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Abstract The huge number of cores existing in current Graphics Processor Units
(GPUs) provides these devices with computing capabilitiesthat can be exploited
by distributed applications. In particular, these capabilites have been used in crowd
simulations for enhancing the crowd rendering, and even forsimulating continuum
crowds. However, GPUs have not been used for simulating large crowds of com-
plex agents, since these simulations require distributed architectures that can support
huge amounts of agents. In this paper, we propose a GPU-basedmulti-agent system
for crowd simulation. Concretely, we propose the use of an on-board GPU to im-
plement some of the tasks that a distributed server for crowdsimulations should
perform. The huge number of cores in the GPU is used to simultaneously validate
movement requests from different agents, greatly reducingthe server response time.
Since this task represents the critical data path, the use ofthis hardware significantly
increases the parallelism achieved with respect to the implementation of the same
distributed server on a CPU. An application example shows that the system can
support agents with complex navigational behaviors.

1 Introduction

The huge number of cores existing in current Graphics Processor Units (GPUs) pro-
vides these devices with computing capabilities that can beexploited by distributed
applications. Since some years ago, GPU vendors introducedprogrammability to
these devices in order to facilitate their use for scientificcomputation. One of the
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distributed applications that can benefit from the capabilities of the GPUs is crowd
simulation.

Regarding crowd simulations, some proposals have been madefor exploiting the
capabilities of multicore architectures. In this sense, a new approach has been pre-
sented for PLAYSTATION3 to distribute the load among the PS3-Cell elements[13].
Another work uses graphics hardware to simulate crowds of thousands individuals
using models designed for gaseous phenomena [1]. Recently,some authors have
started to use GPU in an animation context (particle engine)[11, 5], and there
are also some proposals for running simple stochastic agentsimulations on GPUs
[7, 10]. However, these proposals are far from displaying complex behaviors at in-
teractive rates. On the other hand, other proposals including complex agent systems
have been made [9, 15], but they are not designed to provide the required scalability
in number of agents.

In this paper, we show that large scale multiagent systems can benefit from the
use of GPU computing. In order to achieve this goal, we have implemented a dis-
tributed server for crowd simulations [16] using an on-board GPU. The huge number
of cores in the GPU is used to simultaneously validate movement requests from dif-
ferent agents, greatly reducing the server response time. Since this task represents
the critical data path, the use of this hardware significantly increases the parallelism
achieved with respect to the implementation of the same multiagent system using a
distributed server implemented on a CPU. Thus, the performance evaluation results
show that the system throughput is significantly increased,supporting a significantly
higher number of agents while providing the same latency levels. These results can
be used for simulating crowds with a larger size.

The rest of the paper is organized as follows: Section 2 describes in detail the
use of GPUs for increasing parallelism in crowd simulations. Next, Section 3 shows
the performance evaluation of the proposed architecture. Next, Section 4 describes
an application example to show our system working in a real and complex scenario.
Finally, Section 5 shows some concluding remarks and futurework to be done.

2 A GPU-based Action Server for Crowd Simulation

In a previous work, a distributed system architecture for crowd simulation was pro-
posed in order to take advantage of the underlying distributed computer system [16].
That software architecture is mainly composed by two elements: the action server
(AS) and the client processes (CP). The AS is devoted to execute the crowd ac-
tions, while a CP handles a subset of the existing agents. Agents are implemented as
threads of a single process for reducing the communication cost. Each thread man-
ages the perception of the environment and the reasoning about the next action. Each
client process is hosted on a different computer, in such a way that the system can
have a different number of client processes, depending on the number of agents in
the system. The Action Server is divided into a set of processes so that each one can
be executed in parallel in a different computer. Each of these processes is denoted
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as an Action Server, while the whole set of ASs is denoted as the Parallel Action
Server (PAS). The rest of the section describes the version of the PAS for execution
in CPU, and the modifications made to this version in order to take advantage of a
GPU.

Each piece (process) of the Parallel Action Server can be viewed as a partial
world manager, since it controls and properly modifies the information in a region of
the whole simulation space. Thus, it can be considered as thesystem core. Each AS
process contains three basic elements: the Interface module, the Crowd AS Control
(CASC) module and the Semantic Data Base (SDB). Figure 1 illustrates a detailed
scheme of an AS.

Fig. 1 Internal structure of an
Action Server

The main module is the Crowd AS Control module, which is responsible for ex-
ecuting the crowd actions. This module contains a configurable number of threads
for executing actions (action execution threads in Figure 1). For an action execution
thread (AE thread), all messages sent to or received from other ASs and CPs are
exchanged asynchronously (the details are hidden by the Interface module, see be-
low). This means that the AE threads only may have to wait whenaccessing shared
data structures such as the semantic database. Thus, experimental tests have shown
that having more AE threads than cores allows each AS to take advantage of several
cores.

