
Performance Improvements of Real-Time Crowd Simulations

Guillermo Vigueras
PhD Student. 4 years in PhD program

University of Valencia. Spain
guillermo.vigueras@uv.es

Juan M. Orduña, Miguel Lozano
PhD advisors. Departamento de Informática

University of Valencia. Spain
{juan.orduna,miguel.lozano}@uv.es

Abstract

The current challenge for crowd simulations is the
design and development of a scalable system that
is capable of simulating the individual behavior of
millions of complex agents populating large scale
virtual worlds with a good frame rate. In order to
overcome this challenge, this thesis proposes different
improvements for crowd simulations. Concretely, we
propose a distributed software architecture that can
take advantage of the existing distributed and multi-
core architectures. In turn, the use of these dis-
tributed architectures requires partitioning strategies
and workload balancing techniques for distributed
crowd simulations. Also, these architectures allow
the use of GPUs not only for rendering images but
also for computing purposes. Finally, the design and
implementation of distributed visual clients is another
research topic that can help to overcome this chal-
lenge.

1. Description of the Problem

Crowd simulation has become an essential tool
for many virtual environment applications, and the
extensive use of high quality virtual crowds is crucial
for many virtual environment applications in educa-
tion, training, and entertainment [1]. Crowd simula-
tion can be considered as a special case of Virtual
Environments where the avatars are intelligent agents
instead of user-driven entities. Each of these agent-
based entities can have its own goals, knowledge and
behavior [2].

On the one hand, crowd simulations must focus
on rendering visually plausible images of the envi-
ronment, requiring a high computational cost. On the
other hand, complex agents must have autonomous
behaviors, greatly increasing the computational cost
as well. The sum of these requirements results in a
computational cost that exponentially increases with
the numbers of agents in the system, requiring a
scalable design that can support huge amounts of

agents (of different orders of magnitude) by simply
adding more hardware. Thus, some proposals tackle
crowd simulations as a particle system with different
levels of details (eg:impostors) in order to reduce the
computational cost [3] due to the graphical quality.
Also, several proposals have been made to provide
efficient and autonomous behaviors to crowd simula-
tions [4]. The current challenge for these applications
is the design and development of a scalable system
that is capable of simulating the individual behavior
of millions of complex agents populating large scale
virtual worlds with a good frame rate.

2. The proposed approach and methodol-
ogy

In order to overcome the current challenge, different
improvements should be made. First, we should design
a scalable system architecture that takes into account
the underlying computer system that is being used for
crowd simulation. This system architecture is based on
a networked-server Distributed Virtual Environment
(DVE) [5]. On top of this distributed computer archi-
tecture, we propose a distributed software architecture
that can take advantage of the existing distributed and
multi-core architectures [6], [7]. In turn, the use of
distributed architectures opens other research topics,
like partitioning strategies and workload balancing
techniques for distributed crowd simulations. Also,
the use of a distributed architecture allows the use
of GPUs for computing, and not only for rendering
images of the virtual world, improving the perfor-
mance of crowd simulations. Finally, the design and
implementation of distributed visual clients is another
research topic that can help to overcome the current
challenge for crowd simulations.

The research methodology consists of performing
crowd simulations on real distributed systems imple-
menting the proposed designs and techniques. The
idea is to measure the performance of the systems
with different number of agents. Since we are using
distributed systems, the most important performance



measurements are latency and throughput [8]. Con-
cretely, we have measured the response time provided
to agents by the distributed servers controlling the
virtual world when they request their actions. In this
way, we can study the maximum number of agents
that the system can support while providing a response
time below a given threshold value. In order to define
an acceptable response time, we have considered 250
ms. as the threshold value, since it is considered as the
limit for providing realistic effects to users in DVEs
[9].

3. Significance of the research

The proposed research will allow to use crowd
simulations in a new dimension of large-scale appli-
cations and challenges. On the one hand, the realis-
tic simulation of large-scale catastrophic events like
natural disasters or terrorist attacks can help to both
the design of emergency protocols and the training
of emergency personnel. On the other hand, large-
scale crowd simulations can be used to study social
behaviors and social engineering techniques.

4. Related Work

The motion of crowds and other flock-like groups
has been modeled as interacting particles that dis-
play different behaviors in 2D/3D scenes [10], [11].
However, when the number of agents or particles
grows so does the workload generated by the crowd,
making necessary the distribution of the crowd among
different computers in order to keep an acceptable
degree of interactivity. Typically, there are two dif-
ferent approaches for distributing a crowd simulation.
One of them is based on the criterion of workload
[12], so that different groups of agents are executed
in different computers. The other approach is region-
based [13], in such a way that the virtual world is split
into regions (usually a 2D cell from a grid) and all
the agents located at a given region are assigned to a
given computer. Despite these approaches can manage
up to tens of thousands of agents, the scalability of the
application is limited by the synchronization scheme
of agents.

