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Abstract

Crowd simulation can be considered as a special case
of Virtual Environments where avatars are intelligent
agents instead of user-driven entities. These applicati-
ons require both rendering visually plausible images of
the virtual world and managing the behavior of autono-
mous agents. Although several proposals have focused
on the software architectures for these systems, the sca-
lability of crowd simulation is still an open issue.

In this paper, we propose a scalable architecture that
can manage large crowds of autonomous agents at in-
teractive rates. This proposal consists of enhancing a
previously proposed architecture through the efficient
parallelization of the Action Server and the distribu-
tion of the semantic database. In this way, the system
bottleneck is removed, and new Action Servers (hosted
each one on a new computer) can be added as neces-
sary. The evaluation results show that the proposed
architecture is able to fully exploit the underlying hard-
ware platform, regardless of both the number and the
kind of computers that form the system. Therefore, this
system architecture provides the scalability required for
large-scale crowd simulation.

1 Introduction

Crowd simulation can be considered as a special case
of Virtual Environments where the avatars are intel-
ligent agents instead of user-driven entities. Each of
these agent-based entities can have its own goals, know-
ledge and behavior. In recent years, crowd simulation

*This work has been jointly supported by the Spanish MEC,
the European Commission FEDER funds, and the University of
Valencia under grants Consolider-Ingenio 2010 CSD2006-00046,
TIN2006-15516-C04-04, and UV-BVSPIE-07-1788

0190-3918/08 $25.00 © 2008 IEEE
DOI 10.1109/ICPP.2008.20

430

has become an essential tool for many virtual envi-
ronment applications in education, training, and en-
tertainment [1, 7, 17]. These applications require both
rendering visually plausible images of the virtual world
and managing the behavior of autonomous agents. The
sum of these requirements results in a computational
cost that highly increases with the numbers of agents in
the system, requiring a scalable design that can handle
simulations of large crowds in a feasible way.

In crowd simulation the motion of crowds and other
flock-like groups has been modeled as interacting par-
ticles that display different behaviors in 2D /3D scenes
[14, 5]. Beyond physically based simulations, agent-
based crowd models aim to capture the nature of a
crowd as a collection of individuals, each of which can
have their own goals, knowledge and behaviors [12].
However, when the number of agents or particles grows
so does the workload generated by the crowd, making
necessary the distribution of the crowd among different
computers in order to keep an acceptable degree of in-
teractivity. Typically, there are two different approa-
ches for distributing a crowd simulation. One of them
is based on the criterion of workload [16], so that diffe-
rent groups of agents are executed in different compu-
ters. The other approach is region-based [10], in such a
way that the virtual world is split into regions (usually
a 2D cell from a grid) and all the agents located at a
given region are assigned to a given computer. Both
approaches should guarantee the consistency of the si-
mulation (for example, two different agents cannot be
located at the same point in the virtual world). Howe-
ver, to the best of our knowledge none of the existing
proposals can manage crowd simulations of more than
tens of thousands of autonomous agents with different
graphic qualities. Therefore, the scalability of crowd
simulation is still an open issue.

In a previous work, we proposed a system architec-
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ture for crowd simulation that can take advantage of
the underlying distributed computer system [8]. That
architecture consists of a distributed system where one
of the computing nodes contains a centralized seman-
tic database and the Action Server controlling the
whole simulation. The rest of the computers host a
set of agents implemented as threads of a single pro-
cess. That architecture was shown efficiently enough
to support simulations up to tens of thousands of com-
plex agents with plausible graphic quality. However,
although the centralized action server allows to easily
provide consistency to the crowd simulation, it repres-
ents a system bottleneck and limits the scalability of
the system. Effectively, when the number of agents
increases the number of client processes can increase
by adding new computers to the system, but the new
client processes will share the computational power of
the Action Server with the existing ones.

In this paper, we propose to enhance the proposed
architecture through the efficient parallelization of the
Action Server and the distribution of the semantic da-
tabase. In this way, the system bottleneck is removed,
and new Action Servers (hosted each one on a new com-
puter) can be added as necessary. Thus, the system
architecture can scale as necessary with the number
of agents by simply adding new hardware. The evalua-
tion results show that the proposed scheme can linearly
increase the number of supported agents with the num-
ber of computers in the system, regardless of both the
architecture and the computational power of the pro-
cessors. These results validate the proposed scheme as
a scalable architecture for crowd simulation.

