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ABSTRACT

We describe the current state of development of an environment for the automatic generation of specific circuits
in FPGA for SIMD applications from high level specifications. The methodology used is based on the transfor-
mation of the whole algorithm in a graph of LUTs (Look Up Tables), without the use of library components,
that implements all the required operations. The quality of the obtained circuitry is guaranteed by the use of
“type inference”, a technique that is focus of current research on the design high level circuit generators, which is
context dependent. Two sort of implementations of the iterative expressions are possible with these tools: with
or without a complete unrolling. As a first case study, we have tested the efficiency of this environment in the
implementation of an integer discrete wavelet transform (DWT).
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1. INTRODUCTION

Currently there is a rising interest in the design of heterogeneous architectures for applications that need
intensive computations. These designs increase their performance by using, either partially or totally,
generic hardware resources. Among this set of architectures, specially important are those focused on the
transformation of continuous dataflows, i.e. multimedia applications, and embedded applications that
work into quickly changing environments. One of these tendencies, so called reconfigurable architectures
(RA), has been powered by the technological advances in high scale integration and the availability
of hardware resources [Villasenor-97]. The architecture of these platforms [Kozyrakis-98] , and their
programming [Lee-00], is object of many studies which try to find more efficient configurations, often
composed by a set of processors, configurable circuitry, either for random logic or for accelerating intensive
computation, networks of configurable elements and different kinds of memory.

Methods used to develop applications for reconfigurable architectures are dominated by the use of
industrial CAD/EDA tools, which are generalized in the VLSI design field. Each new device launched
to market has a set of libraries and tools for its planning, simulation, placement and routing usually
offered by the manufacturer. These tools use as inputs hardware description languages (HDL) and other
methods of low level specification of logic circuits. There are some recent initiatives in the specification
of public architectures (Xilinx 6200) and open environments for the design of circuits (Xilinx Jbits API,
used to configure the Virtex II). However, many important problems are still unsolved: portability,
reusability and open access to architecture resources, that do not allow a more general use of RA, and
the application, in this field, of the techniques commonly used in software engineering.

Multimedia applications are known examples of SIMD applications, characterized by fine grain op-
erations and high dependency on the dataflow from memory. In order to increase the performance of
this sort of applications, the use of RA is an alternative method to the SIMD extensions of current
general-purpose superscalar processors (characterized by the flexibility of their use) and to the ASICs
integrated in DSPs (less flexible and more specific, but more performance efficient). The use of RA can
extract the best characteristics of these two approaches, allowing an easy way to update the system
functionality and performance.
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In multimedia applications, discrete wavelet transform (DWT) is widely used on storage systems and
images and video transmission. Specially, there is a rising interest in reversible DWT (lossless) based on
integer arithmetic. Since DWT is a paradigm of current SIMD applications, and due to their polynomic
characteristics and data dependencies, we have chosen it as the first case study for our work.

The rest of this paper is organized as follows. Next section addresses code generation problems for
reconfigurable architectures, showing some programming considerations. In section 3 solutions adopted in
previous works are revised. In section 4 the execution model and compiling process on the reconfigurable
logic used in our approach are described. and first implementation results are shown in section 5. Finally,
section 6 discusses the results and presents future work.

2. GENERATING CIRCUITS ON RAs

Reconfigurable architectures can combine hardware resources with different granularity: buses, wires,
swit-ches, memories, processors, etc. Fine grain components on RA are constituted by flip-flops and
small tables of memory (LUT) addressed by a set of signals. LUTs have often a few bits (between 4 and
8), and constitute the basic resources for combinational logic generation. From the logic synthesis point
of view, a LUT of n bits is the more general way to generate any logic function of n boolean variables.
There are enough well-known algorithms that allow to adapt any logic table to a particular architecture
with a given LUT size. Thus, a simple polynomic expression as

z=3x+4(y+ 2t) (1)

can be implemented generating an adequate LUT for each basic operator or using its associated library
component, which will transform input data on output results. The set of generated operators are
connected by the intercommunication resources following the data dependencies of expression (1). Fig. 1.a
shows a possible representation of the network of LUT operators that performs this implementation,
where the bubbles above the figure are the input data.

An optimized implementation of this net of LUTs can make use of non standard operators, i.e.,
operators 4 x B, A+ B, and 2 * B can be implemented on a single LUT that works with two input
variables (4% (y +2t) = 4% (A+2B) =4+ B|(A+2B) = (4 x B|A+ B|2 % B), where A, B are operator
inputs and “ | ” denotes the operator fusion (see Fig. 1.b). This technique, known as operator fusion,
removes unary operators by fusing them with their producer/consumer operators. That is due to the
fact that LUTSs give the necessary flexibility to generate a combinational circuit more adequate for each
problem.