Most action requests from agents are executed from start to end by the AE thread,
that extracts the requests from the corresponding input queue and process them.
These requests consist of collision tests, in order to checkif the new position com-
puted by each agent when it moves coincides with the positionof other agent or ob-
ject. The Interface module hides all the details of the message exchanges. This mod-
ule provides the Crowd AS Control module with the abstraction of asynchronous
messages. Two separate input queues exist, one for messagescoming from local
CPs (action requests) and the other one for messages coming from adjacent ASs



4 Guillermo Vigueras and Juan M. Orduña and Miguel Lozano

(responses to requests issued because of local border actions or requests for remote
border actions from adjacent ASs). Having two separate input queues is an efficient
way of giving a higher priority to messages from adjacent ASs. The reason for im-
proving the priority of these messages is that the border actions are the ones whose
processing takes longer, and we should reduce as much as possible their response
time to provide realistic interactive effects.

In order to process messages as soon as they arrive, the Interface module contains
one IO thread dedicated to getting incoming messages from each TCP socket. There
are no input threads associated with sockets connecting oneAS to their adjacent
CPs, because CPs only send messages to their local AS. In the same way, there is
one IO thread and one output queue per TCP socket, so that messages are sent as
soon as the corresponding TCP socket is ready for writing.

The GPU used for implementing a parallel action server has been a NVIDIA
Tesla C870. This GPU has 128 thread processors, each one withits texture cache
and low-latency shared memory. The communications of the different shared mem-
ories with global memory are performed at the same time, by means of Load/Store
operations. Each thread processor executes a kernel in parallel with the rest of pro-
cessors. Just before calling this kernel, the use ofcudaBindTexture()instruction al-
lows to copy into each texture cache the proper range of global memory addresses.
In this way, each thread processor can access to local data with a very low latency.
The integration of a huge number of cores and on-chip memories with low latency
in this GPU allows to perform up to 128 collision tests in parallel, clearly outper-
forming the number of collision tests performed in parallelwhen using the CPU.
Additionally, the SIMD structure of the GPU avoids mutual exclusions when ac-
cessing shared data structures, while the CPU-version AE Threads have to wait
when accessing data structures shared among the existing cores, such as the seman-
tic database.

A general overview of the collision checking process in the server is as follow-
ing: agent requests received by the interface module are passed to the CASC module.
However, the AE threads in the GPU-based server do not actually perform the colli-
sion tests (unlike the AE Threads in the CPU-based server). Instead, the AE threads
collect the requests from the interface module and copy themto the SDB module
as they arrive, until NOPERATIONSrequests are collected. At this point, one of the
AE threads signals theGPU manager thread. This thread controls the data path in
the GPU. Concretely, this thread copies the requests into the GPU global memory
and launches the collision tests. When the collision tests finish, the GPU manager
thread copies the results into the CPU memory. When the AE threads finish their
current task, they will start to process the GPU replies. That is, the AE threads in
the GPU-based server collect client requests, but these requests are actually checked
by the GPU manager thread. In this way, the parallelism achieved by having several
AE Threads is decoupled from the parallelism provided by theGPU thread proces-
sors. This collision checking scheme can take advantage of the parallel computation
capabilities of a GPU like the NVIDIA Tesla C870.

The internal structure of a parallel action server using a GPU is shown in Fig-
ure 2. In this implementation, the SDB module contains theobject positions array,
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thecollision response arrayand theGPU manager thread. Theobject positions ar-
ray is the host-GPU input interface. This array, contains the agents positions, needed
to check collisions. The structurecollision response array, represents the host-GPU
output interface, and it contains the result of the collisions tests performed by the
GPU. When theGPU manager threadis signaled by the AE Threads, it copies the
object positions array into the GPU and launches the collision tests. When the colli-
sion tests finish, theGPU manager threadcopies the results from the GPU memory
into the SDB module. Then, it signals the AE threads to start replying to CPs or
ASs.

Fig. 2 Internal structure of an
action server using a GPU

Theobject positions arrayhas NOBJECTSelements, that is, as many elements as
agents managed by a server. An agent identifier is associatedto each request, in
order to update the proper array position. Each element in the array has four floats
for each object passed to the GPU. The first and second floats contain the x and
y coordinates of the agent’s position, respectively. The third float is not used. The
fourth float is a flag indicating the GPU whether the element inthe array has been
updated by AE threads. If an object position has been updated(i.e. the flag is equal
to a positive number representing the agent identifier number) then the collision
test will be performed. Otherwise (i.e. the flag is equal to -1.0) the collision test
is skipped. This flag is initialized by AE threads when the x and y coordinates are
updated and is cleared when a collision test finishes.