The rest of the paper is organized as follows: Sec-
tion 2 describes the existing approaches for improving
the scalability of crowd simulation. Section 3 describes
in detail the proposed architecture. Next, Section 4
shows the performance evaluation of the proposed ar-
chitecture. Finally, Section 5 shows some concluding
remarks and future work to be done.

2 Related Work

In a crowd simulation every element (typically an
agent) can be managed as a single computational task,
since the decisions are taken in a distributed flavor and
no central control is needed. This is the reason for
crowd simulation to be studied as molecular dynamics
and physically based fluid simulations [14]. For exam-
ple, the Lagrangian numerical methods used to predict
gas-particle distributions [5] are closely related to the
particle systems that underlie crowd simulation.

Beyond physically based simulations, agent-based
crowd models aim to capture the nature of a crowd as
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a collection of individuals, each of which can have their
own goals, knowledge and behaviors [12]. In this pro-
posal, the neighboring search was very simple, so it was
very time-consuming when the flock had a large num-
ber of boids. Recently, a new approach has been pre-
sented for PLAYSTATION3 which supports simulation
and display of simple crowds up to 15000 individuals
at 60 frames per second [11]. This work incorporates
spatial hashing techniques to improve the neighboring
search and it also distributes the load among PS3-Cell
elements.

Parallel simulation based on Reynolds’s boids has
been also integrated in a PC-Cluster with MPI com-
munication among the cluster processors [18]. This
proposal uses different communication and partitioning
strategies to finally produce small crowds simulations
(512 boids), which are far from interactive.

Other proposals use GPUs to compute Lagrangian
methods and other algebra operators that handles
flow simulations with complex boundary conditions [3].
Even a GPU-based cluster has been proposed as the
hardware platform for this kind of flow simulations [4].

Other graphic approaches are focused on provi-
ding efficient and autonomous behaviors (eg. pede-
strians with navigation and/or social behaviors for ur-
ban/evacuation contexts), but they are not scalable at
all [9, 13].

A different work focuses on the partitioning problem
[16], but the simulations shown in this paper do not
contain more than one thousand agents.

Finally, another proposal uses a multicomputer to
simulate large evacuation scenarios involving up to ten
thousand pedestrians[10]. Using eleven processors, this
system is able to update the positions of the 10,000
simulated pedestrians nearly 50 times per second by
distributing the virtual world in different regions. Ho-
wever, the mechanism used for managing the agents lo-
cated near the borders of different regions adds a huge
communication overhead. This feature seriously limits
the scalability when the number of adjacent regions
grows. Indeed, the evaluation shown in that work is
exclusively performed on a one-dimensional grid.

Given these approaches, to the best of our know-
ledge there is no proposal that can manage crowd simu-
lations of more than tens of thousands of autonomous
agents with different graphic qualities. Therefore, the
scalability of crowd simulation is still an open issue.

3 A Scalable Software Architecture

In a previous work, we proposed a system architec-
ture for crowd simulation that can take advantage of
the underlying distributed computer system [8]. As



illustrated in Figure 1, that software architecture is
mainly composed by two elements: the action server
(AS) and the client processes (CP). The AS is devo-
ted to execute the crowd actions, while a CP handles a
subset of the existing agents. Agents are implemented
as threads of a single process for reducing the com-
munication cost. Each thread manages the perception
of the environment and the reasoning about the next
action. Since reasoning formalisms can involve a high
computational cost, each client process is hosted on a
different computer, in such a way that the system can
have a different number of client processes, depending
on the number of agents in the system. In this way, this
organization allows to take advantage of the underlying
distributed hardware. This scheme allows to properly
simulate up to tens of thousands of autonomous agents
at interactive rates.
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Figure 1. The previous software architecture

Nevertheless, the scalability of that architecture is
limited by the centralized Action Server. Although it
efficiently provides consistency to the simulation, it re-
presents the system bottleneck when the number of
agents and client processes significantly increases. The-
refore, in order to improve the scalability of the propo-
sed architecture is necessary to parallelize the Action
Server so that it can be distributed among different
computers. The rest of this section describes the par-
allelization of the Action Server and the distribution of
the semantic database.

The previous Action Server has been divided into
a set of processes so that each one can be executed
in parallel in a different computer. For the sake of
simplicity, each of these processes will be denoted as
an Action Server while the whole set of processes will
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be denoted as the Parallel Action Server.

