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Abstract The huge number of cores existing in current Graphics Psocddnits
(GPUs) provides these devices with computing capabilities can be exploited
by distributed applications. In particular, these captgsihave been used in crowd
simulations for enhancing the crowd rendering, and evesifoulating continuum
crowds. However, GPUs have not been used for simulating lergwds of com-
plex agents, since these simulations require distributgldtactures that can support
huge amounts of agents. In this paper, we propose a GPU-badtdigent system
for crowd simulation. Concretely, we propose the use of aba@srd GPU to im-
plement some of the tasks that a distributed server for craiwailations should
perform. The huge number of cores in the GPU is used to simediasly validate
movement requests from different agents, greatly redutiegerver response time.
Since this task represents the critical data path, the uesdiardware significantly
increases the parallelism achieved with respect to theeimghtation of the same
distributed server on a CPU. An application example shows tiiie system can
support agents with complex navigational behaviors.

1 Introduction

The huge number of cores existing in current Graphics Psocésnits (GPUS) pro-
vides these devices with computing capabilities that caexpéoited by distributed
applications. Since some years ago, GPU vendors introdpicegtammability to

these devices in order to facilitate their use for scientiimputation. One of the
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distributed applications that can benefit from the capidmsliof the GPUs is crowd
simulation.

Regarding crowd simulations, some proposals have been foreeploiting the
capabilities of multicore architectures. In this senseew approach has been pre-
sented for PLAYSTATIONS to distribute the load among the 23l elements[13].
Another work uses graphics hardware to simulate crowdsaighands individuals
using models designed for gaseous phenomena [1]. Recsathe authors have
started to use GPU in an animation context (particle engib&) 5], and there
are also some proposals for running simple stochastic ajentations on GPUs
[7, 10]. However, these proposals are far from displaying@ex behaviors at in-
teractive rates. On the other hand, other proposals in@uchmplex agent systems
have been made [9, 15], but they are not designed to provedetiuired scalability
in number of agents.

In this paper, we show that large scale multiagent systembenefit from the
use of GPU computing. In order to achieve this goal, we haygemented a dis-
tributed server for crowd simulations [16] using an on-lkid@PU. The huge number
of cores in the GPU is used to simultaneously validate mowneguests from dif-
ferent agents, greatly reducing the server response timee &is task represents
the critical data path, the use of this hardware signifigantireases the parallelism
achieved with respect to the implementation of the sameiagelht system using a
distributed server implemented on a CPU. Thus, the perfoceavaluation results
show that the system throughput is significantly increaseplporting a significantly
higher number of agents while providing the same latenogi$evhese results can
be used for simulating crowds with a larger size.

The rest of the paper is organized as follows: Section 2 descin detail the
use of GPUs for increasing parallelism in crowd simulatidesxt, Section 3 shows
the performance evaluation of the proposed architectuegt,$ection 4 describes
an application example to show our system working in a redlcamplex scenario.
Finally, Section 5 shows some concluding remarks and futar to be done.

2 A GPU-based Action Server for Crowd Simulation

In a previous work, a distributed system architecture fomnet simulation was pro-
posed in order to take advantage of the underlying dis&itbabmputer system [16].
That software architecture is mainly composed by two eldéméhe action server
(AS) and the client processes (CP). The AS is devoted to éxehe crowd ac-
tions, while a CP handles a subset of the existing agentitdgee implemented as
threads of a single process for reducing the communicatieh &ach thread man-
ages the perception of the environment and the reasoning tif@next action. Each
client process is hosted on a different computer, in suchyathat the system can
have a different number of client processes, depending®nuimber of agents in
the system. The Action Server is divided into a set of proegss that each one can
be executed in parallel in a different computer. Each ofdlmecesses is denoted
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as an Action Server, while the whole set of ASs is denoted a$#rallel Action
Server (PAS). The rest of the section describes the versithed®?AS for execution
in CPU, and the modifications made to this version in ordeake advantage of a
GPU.

Each piece (process) of the Parallel Action Server can bsedeas a partial
world manager, since it controls and properly modifies tifieriation in a region of
the whole simulation space. Thus, it can be considered asyttem core. Each AS
process contains three basic elements: the Interface madtiel Crowd AS Control
(CASC) module and the Semantic Data Base (SDB). Figure dtifites a detailed
scheme of an AS.
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Fig. 1 Internal structure of an AS
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The main module is the Crowd AS Control module, which is resjiue for ex-
ecuting the crowd actions. This module contains a configamnabmber of threads
for executing actions (action execution threads in FigQr&ar an action execution
thread (AE thread), all messages sent to or received froer &8s and CPs are
exchanged asynchronously (the details are hidden by teegdoe module, see be-
low). This means that the AE threads only may have to wait vaw@essing shared
data structures such as the semantic database. Thus,regptai tests have shown
that having more AE threads than cores allows each AS to thkengage of several
cores.