Thecollision response arrayhas, as the previous array, NOBJECTSelements. Each
element of the array has two floats. The first one indicates whether a collision oc-
curred (in this case is equals to 1.0) or not (in this case is equals to 0.0). The second
float contains the agent identification number and indicateswhich agent is asso-
ciated to the collision result. The agent identification number is obtained by the
GPU from the fourth float contained in each element of theobject positions ar-
ray. Thecollision response arrayis accessed by the AE threads to send the colli-
sion responses corresponding to each collision request. Although this array has as
many elements as agents, the AE threads will only collect NOPERATIONSinstead of
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NOBJECTScollision results. In order to efficiently read thecollision response array,
random access is needed. Theobject-action array(that provides this random access)
contains the elements that should be accessed for reading each collision result.

Collisions on the GPU are checked using a spatial hashing based method. For this
reason, a two dimensional grid is created in the GPU memory when the simulation
starts. The dimensions of the grid, grid cell size and grid origin coordinates are fixed,
depending on the scene simulated. The easiest way to implement the collision grid
into the GPU is defining an array in which each position represents a grid cell. The
mapping of agents to grid cells is performed by the spatial hashing method, depend-
ing on the cell size and the position of agents. Because many agents can fall within
the same cell, the GPU threads can simultaneously update thesame array position.
Atomic operations are needed in the GPU in order to allow simultaneous accesses to
global memory [8]. However, the GPU used in our implementation does not support
atomic operations. For that reason, a more complex approach(based on sorting) has
been implemented, using a fast radix sort method [3]. In thisapproach, there is a
global memory array (denoted asObjectPositionsArray) containing the agents po-
sitions. Another array (denoted ascollisionResponse) contains the collision results.
Also, some other structures are used:ObjectsHash, sortedPositionsandcellStart.
TheObjectsHasharray represents the collision grid, and it stores the cell to which
each agent belongs. Concretely, it contains a pair(cell identifier, agent identifier)
for each position. ThesortedPositionsarray contains the same elements asObject-
PositionsArray, but sorted by cell identifier. In this way, neighboring agents can be
efficiently obtained for collision checking. ThecellStartarray allows to determine
the beginning of each cell in theObjectsHasharray. Thus, if positioni in cellStart
array contains the valuej, it means that the first agent of grid celli appears in posi-
tion j in theObjectsHasharray. In this way, thecellStartarray allows a quick access
to the agents in neighboring cells.

3 Performance Evaluation

This section shows the performance evaluation of the GPU-based server described
in the previous section. We have performed different measurements on a real sys-
tem using the GPU-based server. For comparison purposes, wehave also performed
the same measurements on the same real system but using the CPU-based server.
The most important performance measurements in distributed systems are latency
and throughput [2]. The performance improvement that a GPU-based server can
provide to the distributed crowd simulation [16] would depend on the number of
distributed servers in the system. In order to evaluate the worst case, we have per-
formed simulations with one server and with different number of agents. Concretely,
we have measured the aggregated computing time for collision tests during the sim-
ulations, and the average response times provided to agents. In order to define an
acceptable behavior for the system, we have considered 250 ms. as the maximum
threshold value for the average response time. This value isconsidered as the limit
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for providing realistic effects to users in Distributed Virtual Environments (DVEs)
[4, 14]. Since crowd simulation can be considered as DVEs where avatars are in-
telligent agents (instead of dummy entities controlled by users), we have used this
value taken from the literature.

We have performed crowd simulations with wandering agents because all their
actions should be verified by an AS. Each simulation consistsof the crowd moving
within the virtual world followingk-length random paths. Nevertheless, in order to
obtain reproducible and comparable results, we have saved the paths followed by the
agents in the first execution of each configuration and we haveused the same paths
for all the executions tested with the same number of avatars. For all the populations
tested, the average response time has become stable within the first thirty seconds
of execution time. Therefore, we have used simulations lengths of thirty seconds for
the configurations tested.

We have performed experiments using a computer platform with one server and
six clients. The server was based on Intel Core Duo 2.0 GHz, with 4GB of RAM, ex-
ecuting Linux 2.6.18.2-34 operating system and had incorporated a NVIDIA C870
Tesla GPU. Each client computer was based on AMD Opteron (2 x 1.56 GHz pro-
cessors) with 3.84GB of RAM, executing Linux 2.6.18-92 operating system. The
interconnection network was a Gigabit Ethernet network. Using this platform, we
have simulated up to nine thousand agents.

