieved speed-up on the Y-axis, and

it shows the number of simulated agents on the X-axis. The results shown in

this figure demonstrate that for populations up to sixteen agents, the speed-up

obtained proportionally increases with the number of existing cores, and the

Jason implementation provides higher speed-up rates than the Java implemen-

tation. From that point up, the speed-up remains more or less constant in the

3All tests can be downloaded from http://www.uv.es/grimo/publications/JasonTests.zip
in order to reproduce the experiments.

12



Java implementation and even decreases for the Jason implementation. How-

ever, the differences between the speed-up provided by both implementations

for the worst case (the largest population size) is not greater that Log2(N),

where N is the number of existing cores. These results show that Jason can

be used to program CPU-intensive multiagent applications without significantly

loosing Java scalability over multicore processors, since the overhead added with

respect to the Java implementation is logarithmic with the number of cores in

the processor.

4.2 Synchronous mode

Once we have analized the behavior of Jason with computation-intensive appli-

cations, we now study its behavior with communication-intensive ones. Figure 5

shows the evaluation results for the synchronous execution mode in terms of re-

sponse times (Round Trip Times, RTTs) when increasing the number of agents

in the simulation.

Figures 5 (a1) and (a2) plot the results for Test 1, that measures the capacity

of Jason for sending messages to different agents placed in the same host. The

figure on the left shows the performances obtained for Test 1 when increasing

the number of cores from 1 up to 16. The figure on the right omits the plot

corresponding to 1 core in order to let us see in more detail the differences

among the plots referring to 2, 4, 8 and 16 cores. As shown by the figure on the

left, when executed on a single core the system reaches saturation with only 32

agents and, thereafter, RTTs hugely increase as more agents are added to the

simulation. When using two or more cores, though, the system can support up

to 256 agents without reaching saturation. Note that the values plotted in the

figure on the right present little or no slope and that all of them fall into a narrow

range varying from around 6 to 16 milliseconds. It is also worth mentioning that

no significant improvements are made when moving from 8 to 16 cores. The

reason for the behavior is that using more than 8 cores implies employing more

than 4 dual-core processors from the platform shown in Figure 3, which in turn

13



increases the number of hops that are necessary to communicate. For instance,

the maximum number of hops to connect the four processors in the middle of

Figure 3 is 2 while it goes up to 3 as soon we add another processor. These

results show that for the synchronous mode and a communication pattern like

the one in Test 1,the best hardware platform is the one composed of 8 cores.

Figure 5 (b) shows the results for Test 2 when M = 1, that is, when a number

of agents send messages to a single receiver agent. In this case, the figure shows

that the system reaches saturation with 64 senders, regardless of the number of

cores. Effectively, the slope in the plots shows a monotonic increasing slope as

more than 64 agents are considered (that is, the saturation point in this case is

a workload of 64 agents). The reason for this behavior is that the single receiver

becomes the system bottleneck. From 64 senders up, the effect of the number

of cores is to reduce the latency achieved in deep saturation4, since each plot

shows increasing RTT values as the number of cores used is lower.

Figure 5 (c) shows the results for Test 2 when M = N , that is, when each

sender has a receiver as its counterpart. Therefore, the X-axis shows the number

of pairs of sender-receiver agents. Since the traffic pattern in this test is much

more balanced than in the prior case, the absolute RTT values are much lower

in this case. However, the same general behavior applies: as the number of cores

increases, the RTT values provided in deep saturation (64 agents or more) are

lower. Also, it is worth noting the different behavior for the case of 1 core, that

is much worse than the rest of the cases. This behavior shows that the use of

any multicore hardware platform will significantly improve the performance of

the application running on the multiagent platform.

Finally, Figure 5 (d) shows the results for Test 2 when N = 256, that is,

when there is a fixed number of 256 sender agents and we increment the number

of receivers from 2 up to N . Hence, in this case the X-axis shows the number of

receiver agents. As it could be expected, the highest RTT values are obtained

for the lower number of receivers, since they become the system bottleneck.

4Deep saturation refers to a situation where the workload supported by the system is far
beyond the workload at the saturation point.