Most action requests from agents are executed from stamttbythe AE thread,
that extracts the requests from the corresponding inputejaed process them.
These requests consist of collision tests, in order to cifebk new position com-
puted by each agent when it moves coincides with the posifiother agent or ob-
ject. The Interface module hides all the details of the ngssachanges. This mod-
ule provides the Crowd AS Control module with the abstractd asynchronous
messages. Two separate input queues exist, one for messagery from local
CPs (action requests) and the other one for messages coromgafljacent ASs
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(responses to requests issued because of local bordansaotioequests for remote
border actions from adjacent ASs). Having two separatetigpeues is an efficient
way of giving a higher priority to messages from adjacent A& reason for im-
proving the priority of these messages is that the bordésracare the ones whose
processing takes longer, and we should reduce as much ablpdbksir response
time to provide realistic interactive effects.

In order to process messages as soon as they arrive, thateterodule contains
one |10 thread dedicated to getting incoming messages freamBaP socket. There
are no input threads associated with sockets connectingA8n® their adjacent
CPs, because CPs only send messages to their local AS. lartieegay, there is
one |0 thread and one output queue per TCP socket, so thahgessare sent as
soon as the corresponding TCP socket is ready for writing.

The GPU used for implementing a parallel action server has lzeNVIDIA
Tesla C870. This GPU has 128 thread processors, each oné&siigxture cache
and low-latency shared memory. The communications of tfierdnt shared mem-
ories with global memory are performed at the same time, bgnmef Load/Store
operations. Each thread processor executes a kernel illeparigh the rest of pro-
cessors. Just before calling this kernel, the useudfaBindTexture(nstruction al-
lows to copy into each texture cache the proper range of globenory addresses.
In this way, each thread processor can access to local ddtawery low latency.
The integration of a huge number of cores and on-chip memavith low latency
in this GPU allows to perform up to 128 collision tests in plataclearly outper-
forming the number of collision tests performed in paraliélen using the CPU.
Additionally, the SIMD structure of the GPU avoids mutuatlkssions when ac-
cessing shared data structures, while the CPU-version Aigatls have to wait
when accessing data structures shared among the existieg sach as the seman-
tic database.

A general overview of the collision checking process in teever is as follow-
ing: agent requests received by the interface module asegas the CASC module.
However, the AE threads in the GPU-based server do not &cpexform the colli-
sion tests (unlike the AE Threads in the CPU-based servestead, the AE threads
collect the requests from the interface module and copy tteethe SDB module
as they arrive, until Nperationsrequests are collected. At this point, one of the
AE threads signals thePU manager threadThis thread controls the data path in
the GPU. Concretely, this thread copies the requests iet@&#U global memory
and launches the collision tests. When the collision tesistfithe GPU manager
thread copies the results into the CPU memory. When the ARdsrénish their
current task, they will start to process the GPU repliestTahe AE threads in
the GPU-based server collect client requests, but thesesesjare actually checked
by the GPU manager thread. In this way, the parallelism &eliéy having several
AE Threads is decoupled from the parallelism provided byGR&J thread proces-
sors. This collision checking scheme can take advantadgeqdfdrallel computation
capabilities of a GPU like the NVIDIA Tesla C870.

The internal structure of a parallel action server using &@&Pshown in Fig-
ure 2. In this implementation, the SDB module containsabject positions array
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thecollision response arragnd theGPU manager threadTheobject positions ar-
ray is the host-GPU input interface. This array, contains tlenégpositions, needed
to check collisions. The structuoellision response arrgyrepresents the host-GPU
output interface, and it contains the result of the collisitests performed by the
GPU. When théGPU manager threads signaled by the AE Threads, it copies the
object positions array into the GPU and launches the cofligésts. When the colli-
sion tests finish, th&PU manager threadopies the results from the GPU memory
into the SDB module. Then, it signals the AE threads to septying to CPs or
ASs.

to/from to to/from
Adjacent ASs Adjacent CPs Local CPs
| 4 |

Bil i Interface

Eeed o8 [ed]

Crowd AS Control

Fig. 2 Internal structure of an
action server using a GPU

The object positions arrajnas Nogjectselements, that is, as many elements as
agents managed by a server. An agent identifier is assodiatedch request, in
order to update the proper array position. Each elementirattay has four floats
for each object passed to the GPU. The first and second floataiedhe x and
y coordinates of the agent’s position, respectively. Thetfioat is not used. The
fourth float is a flag indicating the GPU whether the elemerith@array has been
updated by AE threads. If an object position has been updatedhe flag is equal
to a positive number representing the agent identifier nupthen the collision
test will be performed. Otherwise (i.e. the flag is equal t®)1he collision test
is skipped. This flag is initialized by AE threads when the ® srcoordinates are
updated and is cleared when a collision test finishes.