Figure 3 a) shows the aggregated computing time for operations involved in col-
lision tests during the whole simulation. On the X-axis, this figure shows the number
of agents in the system for different simulations. The Y-axis shows aggregated com-
puting time (in seconds) devoted to compute the collision tests required by the sim-
ulations. This Figure shows that the plot for the CPU-based server has a parabolic
shape, while the plot for the GPU-based server has a flat slope. These results show
that the use of the replicated hardware in the GPU has a significant effect in the time
required by the server to compute the collision tests. The population size (number
of agents) considered in these simulations generates a number of collision tests that
does not exceed the computation bandwidth available in the GPU. As a result, the
computing time required for different population sizes is very similar. An additional
benefit is derived from the fact that the GPU is exclusively devoted to compute col-
lision tests, releasing the CPU from that task. This is the reason for the lower values
shown by the GPU plot, even for the smallest population sizes.

Although Figure 3 a) shows a huge improvement in the GPU-based server perfor-
mance, the effects of such improvement should be measured onthe system. Thus,
Figure 3 b) shows the average response time provided for the agents hosted by a
given client. In order to show the results for the worst case,we show the values for
the client with the highest average response time (it must benoticed that we have a
single server and six clients).

Figure 3 b) shows that the average response times increases linearly with the
number of agents for both plots until 6000 agents. From that point up, the same be-
havior is shown when no GPU is used. However, when using GPU the plot shows
a flat slope. Beyond a given threshold, the average response time is not increased
because all the collisions tests are performed in parallel in the GPU. Additionally,
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Fig. 3 a) Aggregated computing time for collision tests. b) Average Response times provided to
agents.

Figure 3 b) shows that the CPU-based crowd simulation can support up to 3500
agents while providing average response times below the 250milliseconds thresh-
old. When GPU is used, the number of agents supported grows up to 5300 agents,
providing an improvement of a 50%. Taking into account that this improvement can
be achieved per each server in the system, these results showthat the GPU-based
server can actually have a significant impact in the performance of large-scale crowd
simulations.

Additionally, it must be noticed that the performance achieved when using GPUs
depends on the number of cores in the CPU, because the CPU threads are responsi-
ble for replying to the agents requests. Since we have used dual-core processors for
evaluation purposes (in order to measure the worst-case performance), the improve-
ments shown in this section can be increased when using platforms with a higher
number of processor cores.

4 Application Example

In Section 3 we have shown the performance evaluation of our proposal using wan-
dering agents, since this kind of agent generates the highest load in the server be-
cause all its actions should be verified by an AS. In this section, we show that the
proposed approach can integrate more complex navigationalbehaviors in real and
structured scenarios. Concretely, we have simulated the evacuation of an actually
existing Faculty building.

We have captured different simulation data in order to visualize the movement
followed by the crowd. These data are computed in the Client Processes, in such
a way that the Action Server is not affected by these computations. The behavior
of agents has been integrated in the client processes, as explained in Section 2. A
hybrid navigation, composed of a two-modules model, has been used. On one hand,
the high-level navigation module is in charge of pre-computing a set of paths from
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any cell to the exits. We have implemented this module as a Cellular Automata (CA).
The number and length of the paths computed can be adjusted inorder to reduce
the memory used by the CA [6]. On other hand, a low-level navigation module
determines how the paths computed by the CA should be followed. This module
is implemented as a rule-based model [9, 12], and it allows tomove agents in a
continuum domain.

In this application example there are also static objects that agents should avoid.
Since the rule-based navigation model implemented in the client process can provide
agent positions colliding with static objects, some modifications are needed in the
GPU collision checking algorithm. However, the performance of the GPU collision
checking algorithm is not significantly affected by these changes, since the obstacles
grid is computed and sorted before the simulation starts, and the grid data is kept
in GPU memory during the whole simulation, avoiding memory transfers between
CPU and GPU. Figure 4 shows a detailed 3D view of a congestion produced during
the evacuation simulation. This example shows that the performance improvements
shown in Section 3 can also be obtained when simulating agents with complex nav-
igational behaviors. Moreover, these improvements are achieved without affecting
the visual quality of the crowd.

Fig. 4 3D snapshot of the
evacuation scenario.

5 Conclusions and Future Work

In this paper, we have proposed the implementation of a distributed server for crowd
simulations using an on-board GPU. The huge number of cores in the GPU is used
to simultaneously validate movement requests from different agents, greatly reduc-
ing the server response time. Since this task represents thecritical data path, the
use of this hardware significantly increases the parallelism achieved with respect to
the implementation of the same distributed server on a CPU. Thus, the system can
support a significantly higher number of agents while providing the same latency
levels.
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As a future work to be done, we plan to study the performance improvements
that the use of processors with a higher number of cores can provide.
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