14



Again, the plots show that the higher the number of cores, the lower the RTT

values obained in deep saturation (2-32 receivers). Also, the plot for a single

core shows much higher RTT values, as it could be expected.

These results show that for the Test1 the most efficient platform is composed

by 8 cores, and the effects of the number of cores do not depend on the system

workload (the number of agents in the system). For the Test 2, the significant

effects of the number of cores only appear when the system is in deep saturation.

In that situation, the maximum number of cores (16 in our case) obtains the

best results.

These results show that for the Test1 the most efficient platform is composed

by 8 cores, and the effects of the number of cores do not depend on the system

workload (the number of agents in the system). For the Test 2, the significant

effects of the number of cores only appear when the system is in deep saturation.

In that situation, the maximum number of cores (16 in our case) obtains the

best results.

4.3 Asynchronous mode

In this subsection we present the results for the asynchronous execution mode

in its default configuration. Therefore, the following results have been obtained

with the PThA pool disabled, being each agent handled by its own Java thread.

In this way, potential synchronization barriers are avoided so as to achieve a

truly asynchronous execution. Figure 6 shows the evaluation results for this

asynchronous execution mode in terms of response times (Round Trip Times,

RTTs).

Concretely, Figure 6 (a) shows the results for Test 1. The plots in this figure

show that the most efficient hardware platform for workloads up to 16 agents

is the one based on four cores, since it is the minimum platform that provides

RTTs close to 3 milliseconds. For workloads greater or equal to 32 agents, the

most efficient platform is the one based on 8 cores, since that plot shows no

significant differences with the plot corresponding to 16 cores.

15



Figure 6 (b) shows the results for the Test 2 with M = 1. This figure

also shows how RTTs decrease as the number of cores used for the execution

increases, although in this case there are no significant differences among 4, 8,

and 16 cores.

Figure 6 (c) shows the results for Test 2 with M = N . This figure shows

how the RTT values provided when the system enters saturation (workloads of

32 agents or more) decrease as the number of cores increases, except for the plot

corresponding to 16 cores, where no significant gain is obtained.

The reason for the behavior shown in these three figures is again that when

increasing the number of cores, the distance (in hops) for the messages ex-

changed among threads also increases. Since the number of hops between a

given pair of threads depends on the thread mapping and the underlying pro-

cessor architecture, we have checked the number of hops when using a different

number of cores and a sequential thread assignment (thread 0 to core number 0

and so on), and we have verified that when using 16 cores instead of 8, the core

layout of the AMD Opteron 8218 (shown in figure 3) imposes one additional

hop for communicating half of the cores with the other half5. This constraint

limits the system performance for communication intensive benchmarks.

Finally, Figure 6 (d) shows the results for Test 2 with N = 256. This figure

shows that significant differences in the RTT values are obtained as the number

of cores increases, except for the case of 16 cores, whose plot shows no significant

differences with the one corrresponding to 8 cores. Also, it is worth mentioning

that all the plots are straight lines with no significant slopes.

These results show that by configuring Jason to have each agent handled

by its own Java thread, the system is able to exploit the computation power of

the different cores. However this situation ends with 8 cores, and no benefit is

obtained beyond this number of cores. Again, the reason for this behavior is the

core interconnection layout (shown in Figure 3). The benefits of adding more

5We have also verified this fact when running our benchmarks on a different hardware
platform, namely an Intel i7-3930K with six cores and 12 threads. In this case, using 8
threads outperformed the situation in which the 12 threads were used.

16



cores is hidden by the additional hops required in the communication of these

cores with the rest of the cores.

4.4 Asynchronous mode with Pool of Threads (PThA)

Jason’s agent pool of threads (PThA) is a specific parameter that can affect

the performance of the asynchronous execution mode. In this section we study

the effect of the PThA pool of threads on the performance achieved by multi-

core processors for communication intensive-applications and the asynchronous

execution mode. Since the available hardware platform for this characteriza-

tion study was a 16-core processor, we have varied the PThA pool size from

1 to 16 threads. Also, we have tested the PThA size for platforms with 2, 4,

and 8 cores. Although the graphic results are not shown here for the sake of

shortness, we have found a “rule of thumb” for tuning the PThA pool size to

the number of existing cores. It must be noticed that apart from the PThA

size used, when using the Centralized Jason infrastructure, the system also runs

the environment threads (1 + 4, from the PThE), as well as a reduced number

of scheduling and management threads. Therefore, when using a PThA size

of 16 threads in the case of 16 cores, the number of Java threads exceeds the

number of processor cores, and the context switch overhead significantly affects

performance. Similar results were obtained for other number of existing cores

in the computer platform. As a result, and considering the complete set of ex-

periments performed to obtain the best values for PThA, we have selected 2, 4,

6 and 10 as the best PThA values for 2, 4, 8 and 16 cores, respectively.