Thecollision response arrafias, as the previous arrayphiectselements. Each
element of the array has two floats. The first one indicateshvene collision oc-
curred (in this case is equals to 1.0) or not (in this caseusisdo 0.0). The second
float contains the agent identification number and indicatieich agent is asso-
ciated to the collision result. The agent identification hemis obtained by the
GPU from the fourth float contained in each element of abgect positions ar-
ray. The collision response arrays accessed by the AE threads to send the colli-
sion responses corresponding to each collision requettoddh this array has as
many elements as agents, the AE threads will only collegidationsinstead of



6 Guillermo Vigueras and Juan M. Origia and Miguel Lozano

NogjecTtscollision results. In order to efficiently read thellision response arrgy
random access is needed. Tigect-action array(that provides this random access)
contains the elements that should be accessed for readihgebision result.

Collisions on the GPU are checked using a spatial hashireglrasthod. For this
reason, a two dimensional grid is created in the GPU memomsnvithe simulation
starts. The dimensions of the grid, grid cell size and griginicoordinates are fixed,
depending on the scene simulated. The easiest way to imptehreecollision grid
into the GPU is defining an array in which each position regméesa grid cell. The
mapping of agents to grid cells is performed by the spatishimy method, depend-
ing on the cell size and the position of agents. Because mgaytacan fall within
the same cell, the GPU threads can simultaneously updagathe array position.
Atomic operations are needed in the GPU in order to allow kameous accesses to
global memory [8]. However, the GPU used in our implemeatatioes not support
atomic operations. For that reason, a more complex appibasied on sorting) has
been implemented, using a fast radix sort method [3]. In dpisroach, there is a
global memory array (denoted &bjectPositionsArraycontaining the agents po-
sitions. Another array (denoted esllisionRespongecontains the collision results.
Also, some other structures are usé@bjectsHashsortedPositionsand cellStart
The ObjectsHaslarray represents the collision grid, and it stores the oalvhich
each agent belongs. Concretely, it contains a (@&l identifier, agent identifier)
for each position. TheortedPositiongrray contains the same elementsOdgect-
PositionsArray but sorted by cell identifier. In this way, neighboring atgeran be
efficiently obtained for collision checking. TheellStartarray allows to determine
the beginning of each cell in th@bjectsHastarray. Thus, if position in cellStart
array contains the valug it means that the first agent of grid celippears in posi-
tion j in theObjectsHaslarray. In this way, theellStartarray allows a quick access
to the agents in neighboring cells.

3 Performance Evaluation

This section shows the performance evaluation of the GPig¢dbaerver described
in the previous section. We have performed different mesamants on a real sys-
tem using the GPU-based server. For comparison purposémweelso performed
the same measurements on the same real system but using thbaSed server.
The most important performance measurements in distdbsgstems are latency
and throughput [2]. The performance improvement that a GR&kd server can
provide to the distributed crowd simulation [16] would dedeon the number of
distributed servers in the system. In order to evaluate thestwase, we have per-
formed simulations with one server and with different nunddegents. Concretely,
we have measured the aggregated computing time for caillisgts during the sim-
ulations, and the average response times provided to aderdeder to define an
acceptable behavior for the system, we have considered 25@srthe maximum
threshold value for the average response time. This valoerisidered as the limit
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for providing realistic effects to users in Distributed Mial Environments (DVES)
[4, 14]. Since crowd simulation can be considered as DVEg&heatars are in-
telligent agents (instead of dummy entities controlled bgra), we have used this
value taken from the literature.

We have performed crowd simulations with wandering ageatabse all their
actions should be verified by an AS. Each simulation consistise crowd moving
within the virtual world followingk-length random paths. Nevertheless, in order to
obtain reproducible and comparable results, we have shequbths followed by the
agents in the first execution of each configuration and we hagd the same paths
for all the executions tested with the same number of avatarsall the populations
tested, the average response time has become stable ki¢hfinst thirty seconds
of execution time. Therefore, we have used simulationstlengf thirty seconds for
the configurations tested.

We have performed experiments using a computer platforim evie server and
six clients. The server was based on Intel Core Duo 2.0 GHb, 4GB of RAM, ex-
ecuting Linux 2.6.18.2-34 operating system and had ingatpd a NVIDIA C870
Tesla GPU. Each client computer was based on AMD Opteron (8& GHz pro-
cessors) with 3.84GB of RAM, executing Linux 2.6.18-92 @&y system. The
interconnection network was a Gigabit Ethernet networkngshis platform, we
have simulated up to nine thousand agents.