In order to take advantage from the underlying sy-
stem architecture, the distribution is performed at two
levels. First, the virtual world is partitioned into a 2D
grid, and each region of the grid is assigned to an AS
process before the simulation starts. Figure 2 shows
an example of the proposed architecture, and how this
partitioning is performed. In this figure, the whole
space is partitioned into three subregions, and each one
is assigned to one AS. Once a region is assigned to a
given AS, that server is responsible for checking the ac-
tions (eg. collision detection) of the agents located at
that region. Once the partition has been initialized, the
crowd must be also partitioned and distributed among
the CPs associated to the corresponding servers. Each
AS process hosts a copy of the Semantic Database. Ho-
wever, each AS exclusively manages the portion of the
database representing the agents in its region.

In order to guarantee the action consistency near the
border of the different regions, the ASs can collect in-
formation about the surrounding regions by querying
the servers managing the adjacent regions. Additio-
nally, the associated CPs are notified about the chan-
ges produced by the agents located near the adjacent
regions by the ASs managing these regions.

Effectively, for each action requested by an agent
a collision test is performed in the corresponding AS.



This test is computed based on the Area of Interest
(AOI) [15] of the agent, using spatial hashing techni-
ques for efficiency purposes (see [8] for details). If the
AOTI of the considered agent does not intersects with
the region border, the corresponding AS updates the
semantic database (SDB) with the new location and
notifies all the local CPs about that change. The rea-
son for broadcasting each answer to all the local CPs is
that the neighborhood in the virtual world is comple-
tely independent from the assignment of the agents to
each CPs. Therefore, it can happens that two agents
are located very closely in the virtual world but they
are managed by different CPs. That is, all the CPs
should be notified about the movements of all the local
agents. If, on the contrary, the AOI of the considered
agent intersects with the region border, then the ad-
jacent servers are queried. Only if all the servers ans-
wer positively the requested action is allowed, and the
the semantic database (SDB) is updated. In this case
the queried adjacent servers are also notified about the
change, in order to guarantee the consistency among
all the SDB copies.

Figure 2 shows an example of these neighborhood re-
lationships and communications. Since in this case the
region managed by the server AS; has two adjacent re-
gions, the client process C'P; should communicate with
its action server AS; as well as ASy and AS>. Howe-
ver, the other two regions only have a single adjacent
region. Therefore, the client process C'Py communica-
tes with its Action Server ASy and with its adjacent
server AS;. In the same way, the client process C P,
communicates with its Action Server AS; and with its
adjacent server AS7. Also, the Adjacent AS modules
ASy and AS5 are exclusively connected to AS;. The
reason is that in that example the region managed by
the Action Server AS] has two adjacent regions, while
the other two regions only have one adjacent region.
Therefore, the Adjacent AS modules ASy and ASs are
exclusively connected to AS;.

We have implemented the proposed architecture
using wandering agents. This type of agents is the most
adequate one for testing the scalability of the system,
since they do not need dynamic partitioning. Thus,
the partitioning technique does not have any effects on
the system scalability.

3.1 Internal Structure of Each Action Ser-
ver

Each process the Parallel Action Server can be
viewed as a partial world manager, since it controls
and properly modifies the information in a region of
the whole simulation space. Thus, it can be considered
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as the system core. Each AS process contains three
basic elements: the Interface module, the Crowd AS
Control module and the Semantic Data Base (SDB).
Figure 3 illustrates a detailed scheme of an AS.

The main module is the Crowd AS Control module,
which is responsible for executing the crowd actions.
This module contains a configurable number of threads
for executing actions (action execution threads in Fi-
gure 3). For an action execution thread (AE thread),
all messages sent to or received from other ASs and CPs
are exchanged asynchronously (the details are hidden
by the Interface module, see below). This means that
the AE threads only may have to wait when accessing
shared data structures such as the semantic database.
Thus, a single AE thread may be appropriate when
an AS runs on a computer with a single core without
hyperthreading support. However, experimental tests
have shown that having more AE threads than cores
(even many more) does not significantly affect execu-
tion times, because these extra AE threads simply stay
blocked waiting for actions requests to arrive. This
multithreaded scheme allows each AS to take advan-
tage of several cores.