Figure 7 shows the RTTs measured when executing the communication tests

for different number of processor cores. Figure 7 (a) shows the results for Test

1. The figure shows how the number of threads used in the pool directly affects

the performance obtained since, when the load is lower than 64, the best results

are obtained with 4 and 8 cores (using 4 and 6 threads respectively). For higher

loads the differences between both configurations start to increase. We notice

that for 16 cores the times obtained are always slightly worst, which is again due

17



to the increase in the hop distances that must traverse the messages exchanged

among the threads involved.

Figure 7 (b) shows the results for Test 2 with M = 1. The plots in this

figure show lower RTT values than the equivalent ones in figure 6 (b), showing

a reduction in the time required. This difference shows that the number of active

threads in the system is also another important factor. The PThA parameter

should be enabled with a number of threads close (but lower than) the number

of processing cores.

Figure 7 (b) shows the results for Test 2 with M = 1. The plots in this

figure show lower RTT values than the equivalent ones in Figure 6 (b), showing

a reduction in the time required. This difference shows that the number of

active threads in the system is also another important factor. Thus, the PThA

parameter should be enabled with a number of threads close (but lower than)

the number of processing cores.

Figure 7 (c) shows the results for Test 2 with M = N . The plots in this

figure also show lower RTT values than the equivalent ones in Figure 6 (c),

showing a more moderate growth for the same workload. However, the shape

of the plots and the relative performance achieved with each number of cores

are similar.

Finally, Figure 7 d) shows the results for Test 2 with N = 256. In this case,

it can be seen that ther is a significant reduction of the RTT values in all the

plots from 8 to 32 receivers, ans a much lower reduction from 32 to 256 receiver

agents. Comparing this figure with Figure 6 (d) it can be seen that in the

latter case the plots seems flat lines for all the considered number of receivers,

while Figure 7 d) shows a huge reduction of the RTT values as the number

of receivers increases. These results show that the Pool of Threads allows to

exploit the potencial of the existing cores for this traffic pattern.

Finally, Figure 7 (d) shows the results for Test 2 with N = 256. In this

case, it can be seen that there is a significant reduction of the RTT values in

all the plots from 2 to 32 receivers, and a much lower reduction from 32 to 256

18



receiver agents. Comparing this figure with Figure 6 (d) it can be seen that

in the asynchonous execution mode with the PThA disabled the plots seem

flat lines for all the considered number of receivers, while Figure 7 (d) shows a

huge reduction of the RTT values as the number of receivers increases. These

results show that the pool of threads for the agents (PThA) allows to exploit

the potencial of the existing cores for this traffic pattern.

4.5 Analysis of the speed-up

In order to provide the reader with a clear understanding of the effective im-

provement that the results shown in the previous sections represent, in this

section we show the speed-up achieved when adding new processing cores to the

execution of communication-intensive applications. Thus, we have computed

the speed-up as the ratio between the total time obtained for a single core

with respect to that obtained when increasing the number of cores. It must

be noticed, though, that by computing the speed-up in this way, the maximum

achievable speed-up value is not limited by the number of cores considered (like

in the standard speed-up parameter considered for measuring the performance

of parallel and/or distributed systems or applications). The reason is that the

single core system enters saturation and, therefore, the execution times are no

longer linear with the number of cores.

Figure 8 shows the speed-ups obtained when running the tests using the

synchronous execution mode. Figure 8 (a) shows huge speed-up values (e.g.

nearly 70 for 8 and 16 cores). These huge values are due to the fact that the

system is in deep saturation when executing this test in a single core for 256

agents, providing huge execution times.