Several researchers have already studied the ca-
pabilities of multi-core architectures for crowd sim-
ulations. One approach has been presented for
PLAYSTATION3 which supports simulation and dis-
play of simple crowds up to 15000 individuals at
60 frames per second [14]. Another work proposes
a highly parallel implementation for multi-core pro-
cessors of and algorithm for crowd animation that the

Figure 1. Software System architecture proposed
for crowd simulation.

authors used for pedestrian simulation[15]. Despite the
high number of agents supported by these approaches,
the scalability of the system for large scale simulation
is limited, since it is not designed to be distributed
across different machines.

Also, there are other approaches that use graphics
processor units (GPUs). One of these proposals simu-
lates thousands of individuals using models designed
for gaseous phenomena [16]. Recently, some authors
have started to use GPU in an animation context (parti-
cle engine) [17], and there are also some proposals for
running simple stochastic agent simulations on GPUs
[18]. However, these proposals are far from displaying
complex behaviors at interactive rates.

5. Results Obtained

We have proposed a distributed system architecture
for crowd simulation [6]. In this scheme, a distributed
computer architecture is used to implement the client-
server software architecture shown in Figure 1. This
software architecture is mainly composed by two
elements: the action server (AS) and the client pro-
cesses (CP). The AS is devoted to execute the crowd
actions, while a CP handles a subset of the existing
agents. Agents are implemented as threads of a single
process for reducing the communication cost. Each
thread manages the perception of the environment and
the reasoning about the next action. Since reasoning
formalisms can involve a high computational cost,
each client process is hosted on a different computer,
in such a way that the system can have a different
number of client processes, depending on the number
of agents in the system. This scheme allows to prop-
erly simulate up to tens of thousands of autonomous
agents at interactive rates.

Despite of the flexibility provided by this system
architecture [6], the AS represents the system bottle-



Figure 2. Scheme of the proposed distributed
architecture with the Parallel Action Server.

neck. For that reason, the previous Action Server has
been divided into a set of processes so that each one
can be executed in parallel in a different computer
[7]. Each of these processes is denoted as an Action
Server (AS) while the whole set of processes has been
denoted as the Parallel Action Server (PAS).

In order to take advantage from the underlying sys-
tem architecture, the distribution is performed at two
levels. First, the virtual world is partitioned into a 2D
grid, and each region of the grid is assigned to an AS
process before the simulation starts. Figure 2 shows
an example of the proposed architecture, and how this
partitioning is performed. In this figure, the whole
space is partitioned into three subregions, and each
one is assigned to one AS. Once a region is assigned to
a given AS, that server is responsible for checking the
actions (eg. collision detection) of the agents located at
that region. Once the partition has been initialized, the
crowd must be also partitioned and distributed among
the CPs associated to the corresponding servers. Each
AS process hosts a copy of the Semantic Database.
However, each AS exclusively manages the portion
of the database representing the agents in its region.

Unfortunately, several problems arise when phys-
ically distributing the database. First, in order to
maintain the consistency those agents near the borders
of each region need to check their actions with the
corresponding servers. This requires the exchanging
of locking requests among the computers hosting the
partition of the database. This constraint adds a sig-
nificant overhead, and therefore it must be minimized.
Additionally, the partition must be properly balanced,
in order to avoid the saturation of the distributed
system. Otherwise, one or more computers can reach
saturation, greatly degrading the performance of the
entire system.

Figure 3. Snapshots of the partitions provided by
a) R-Tree b) GA c) QHull methods

We have studied different methods to solve the
partitioning problem in distributed crowd simulations
and we have proposed a new method that efficiently
solves the problem [19]. The partitioning problem
consists of finding a near optimal partition of regions
(containing all the agents in the system) that mini-
mizes the number of agents near the borders of the
regions, and also that properly balances the number of
agents in each region. To solve this problem we have
studied three different methods. One of them based in
the R-Tree data structure, other method implements
a Genetic Algorithm (GA) to solve the partitioning
problem and the last method uses the QuickHull
algorithm to perform the partitioning based on the
convex hull of each region managed by each server.

As an example, Figure 3 shows a snapshot of
the different partitions provided by the considered
methods during a simulation. Figure 3 a) and b) show
the partitions provided by the R-Tree and the GA
methods, respectively. It can be seen that both parti-
tions use rectangular regions, although the overlapping
among the regions provided by the GA method is
lower than the overlapping provided by the R-Tree
method. Figure 3 c) shows the partition provided by
the Convex Hull method, and it can be seen that there
is no significant overlapping among the regions of
this partition, thus significantly improving the results
provided by the GA and R-Tree methods, since the
overhead resulting from the inter-server communica-
tion is reduced.

6. Remaining objectives

The advent of the multi-core era has allowed a
huge increase in the computing bandwidth of cur-
rent processors. However, the distributed architecture
designed for crowd simulation must be adapted in



order to take advantage of the on-chip parallel comput-
ing power. New synchronization methods among the
execution threads in the distributed server are being
integrated and tested. Since these methods reduce the
synchronization overhead, initial results show that the
server throughput can be improved obtaining a good
scalability with the number of processor cores.