Most actions are executed from start to end by the
AE thread that extracts the request from the corre-
sponding input queue (see below). The exception are
those actions that occur in the border of the region
(border actions) and thus require confirmation from



all of the adjacent servers. For these actions, a two-
phase algorithm is used. In the first phase, an AE
thread checks that the action is feasible locally, blocks
the position that the agent would take if all adjacent
servers agree and marks the action as pending. Then,
a request is sent (by the same AE thread) to all the ad-
jacent ASs; and the thread looks for another action to
process. In the second phase, each time a response from
an adjacent AS arrives, an AE thread gets the response
(which is dealt with as any other action request) and
the answer is annotated in the action object. As soon
as a negative answer is received, the action is conside-
red unfeasible and this result is immediately sent to all
local CPs. If no negative answer is received, when the
last positive one is received, the response is sent to all
local and adjacent CPs and ASs in order to maintain
consistency among all the SDB copies.

The Interface module hides all the details of the
message exchanges. This module provides the Crowd
AS Control module with the abstraction of asynchro-
nous messages. For receiving messages, AE threads
just get one from the input queues (arrows pointing to
the Crowd AS Control Module). Of course, the AE
threads may have to wait if the corresponding queue
is empty. Two separate input queues exist, one for
messages coming from local CPs (action requests) and
the other one for messages coming from adjacent ASs
(responses to requests issued because of local border
actions or requests for remote border actions from ad-
jacent ASs). Having two separate input queues is an
efficient way of giving a higher priority to messages
from adjacent ASs. The reason for improving the prio-
rity of these messages is that the border actions are the
ones whose processing takes longer, and we should re-
duce as much as possible their response time to provide
realistic interactive effects.

In order to process messages as soon as they ar-
rive, the Interface module contains one IO thread de-
dicated to getting incoming messages from each TCP
socket. There are no input threads associated with
sockets connecting one AS to their adjacent CPs, be-
cause CPs only send messages to their local AS. In the
same way, there is one IO thread and one output queue
per TCP socket, so that messages are sent as soon as
the corresponding TCP socket is ready for writing.

3.2 Client Processes

Client processes have been modified with respect to
the CPs described in [8]. In this new scheme, when an
agent enters a different region, the corresponding CP
thread is migrated to another CP. This procedure is
performed as follows: the AS controlling that agent
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detects that it is entering into a new region and it
requests to the corresponding CP to terminate that
thread. Next, it notifies the AS controlling the desti-
nation region the entering of that agent, and in turn
that AS selects a CP to host that agent. Once a new
CP is selected, it is requested to create a new agent
thread. Since no new connections are established, the
migration process does not add a significant overhead.

4 Performance Evaluation

This Section shows the performance evaluation of
the architecture described in the previous section. We
have performed different measurements on different
real systems using this architecture. Like other distri-
buted systems, the most important performance mea-
surements in DVE systems are latency and throughput
[2]. Since we are focusing on the system scalability, we
have performed simulations with different number of
agents and we have measured the response time provi-
ded to the agents. In this way, we can study the ma-
ximum number of agents that the system can support
while providing a response time below a given threshold
value. In order to define an acceptable behavior for the
system, we have considered 250 ms. as the threshold
value, since it is considered as the limit for providing
realistic effects to users in DVEs [6].

We have performed crowd simulations with wande-
ring agents because all their actions should be verified
by an AS. Each simulation consists of the crowd mo-
ving within the virtual world following k-length ran-
dom paths. Since to our knowledge this is the first
proposal of distributed action servers and semantic da-
tabases for crowd simulations, we cannot use our pre-
viously proposed architecture neither other proposed
architecture for comparison purposes. Nevertheless,
in order to obtain reproducible and comparable re-
sults, we saved the paths followed by the agents in the
first execution of each configuration and used the same
paths for all the executions tested with the same num-
ber of avatars. For all the populations tested, the ave-
rage response time has become stable within the first
minute of execution time. Therefore, we have used one
minute simulations for all the configurations tested.

In order to ensure that the scalability of the pro-
posed architecture does not depend on the underlying
hardware, we have performed experiments using two
different computer platforms. One of the platforms
has been a cluster of computers based on AMD Opte-
ron (2 x 1.56 Ghz processors) with 3.84GB of RAM,
executing Linux 2.6.9-1 operating system. The inter-
connection network in the cluster was a Gigabit Ether-
net network. The other platform was a set (labora-



tory) of interconnected PCs, each one with a 2.5 GHz
Celeron processor and 1GB of RAM. The interconnec-
tion network in this case was a Fast Ethernet switched
network. We simulated an Action Server distributed
among different numbers of computers. When using
the cluster, we implemented a Parallel Action Server
distributed among one, two and four computers. We
have denoted these computers as servers. For that case
we used up to twelve cluster nodes (four of them for
hosting the AS and eight of them for hosting eight cli-
ents). Using this platform, we simulated up to twenty
three thousands agents. When using the PCs in the
lab, we implemented a Parallel Action Server distribu-
ted among one, two, four, and eight computers (ser-
vers). For that case, we used up to sixteen PCs (eight
of them for the eight servers, and eight of them for ho-
sting eight clients). Using this platform, we simulated
up to eleven thousand agents.