Figures 8 (b), (c) and (d) show that the best speed-up is always obtained by

the plot corresponding to 16 cores, and it ranges from 6 (in Figure 8 (c)) to 9 (in

Figure 8 (d)). It is also worth mentioning that in Figures 8 (c) and (d) the best

speed-up is obtained for the case of 32 pairs of agents, just twice the number of

cores. These results show that the traffic patterns where Jason fully exploits the

19



parallelism offered by multicore architectures are the balanced communication

traffic patterns. The reason for this behavior is that the synchronous mode acts

as a barrier, since agents must wait till the rest of the agents have completed

the current cycle. This waiting time prevents the multicore processors from

exploiting the parallelism of multiple agents handled by independent threads,

unless all the threads support similar workloads (like in balanced communication

patterns).

Figure 9 shows the speed-ups obtained when running the communication

tests using the asynchronous execution mode with the PThA disabled. Figure 9

(a) shows that the plots for 2 and 4 cores are flat lines, while the plots for 8

and 16 cores are straight lines with a little positive slope. The speed-up values

achieved are far from being linear to the number of cores, and even the speed-up

values achieved with 8 cores are higher than the ones achieved with 16 cores. As

indicated when analyzing the RTT values, the reason for this behavior is that

the layout of the cores in the AMD Opteron 8218 processor, together with the

sequential thread assignment, impose additional hops for communicating the

existing cores, particularly when 16 cores are used.

Figures 9 (b), (c) and (d) show speed-up values that are proportional (but

not linear) to the number of cores. The speed-up values in Figures 9 (c) and

(d) are huge, due to the fact that the configuration with a single core is in

deep saturation and it provides huge RTT values. It is also worth mentioning

that the slope for 16 cores showed in Figure 9 (c) is constant, since we have

communication between pairs of agents, but this slope dissappears in Figure 9

(d), since we have a fixed number of senders for all the considered numbers of

receivers.

Finally, Figure 10 shows the speed-up obtained when running the commu-

nication tests using the asynchronous execution mode with the PThA enabled.

In this case the number of running threads is being limited by the pool size.

Figures 10 (a) and (b) show very similar results to the ones shown in Figures 9

(a) and (b). Figure 10 (c), however, shows quite different plot shapes than the

20



ones in Figure 9 (c). The reason for this behavior is that limiting the number of

threads prevents the multicore configurations to obtain speed-up values similar

to the ones obtained with a single thread per agent. Finally, Figure 10 (d) shows

similar plot shapes than the ones in Figure 9 (d), although the values on the

Y-axis are lower in Figure 10 (d) due to the same reason we have just stated.

Therefore, we can conclude that enabling of the PThA has significant effects

when executing applications in the asynchronous execution mode, as it limits

the speed-up obtained with the number of cores and increases the execution

time of the application. However, the average RTTs obtained for the messages

exchanged in Test 2 are much lower when the PThA parameter is enabled and its

value is slightly lower than number of existing cores (Figures 7 (b), (c) and (d)

show much lower values on the Y-axis than Figures 6 (b), (c) and (d). Thus, the

best configuration of the Jason platform will depend on the application. If the

critical parameter to be optimized is the latency of the messages (interactive

applications), then the PThA parameter should be enabled. Otherwise, this

parameter should be disabled.

5 Conclusions and Future Work

In this paper, we have proposed the characterization of the Jason platform on

multicore processors by using a set of benchmarks that have been recently pro-

posed for Java-based multiagent platforms. Unlike other proposals, we have

focused on the Jason’s Centralized infrastructure and on the underlying proces-

sor architecture, thus tuning Jason in order to exploit the parallelism currently

available in the existing multicore (distributed shared-memory) processors.

The results obtained show that the performance and scalability of Jason over

a multicore processor greatly depend on the type of application being executed.

