
Parallel Computation of the SVD of a Matrix

Product �

Jos�e M� Claver�� Manuel Mollar� and Vicente Hern�andez�

� Dpto� de Inform�atica� Univ� Jaume I� E������ Castell�on� Spain�
� Dpto� de Sistemas Inform�aticos y Computaci�on� Universidad Polit�ecnica de

Valencia� E��	�
� Valencia� Spain�

Abstract� In this paper we study a parallel algorithm for computing
the singular value decomposition �SVD� of a product of two matrices
on message passing multiprocessors� This algorithm is related to the
classical Golub�Kahan method for computing the SVD of a single matrix
and the recent work carried out by Golub et al� for computing the SVD
of a general matrix productquotient� The experimental results of our
parallel algorithm� obtained on a network of PCs and a SUN Enterprise
����� show high performances and scalability for large order matrices�

� Introduction

The problem of computing the singular value decomposition �SVD� of a product
of matrices occurs in a great variety of problems of control theory and signal
processing �see ���� ��� �	
�� The product singular value decomposition �PSVD�
is de�ned as follows�

For any given matrices� A � IRm�n� B � IRn�p� there exist two matrices
U � IRm�n and V � IRn�p with orthogonal columns� an orthogonal matrix
Q � IRn�n� and a full rank upper triangular matrix R � IRn�n� such that

A � U�ARQ
T � B � QR���BV

T ���

with
�A � diag���� � � � � �n�� �B � diag���� � � � � �n�� ��

The n pairs ��i� �i� are called the product singular values of �A�B� and the
singular values of the product AB are the products �i�i� for i � �� � � � � n�

The PSVD was introduced by Fernando and Hammarling �	
 as a new gener�
alization of the SVD� based on the product ABT � It complements the generalized
singular value decomposition �GSVD� introduced by Van Loan ��
 and Paige
and Sanders ���
� now called quotient�SVD �QSVD�� as proposed in ��
� The par�
allel computation of the GSVD has been treated in �� �
� A complete study of
the properties of the PSVD can be found in ��
� The computation of the PSVD
is typically carried out with an implicit Kogbetliantz algorithm� as proposed in
�	
� Parallel implementations of this algorithm are presented in ���� ��
�

� This research was partially supported by the spanish CICYT project under grant
TIC�	���	��C���������

In this work we are interested in the computation of the SVD of the product
AB� The method used is based on the algorithm designed by Golub et al� in
��
� Their algorithm is related to the Golub�Kahan procedure for computing the
singular value decomposition of a single matrix in that a bidiagonal form of the
sequence� as an intermediate result� is constructed ���
� The algorithm derived
in ��
 applies this method to two matrices as an alternative way of computing
the product SVD� In this paper we describe a parallel algorithm for computing
the singular values of the product of two matrices and study its implementation
on two di�erent message passing multiprocessors using ScaLAPACK�

The rest of the paper is organized as follows� Section describes the im�
plicit bidiagonalization as �rst step of this method� In section � we present a
sequential version of this algorithm using LAPACK and the characteristics of
our ScaLAPACK based parallel algorithm� In section � we analyze the perfor�
mance and scalability of our parallel algorithm on both shared and distributed
memory multiprocessors�

� Implicit Bidiagonalization

Given two matrices A and B� we want to compute the SVD of the product
AB without explicitly constructing of their product� This method involves two
stages�

�� The implicit bidiagonalization of the product AB�
�� The computation of the SVD of the bidiagonal matrix�

For the �rst stage we need about O�n�� �ops� for the second stage we need
about O�n�� �ops� Well�known Golub�Reinsch ���
� Demmel�Kahan ��
 or Fer�
nando and Parlett ��
 algorithms can be employed to perform the second stage�
Thus� we have focused our e�orts on the �rst stage�

For this purpose� we generate a sequence of matrix updates with the appli�
cation of di�erent Householder transformations ���
� In order to illustrate the
procedure we show its evolution operating on a product of two �x� matrices A
and B� Here� x stands for a nonzero element� and � a zero element�

First� we perform a Householder transformation Q� on the rows of B and
the columns of A� chosen to annihilate all but the �rst component of the �rst
column of B�

AB � AQT
�Q�B�

A� AQT
� �

B � Q�B�
A �

�
���
x x x x
x x x x
x x x x
x x x x

�
��� � B �

�
���
x x x x
� x x x
� x x x
� x x x

�
��� �

Then� we perform a Householder transformation QA on the rows of A� chosen
to annihilate all but the �rst component of the �rst column of A�

QAA �

�
���
x x x x
� x x x
� x x x
� x x x

�
���

Notice that the resulting matrix product QAAB presents the same structure�

�
���
x x x x
� x x x
� x x x
� x x x

�
���

�
���
x x x x
� x x x
� x x x
� x x x

�
��� �

�
���
x x x x

� x x x
� x x x
� x x x

�
��� �

We are interested in the �rst row of this product �indicated in boldface above��
This row can be constructed as the product of the �rst row of A and the matrix
B� Once it is constructed� we �nd a Householder transformation operating on
the last �n � �� elements of the row� which annihilates all but the two �rst
components of of this row�

A��� ��BQB �
�
x x � �

�
�

Thus� when this transformation is applied to B� the �rst step of the bidiagonal�
ization is completed as

QAABQB �

�
���
x x � �
� x x x
� x x x
� x x x

�
��� �

Next� we consider A� � n� � n� and B� � n� � n�� and using the same
procedure� we bidiagonalize the second column�row of the matrix product� The
procedure is repeated until the full matrix product is bidiagonalized�

� Parallel Algorithm

We have implemented a BLAS� routine �denoted by BD� for computing implic�
itly the bidiagonal of product of two n� n matrices using the LAPACK library
��
�
Algorithm � �BD�

for i � �� � ���� n� �

Compute the Householder re�ector that nullify B�i���n�i�� DLARFG

Apply the Householder re�ector to B from the left� DLARF
Apply the re�ector to A from the Right� DLARF

Compute the re�ector that nullify A�i���n�i�� DLARFG

Apply the re�ector to A from the left� DLARF

Compute de implicit product AB � A�i�i�n�B�i�n�i�n� �� DGEMV

Compute the re�ector that nullify AB�i�min�i��n��n�� DLARFG

Store diagonal and o��diagonal elements of the matrix product
Apply the re�ector to B from Right� DLARF

end for

Last diagonal element of the matrix product is A�n�n�B�n�n�

Algorithm � shows� in a detailed manner� the procedure followed by our BD
routine� where the LAPACK routines used are described to the right hand of
each step� The routine obtains two vectors corresponding to the diagonal and
the upperdiagonal of the bidiagonalized matrix product�

In order to obtain the SVD of the resulting bidiagonal we can use either
the xLASQ or the xBDSQR LAPACK routines� that implement the Fernando�
Parlett��
 and the Demmel�Kahan ��
 algorithms� respectively�

Our parallel implementation� see algorithm � that includes the corresponding
ScaLAPACK routines used� �denoted by PBD�� is implemented in ScaLAPACK
��
� In this parallel library� the matrices are block cyclically distributed among
a P � p� q mesh of processors�

Algorithm � �PBD�

Input�

A�B � IRn�n� distributed matrices
Output�
D�E � IRn� local vectors to store the fragments of the resulting bidiagonal

Create ScaLAPACK descriptors for D and E
for i � �� � ���� n� �

Compute the Householder re�ector that nullify B�i���n�i�� PDLARFG

Apply the Householder re�ector to B from the left� PDLARF
Apply the re�ector to A from the Right� PDLARF

Compute the re�ector that nullify A�i���n�i�� PDLARFG

Apply the re�ector to A from the left� PDLARF

Store diagonal �D�i�� B�i� i�� element� PDELSET

Compute de implicit product AB � A�i�i�n�B�i�n�i�n� �� PDGEMV

and part of D as a resulting distributed vector

Store o��diagonal �E�i�� element� PDELSET

Compute the re�ector that nullify AB�i�min�i��n��n�� PDLARFG

Store diagonal and o��diagonal elements of the matrix product
Apply the re�ector to B from Right� PDLARF

end for

Last diagonal element of the matrix product is A�n�n�B�n�n�

� Experimental Results

In this section we analyze the performance of our parallel algorithm obtained on
two di�erent architectures� a SUN Enterprise ���� and a network of PCs�Personal
Computers�� We compare the performance of the serial and the parallel routines
on the SUN and the PC cluster�

The SUN ���� is a shared memory non bus�based multiprocessor �the main
memory has �� MBytes� with 	 UltraSparc processors at ��� MHz and a second

level cache of �� KBytes� It has a ��� crossbar interconnection network between
pairs of processors and main memory�

The network of PCs consists of �� PCs interconnected by a Myricom Myrinet
network �MMn�� Each PC is a Pentium II at ��� MHz� with �� KBytes of second
level cache memory and �	 MBytes SDRAM of local memory per processor�
under Linux operating system� The Miricom Myrinet is an 	 � 	 bidirectional
crossbar network with a bandwidth of ��	 Gbits�s per link�

All experiments were performed using Fortran �� and IEEE double�precision
arithmetic� We made use of the LAPACK library and the ScaLAPACK parallel
linear algebra library ��
� The use of these libraries ensures the portability of the
algorithms to other parallel architectures�

The communication in the ScaLAPACK library is carried out using the MPI
communications library� We have used optimized MPI libraries on both the SUN
�vendor supplied� and the MMn �GM version� machines�

Our �rst experiment is designed to evaluate the e�ciency of our parallel
algorithm PDB� In Figures � and we report the e�ciencies obtained for our al�
gorithm� using P � � �� � and 	 processors� on the MMn and the SUN platforms�
respectively� Notice that high performances are obtained for medium�scale and
large�scale problems on both machines� On the SUN� the e�ciency of our parallel
algorithm grows more quickly than in the MMn machine when the order of the
matrices is increased� The reason is the better relative speed of communication
on the SUN�

200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

E
ffi

ci
en

cy

P=8

P=6

P=4

P=2

Fig� �� E�ciencies obtained on the MMn using P � � �� � and 	 processors
for di�erent problem orders�

200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

E
ffi

ci
en

cy
P=8

P=6

P=4

P=2

Fig� �� E�ciencies obtained on the SUN using P � � �� � and 	 processors for
di�erent problem orders�

In our following experiment we analyze the scalability of the parallel al�
gorithm on the MMn platform� In Figure � we �x the memory requirements
per node of the algorithm to n�p � ���� ����� ���� and ���� and report the
mega�ops per node for P � �� p� � �� �� �� and �� processors� Notice that the
performance is slightly degraded as the number of processors gets larger� and
this performance degradation is minimum as the memory requirements per node
are increased�

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Number of processors

M
eg

af
lo

ps
 p

er
 p

ro
ce

ss
or

n/p=500

n/p=1000

n/p=1500

n/p=2000

Fig� �� M�ops per processor obtained on the MMn for constant data load n�p�

� Concluding Remarks�

We have studied the parallelism of a new method for computing the SVD of a
matrix product via the implicit bidiagonalization of this product as intermediate
step�

The experimental results show the high e�ciency of our algorithm for a
wide range of scale problems on shared and distributed memory architectures�
Moreover� this algorithm shows an excellent scalability on a PC cluster�

Our algorithm can be easily extended for computing the SVD of a general
matrix product� Currently� we are working on a BLAS�� routine in order to
increase the performance of both serial and parallel algorithms�

References

�� Anderson� E�� Bai� Z�� Bischof� C�� Demmel� J�� Dongarra� J�� Du Croz� J�� Green�
baum� A�� Hammarling� S�� Mckenney� A�� Ostrouchov� S�� Sorensen� D�� LAPACK
User�s Guide� Release ����� SIAM� Philadelphia �������

�� Bai� Z� A parallel algorithm for computing the generalized singular value decompo�
sition� Journal of Parallel and Distributed Computing �� ������ ��������

�� Brent� R�� Luk� F� and van Loan� C�� Computation of the generalized singular value
decomposition using mesh connected processors� Proc� SPIE Vol� ���� Real time
signal processing VI ������ 		�
��

�� Blackford� L�� Choi� J�� D�Azevedo� E�� Demmel� J�� Dhillon� I�� Dongarra� L�� Ham�
marling� S�� Henry� G�� Petitet� A�� Stanley� K�� Walker� D�� Whaley� R�� SCALA�
PACK User�s Guide� SIAM ����
��

�� De Moor� B� and Golub� G� H�� Generalized singular value decompositions� A pro�
posal for a standardized nomenclature� Num� Anal� Proj� Report ������ Comput�
Sci� Dept�� Stanford University �������

	� De Moor� B�� On the structure and geometry of the PSVD� Num� Anal� Project�
NA������� Comput� Sci� Dept�� Stanford University �������

� Demmel� J�� Kahan� W�� Accurate singular values of bidiagonal matrices� SIAM J�
Sci� Stat� Comput� �� ������ �
������

�� Fernando� K� and Hammarling� S�� A generalized singular value decomposition for a
product of two matrices and balanced realization� NAG Technical Report TR��
�
Oxford ����
��

�� Fernando� K� and Parlett� B�� Accurate singular values and di�erential qd algo�
rithms� Numerische Mathematik �� ������ ��������

��� Golub� G�� W� Kahan� Calculation of the singular values and the pseudoinverse of
a matrix� SIAM J� Numer� Anal� � ���	�� ��������

��� Golub� G�� Reinsch� W�� Singular value decomposition and the least square solution�
Numer� Mathematik ��� ���
�� ��������

��� Golub� G�� S�lna� K� and van Dooren� P�� Computing the SVD of a General Matrix
ProductQuotient� submitted to SIAM J� on Matrix Anal� � Appl������
��

��� Golub� G�� Van Loan� C�� Matrix Computations� North Oxford Academic� Oxford
�������

��� Heat� M�� Laub� A�� Paige� C�� Ward� R�� Computing the singular value decompo�
sition of a product of two matrices� SIAM J� Sci� Stat� Comput� � ����	� ���
������

��� Laub� A�� Heat� M�� Paige� G�� Ward� R�� Computation of system balancing trans�
formations and other applications of simultaneous diagonalization algorithms� IEEE
Trans� AC �� ����
� ��������

�	� Mollar� M�� Hern�andez� V�� Computing the singular values of the product of two
matrices in distributed memory multiprocessors� Proc� �th Euromicro Workshop on
Parallel and Distributed Computation� Braga ����	��

�
� Mollar� M�� Hern�andez� V�� A parallel implementation of the singular value decom�
position of the product of triangular matrices� �st NICONET Workshop� Valencia
������

��� Moore� B�� Principal component analysis in linear systems� Controlability� observ�
ability� and model reduction� IEEE Trans� AC �� ������ ��������

��� Paige� C�� Sanders� M�� Towards a generalized singular value decomposition� SIAM
J� Numer� Anal� �� ������ ��������

��� Van Loan� C�� Generalizing the singular value decomposition� SIAM J� Numer�
Anal� �� ���
	�
	����

This article was processed using the LATEX macro package with LLNCS style