Figure 3 a) shows the aggregated computing time for op@&ativolved in col-
lision tests during the whole simulation. On the X-axisstigure shows the number
of agents in the system for different simulations. The Ysakiows aggregated com-
puting time (in seconds) devoted to compute the collisiststeequired by the sim-
ulations. This Figure shows that the plot for the CPU-basedes has a parabolic
shape, while the plot for the GPU-based server has a flat.sldpse results show
that the use of the replicated hardware in the GPU has a signifeffect in the time
required by the server to compute the collision tests. Thpulation size (number
of agents) considered in these simulations generates aarwhbollision tests that
does not exceed the computation bandwidth available in #g.@\s a result, the
computing time required for different population sizeseasysimilar. An additional
benefit is derived from the fact that the GPU is exclusivelyoded to compute col-
lision tests, releasing the CPU from that task. This is tlasea for the lower values
shown by the GPU plot, even for the smallest population sizes

Although Figure 3 a) shows a huge improvement in the GPU¢bsserer perfor-
mance, the effects of such improvement should be measurétkeasystem. Thus,
Figure 3 b) shows the average response time provided forgbmeta hosted by a
given client. In order to show the results for the worst caseshow the values for
the client with the highest average response time (it musiotieed that we have a
single server and six clients).

Figure 3 b) shows that the average response times incraasesly with the
number of agents for both plots until 6000 agents. From thattpp, the same be-
havior is shown when no GPU is used. However, when using GRUlidt shows
a flat slope. Beyond a given threshold, the average respomedd not increased
because all the collisions tests are performed in paralléhé GPU. Additionally,
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Fig. 3 a) Aggregated computing time for collision tests. b) Average Respdimes provided to
agents.

Figure 3 b) shows that the CPU-based crowd simulation capastipip to 3500
agents while providing average response times below the #i6econds thresh-
old. When GPU is used, the number of agents supported grows 500 agents,
providing an improvement of a 50%. Taking into account theg improvement can
be achieved per each server in the system, these resultstsabthe GPU-based
server can actually have a significant impact in the perfoceaf large-scale crowd
simulations.

Additionally, it must be noticed that the performance aebiewhen using GPUs
depends on the number of cores in the CPU, because the CRidshaee responsi-
ble for replying to the agents requests. Since we have usaecdve processors for
evaluation purposes (in order to measure the worst-cagerpemce), the improve-
ments shown in this section can be increased when usingptafwith a higher
number of processor cores.

4 Application Example

In Section 3 we have shown the performance evaluation of mpgsal using wan-
dering agents, since this kind of agent generates the hi¢ea$in the server be-
cause all its actions should be verified by an AS. In this eactive show that the
proposed approach can integrate more complex navigatimtelviors in real and
structured scenarios. Concretely, we have simulated theuation of an actually
existing Faculty building.

We have captured different simulation data in order to Jigaghe movement
followed by the crowd. These data are computed in the Clieotd3ses, in such
a way that the Action Server is not affected by these comioumsit The behavior
of agents has been integrated in the client processes, &sr@gin Section 2. A
hybrid navigation, composed of a two-modules model, has bised. On one hand,
the high-level navigation module is in charge of pre-cormuua set of paths from
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any cell to the exits. We have implemented this module aslal@eAutomata (CA).
The number and length of the paths computed can be adjustdién to reduce
the memory used by the CA [6]. On other hand, a low-level retiwgy module
determines how the paths computed by the CA should be fotloWhis module
is implemented as a rule-based model [9, 12], and it allowsidoe agents in a
continuum domain.

In this application example there are also static objeetsagents should avoid.
Since the rule-based navigation model implemented in ikatgbrocess can provide
agent positions colliding with static objects, some modifns are needed in the
GPU collision checking algorithm. However, the performan€the GPU collision
checking algorithm is not significantly affected by thesarues, since the obstacles
grid is computed and sorted before the simulation staris,tlh@ grid data is kept
in GPU memory during the whole simulation, avoiding memaansfers between
CPU and GPU. Figure 4 shows a detailed 3D view of a congestmiuged during
the evacuation simulation. This example shows that theopadnce improvements
shown in Section 3 can also be obtained when simulating agétit complex nav-
igational behaviors. Moreover, these improvements areaetl without affecting
the visual quality of the crowd.

Fig. 4 3D snapshot of the
evacuation scenario.

5 Conclusions and Future Work

In this paper, we have proposed the implementation of aloligé&d server for crowd
simulations using an on-board GPU. The huge number of corg®iGPU is used
to simultaneously validate movement requests from diffeagents, greatly reduc-
ing the server response time. Since this task representsiti@l data path, the
use of this hardware significantly increases the parathetishieved with respect to
the implementation of the same distributed server on a CRUs;Tthe system can
support a significantly higher number of agents while primgdhe same latency
levels.
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As a future work to be done, we plan to study the performangaorements

that the use of processors with a higher number of cores caider.
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