On the one hand, Jason can be used to program CPU-intensive multiagent ap-

plications without loosing the Java scalability over multicore processors, because

the overhead added with respect to a pure Java implementation is logarithmic

21



with the number of cores. On the other hand, Jason provides different per-

formances for communication-intensive applications, that depend on the traffic

pattern generated by the agents and the selected Jason execution mode (i.e.

synchronous or asynchronous). For applications showing an uniform traffic pat-

tern (Test 1), the layout of the cores in the processor can limit the best number

of cores to be used, regardless of the execution mode. For asymmetric traffic

patterns, instead, the better performance is achieved (in terms of speed-up) as

more cores are used, since the effects of longer paths between some cores are hid-

den by the unbalanced communication pattern. Regarding the execution modes,

both of them efficiently exploit the avaliable number of cores. Nevertheless, in

the case of applications using the asynchronous execution mode, enabling the

PThA significantly reduces the average latency of messages. Thus, for applica-

tions requiring interactivity, the best configuration for exploiting the number of

cores in the processor is to enable the PThA and to adjuts its size so as the total

number of running threads does not exceed the number of processing cores. For

applications that do not require message latency constraints, though, the best

total execution times are obtained when the PTha parameter is disabled.

As future work, we plan to investigate the performance of Jason for appli-

cations that differently balance computation and communication, thus covering

the gap in between the two extreme types of applications considered in this pa-

per. Moreover, evaluating the effects of adding Cartago artifacts and distributed

virtual environments to the performance of Jason remains as a open issue to be

studied.

Acknowledgment

This work has been jointly supported by the Spanish MICINN and the European

Commission FEDER funds, under grant TIN2009-14475-C04.

22



References

[1] J. M. Alberola, J. M. Such, A. Garcia-Fornes, A. Espinosa, and V. Botti. A

performance evaluation of three multiagent platforms. Artif. Intell. Rev.,

34:145–176, August 2010.

[2] F. Bellifemine, G. Caire, A. Pogg, and G. Rimassa. JADE - a white paper.

Technical Report 3, Telecom Italia Lab, EXP Online, 2003.

[3] O. Boissier, R. H. Bordini, J. Hübner, A. Ricci, and A. Santi. Multi-agent

oriented programming with JaCaMo. Science of Computer Programming,

78(6):747–761, June 2013. Special section on Agent-oriented Design Meth-

ods and Programming Techniques for Distributed Computing in Dynamic

and Complex Environments.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni. Multi-agent

programming : languages, platforms and applications., volume 15 of Mul-

tiagent systems, artificial societies, and simulated organizations. Springer,

New York, 2005.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldrige. Programming Multi-Agent

Systems in AgentSpeak using Jason. Wiley, 2007.

[6] M. E. Bratman. Intention, Plans, and Practical Reason. Cambridge Uni-

versity Press, Mar. 1999.

[7] F. Brazier, D. Mobach, B. Overeinder, S. Van Splunter, M. Van Steen,

and N. Wijngaards. Agentscape: middleware, resource management, and

services. In Proceedings of the 3rd international SANE conference, pages

403–404, 2002.

[8] K. Burbeck, D. Garpe, and S. Nadjm-Tehrani. Scale-up and performance

studies of three agent platforms. 2004.

[9] K. Chmiel, M. Gawinecki, P. Kaczmarek, M. Szymczak, and M. Paprzycki.

Efficiency of JADE agent platform. Sci. Program., 13(2):159–172, 2005.

23



[10] K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M. Szymczak, and

M. Paprzycki. Testing the efficiency of JADE agent platform. In Proceedings

of the Third International Symposium on Parallel and Distributed Com-

puting/Third International Workshop on Algorithms, Models and Tools for

Parallel Computing on Heterogeneous Networks, ISPDC ’04, pages 49–56,

Washington, DC, USA, 2004. IEEE Computer Society.

[11] J. C. Collis, D. T. Ndumu, H. S. Nwana, and L. C. Lee. The

ZEUS Agent Building Tool-kit. BT Technology Journal, 16:60–68, 1998.

10.1023/A:1009673714049.

[12] E. Cortese, F. Quarta, and G. Vitaglione. Scalability and performance of

JADE message transport system. In AAMAS Workshop on AgentCities,

2002.

[13] D. C. Dennett. The Intentional Stance (Bradford Books). The MIT Press,

Cambridge, MA, reprint edition, Mar. 1987.

[14] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance.

Implementing Industrial Multi-agent Systems Using JACK. pages 18–48.

2004.