On other hand, the huge number of cores existing
in current Graphics Processor Units (GPUs) provides
these devices with computing capabilities that can be
exploited by crowd simulations. We have implemented
a distributed server for crowd simulations using an
on-board GPU [20]. Since the consistency maintained
by the distributed server is the critical path in the
system, we have implemented on the GPU this part
of the server. Preliminary results show that the server
throughput can be greatly increased by using GPUs.

Also, we are using GPUs for graphics rendering.
Concretely, we are developing a distributed Visual
Client Process to efficiently visualize crowd simula-
tions in 3D, allowing different user configurations like
ground walk-throughs, top view of the scene, etc.

References

[1] P. A. Kruszewski, “A game-based cots system for sim-
ulating intelligent 3d agents,” in BRIMS ’05: Proceed-
ings of the 2005 Behavior Representation in Modelling
and Simulation Conference, 2005.

[2] C. W. Reynolds, “Flocks, herds and schools: A dis-
tributed behavioral model,” in SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer
graphics and interactive techniques. New York, NY,
USA: ACM, 1987, pp. 25–34.

[3] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan,
“Geopostors: a real-time geometry/impostor crowd
rendering system,” ACM Trans. Graph., vol. 24, no. 3,
pp. 933–933, 2005.

[4] A. Iglesias and F. Luengo, “New goal selection scheme
for behavioral animation of intelligent virtual agents,”
IEICE Transactions on Information and Systems, Spe-
cial Issue on ’CyberWorlds’, vol. E88-D, no. 5, pp.
865–871, 2005.

[5] S. Singhal and M. Zyda, Networked Virtual Environ-
ments. ACM Press, 1999.

[6] M. Lozano, P. Morillo, J. M. Orduña, V. Cavero, and
G. Vigueras, “A new system architecture for crowd
simulation,” J. Netw. Comput. Appl., vol. 32, no. 2,
pp. 474–482, 2009.

[7] G. Vigueras, M. Lozano, C. Perez, and J. Orduña,
“A scalable architecture for crowd simulation: Imple-
menting a parallel action server,” in Proc. of 37th Int.
Conference on Parallel Processing (ICPP-08), Sept.
2008, pp. 430–437.

[8] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks: An Engineering Approach. IEEE Computer
Society Press, 1997.

[9] T. Henderson and S. Bhatti, “Networked games: a
qos-sensitive application for qos-insensitive users?” in
Proceedings of the ACM SIGCOMM 2003. ACM
Press / ACM SIGCOMM, 2003, pp. 141–147.

[10] K. Sims, “Particle animation and rendering using data
parallel computation,” in SIGGRAPH ’90: Proc. of
17th conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1990, pp.
405–413.

[11] T. Frank, K. Bernert, and K. Pachler, “Dynamic load
balancing for lagrangian particle tracking algorithms
on mimd cluster computers,” in PARCO’2001 - In-
ternational Conference on Parallel Computing 2001.,
2001.

[12] A. Steed and R. Abou-Haidar, “Partitioning crowded
virtual environments,” in VRST ’03: Proceedings of
the ACM symposium on Virtual reality software and
technology. New York, NY, USA: ACM, 2003, pp.
7–14.

[13] M. J. Quinn, R. A. Metoyer, and K. Hunter-Zaworski,
“Parallel implementation of the social forces model,”
in In Proceedings of the Second International Confer-
ence in Pedestrian and Evacuation Dynamics, 2003,
pp. 63–74.

[14] C. Reynolds, “Big fast crowds on ps3,” in Proceedings
of the ACM SIGGRAPH symposium on Videogames.
New York, NY, USA: ACM, 2006, pp. 113–121.

[15] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin,
D. Manocha, and P. Dubey, “Clearpath: highly parallel
collision avoidance for multi-agent simulation,” in SCA
’09: 2009 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. ACM, 2009, pp. 177–187.

[16] N. Courty and S. R. Musse, “Simulation of large
crowds in emergency situations including gaseous phe-
nomena,” in CGI ’05: Proceedings of the Computer
Graphics International 2005. IEEE Computer Soci-
ety, 2005, pp. 206–212.

[17] K. Peter, S. Mark, and W. Rudiger, “Uberflow: a gpu-
based particle engine,” in HWWS ’04: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware. ACM, 2004.

[18] M. Lysenko and R. M. D’Souza, “A framework for
megascale agent based model simulations on graphics
processing units,” Journal of Artificial Societies and
Social Simulation, vol. 11, no. 4, p. 10, 2008.

[19] G. Vigueras, M. Lozano, J. O. na, and F. Grimaldo,
“A comparative study of partitioning methods for
crowd simulations,” Journal of Applied Soft Comput-
ing, vol. 10, no. 1, pp. 225 – 235, 2010.

[20] G. Vigueras, J. Orduña, and M. Lozano, “A gpu-
based multi-agent system for real-time simulations,”
in Proceedings of the 8th International Conference
on Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2010), April 2010.