Figure 4 shows the response times provided by the
proposed architecture when distributing the Action
Server among four different nodes of the cluster plat-
form. On the X-axis, this figure shows the number of
thousands of agents in the system for a configuration
of four servers and eight client computers. The Y-axis
shows both the average and the maximum response ti-
mes provided to the agents. Each point in this Figure
has been computed as the average value of thirty di-
fferent simulations. The label ” AVG. RT” corresponds
to the plot showing the average response time, while
the label "MAX. RT.” corresponds to the maximum
response time provided to an agent. Figure 4 shows
that the response time provided to agents linearly in-
creases with the number of agents in the system. That
is, the design of the proposed architecture allows to
host new agents with linear cost. As an average, the
system can support more than 20,000 agents while pro-
viding an average response time not greater than 250
milliseconds (the threshold value for providing realistic
effects). Regarding the maximum response time, the
number of avatars supported is around 19,000 agents.

In order to test if the behavior of the proposed archi-
tecture depends on the underlying hardware platform
or the number of servers, we have also implemented
the same crowds in the set of interconnected PCs. In
this case, we have implemented the system with one,
two, four and also eight servers. Figure 5 shows the
results for that platform when using eight servers. Fi-
gure 5 shows that the behavior of the proposed archi-
tecture is similar to the one shown in Figure 4. That
is, the response time provided to agents linearly incre-
ases with the number of agents. However, since the
computational power of the computers is lower in this
platform than in the cluster platform, the threshold va-
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Although these results show that the proposed
scheme efficiently supports the workload generated by
the agents regardless of the underlying hardware plat-
form, the scalability of the proposed architecture has
still to be proven. Therefore, we have measured in
both platforms the number of agents supported with
different number of computers while still providing an
average response time below the threshold value of 250
milliseconds. Figure 6 shows the scalability of the pro-
posed scheme when implemented on the cluster plat-
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Figure 6. System throughput for different
configurations of the cluster platform

form. This figure shows on the X-axis the number of
servers for each configuration considered, and it shows
on the Y-axis the number of thousands of agents that
each configuration can support.

Figure 6 shows that when the AS is implemented
on a single computer (that is, it is centralized) then
the system properly supports more than five thousand
agents. When the AS is distributed between two nodes,
then the system can support more than ten thousand
agents, and when distributing the AS among four ser-
vers then system correctly supports more than twenty
thousand agents. That is, the number of supported
agents linearly increases with the number of compu-
ters used for hosting the AS. Therefore, these results
prove that the AS was the system bottleneck and that
the proposed scheme properly scales with the number
of servers.

In order to prove that the scalability of the propo-
sed scheme neither depends on the hardware platform,
Figure 7 shows the scalability results for the set of in-
terconnected PCs. In this case, we have distributed the
Parallel AS among one, two, four and eight servers.

Figure 7 shows that the proposed architecture al-
lows to properly scale the number of supported agents
with the number of servers also for this hardware plat-
form. Effectively, the system can support around one
thousand and five hundred agents when the AS is im-
plemented on a single server, and the number of sup-
ported agents is directly related with the number of
servers.
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5 Conclusions and Future Work

In this paper, we have proposed a system architec-
ture for crowd simulation that properly scales up with
the number of agents in the system. This proposal con-
sists of a set of interconnected computers in order to
improve scalability and flexibility, as well as a distri-
buted software architecture based on parallel servers.
The evaluation results show that the proposed archi-
tecture is able to fully exploit the underlying hardware
platform, regardless of both the number and the kind
of computers that form the system. The distribution
of the AS among parallel servers efficiently provides
consistency and properly scales up with the number of
servers. Therefore, this system architecture provides
the scalability required for large-scale crowd simulati-
ons.

As a future work, we plan to study different parti-
tioning methods for dynamically assigning the agents
to the different servers in the system. These methods
can help to achieve dynamic reconfigurations when the
movement pattern of the agents is not uniform. Also,
we plan to improve the proposed architecture to take
full advantage of multi-core nodes.
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