[15] V. Fernández, F. Grimaldo, M. Lozano, and J. M. Orduña. Evaluating

Jason for distributed crowd simulations. In Proc. of the 2nd. International

Conference on Agents and Artificial Intelligence, volume 2, pages 206–211,

2010.

[16] V. Fernández, F. Grimaldo, M. Lozano, and J. M. Orduña. Tuning Java

to run interactive multiagent simulations over Jason. In Proc. of the 23rd

Australasian Joint Conference on Artificial Intelligence (AI 2010), pages

354–363. Springer-Verlag, 2010.

[17] O. Gutknecht and J. Ferber. The MadKit agent platform architecture.

In Revised Papers from the International Workshop on Infrastructure for

24



Multi-Agent Systems: Infrastructure for Agents, Multi-Agent Systems, and

Scalable Multi-Agent Systems, pages 48–55, London, UK, 2001. Springer-

Verlag.

[18] H. M. Kabutz. Are you really multi-core?, 2012. Available at

http://www.javaspecialists.eu/archive/Issue135.html.

[19] W. Lyons. Approaches to Intentionality. Oxford University Press, Oxford,

1997 1997.

[20] L. Mulet, J. M. Such, and J. M. Alberola. Performance evaluation of open-

source multiagent platforms. In Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, AAMAS ’06,

pages 1107–1109, New York, NY, USA, 2006. ACM.

[21] Oracle Sun Depeloper Network. Java Tuning White Paper, 2010. Available

at http://java.sun.com /performance/reference/whitepapers/tuning.html.

[22] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable

language. In S. Verlag, editor, Proc. of MAAMAW’96, number 1038 in

LNAI, pages 42–55, 1996.

[23] J. Searle. Expression and Meaning: Studies in the Theory of Speech Acts.

Cambridge University Press, 1979.

[24] J. M. Such, J. M. Alberola, L. Mulet, A. Espinosa, A. Garcia-Fornes,

and V. Botti. Large-scale multiagent platform benchmarks. In LAn-

guages, methodologies and Development tools for multi-agent systemS

(LADS 2007). Proceedings of the Multi-Agent Logics, Languages, and Or-

ganisations - Federated Workshops, LADS’07, pages 192–204, 2007.

[25] Sun fire x4600 m2 server architecture. Technical report, Sun Microsystems,

Inc, 2008.

[26] P. Vrba. Java-based agent platform evaluation. In V. Mark, D. McFar-

lane, and P. Valckenaers, editors, Holonic and Multi-Agent Systems for

25



Manufacturing, volume 2744 of Lecture Notes in Computer Science, pages

1086–1087. Springer Berlin Heidelberg, 2004.

Figure captions

Fig 1. Overview of the Centralized infrastructure.

Fig 2. Schema of the benchmarks implemented in Jason.

Fig 3. Twisted ladder topology of the processing cores in Sun Fire X4600

server.

Fig 4. Speed-up achieved with the computation test executed on multicore

processors.

Fig 5. RTT obtained for the synchronous execution mode.

Fig 6. RTT obtained for the asynchronous execution mode with PThA

disabled..

Fig 7. RTT obtained for the asynchronous execution mode with PThA

enabled..

Fig 8. Speed-up obtained for the synchronous execution mode.

Fig 9. Speed-up obtained for the asynchronous execution mode with PThA

disabled.

Fig 10. Speed-up obtained for the asynchronous execution mode with PThA

enabled..

26



Figure 1: Overview of the Centralized infrastructure.

Figure 2: Schema of the benchmarks implemented in Jason.

Figure 3: Twisted ladder topology of the processing cores in Sun Fire X4600
server.

27



Figure 4: Speed-up achieved with the computation test executed on multicore
processors.

28



Figure 5: RTT obtained for the synchronous execution mode.

29



Figure 6: RTT obtained for the asynchronous execution mode with PThA dis-
abled.

30



Figure 7: RTT obtained for the asynchronous execution mode with PThA en-
abled.

31



Figure 8: Speed-up obtained for the synchronous execution mode.

32



Figure 9: Speed-up obtained for the asynchronous execution mode with PThA
disabled.

33



Figure 10: Speed-up of obtained for the asynchronous execution mode whith
PThA enabled.

34