In order to design this circuit, it remains necessary to know the type of input data, which is directly
related to the complexity of LUTs and their interconnections, and therefore to the complexity of the
resulting implementation. Fig. 1 also shows the input data range of each LUT operator in the decom-
position of LUTs for this circuit, if initial input data (z,y, z) are 2-bit positive binary numbers. If this
information is taken into account, when an implementation of this circuit is performed, the total amount
of gates used to build it can be optimized. Thus, if library components are used to implement operators,
they must be chosen to accordingly to the bitwidth of input data range [Constantinides-03, Stephenson-
00]. Otherwise, this information can be used to optimize the synthesis of non standard operators in some
specific problems [Lagadec-02].

Many current systems that automatically generate logic circuits for RA from high level specifications
use functions in programming languages like C, C++, or Java. These languages need an a priori
declaration of the type and bitwidth of variables. These types are related to scalar types that can be
processed by arithmetic units of current processors. However, the bitwidth of these data types is either
not adequately adapted for their implementation on RA or overdimensioned. Therefore, resulting circuits
are inefficient in resource allocation and performance due to the semantic gap between the specification
language used and the hardware resources.

Another problem is provided by the sequential execution model of the traditional programming lan-
guages, which is completely different to the execution model of RA and the execution model of hardware
in general. A well known outcome of this problem is the inefficient use of SIMD extensions of current
processors. These extensions are only efficiently used in some specific problems. A pure object oriented
language like SmallTalk provide many advantages when used as starting point for the logic generation
process on RA. SmallTalk uses a delayed type binding until messages, which are equivalent to the opera-
tors in the previous example, are sent to an object previously instantiated. Furthermore, SmallTalk is an
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Figure 1. Decomposition on a network of LUTs of z = 3z + 4(y + 2t) : a) standard, b) with operator
fusion. We show, into brakets, the input data set for each operator.

interpreted language running on a virtual machine. So the high level description of operations is main-
tained in a symbolic form until execution time. These characteristics allow a delayed assignment of data
types adequate for optimal generation of operators. SmallTalk also provides, in a similar way, compiling
from high level specifications on an heterogeneous embedded system, as described in [Fabregat-99]. Thus,
the programming and simulation of applications and their compiling on an heterogeneous architecture
can be integrated in the same environment without any additional development cost.

3. PREVIOUS WORK

There are two different ways of describing hardware, structurally and behaviorally. In the structural
description, the designer indicates what components should be used and how they should be connected.
This designing method can be rather tedious and time consuming. Behavioral descriptions allow to
design a circuit by describing their behavior at a higher level of abstraction which can be automatically
compiled down to structural hardware. The popular industrial description languages VHDL and Verilog
allow both sorts of descriptions. However, these languages are very specific and far form traditional high-
level programming languages used by software developers, programmers and, in particular, embedded
sytem engineers.

There are several recent tools that allow high level hardware description for languages equal or similar
to the traditional programming languages. Thus, languages like HandelC [Sullivan-02], SystemC [Swan-
01] and Ocapi [Vanmeerbeeck-01] are derived from languages C and C++. Forge is a Java compiler
tool developed by Xilinx that allows automatic loop unrolling and pipelining. These compilers have
some common characteristics in order to reduce the semantic gap between the original programming
execution model and the hardware execution model. Thus, SystemC and Ocapi are C++ class libraries,
allowing their use as modeler and Co-design tool. Moreover, as object oriented languages, these use
combined behavioral and structural ways to describe hardware. In both systems, synchronization process
is provided by specific C++ classes and parallelism between operations is automatically extracted. Thus,
HandelC is a behavioral C based hardware description system developed by Celoxica that allows Co-
simulation. Parallelism of process and synchronization are taken from the CSP model, in particular, from
the Occam language, already studied for this purpose several years ago [Page-91] . Since these compilers
are derived from strongly typed languages, data types must be declared at beginning. SystemC, Ocapi
and Forge use some of the standard data types with standard bitwidths (char = 8 bit, integer = 32
bit, etc.), while HandelC uses standard data types with user defined bitwidths. So, HandelC provides a
more efficient use of hardware resources. In both cases, data types must be established by programmers
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that will take into account the bitwidth of intermediate values needed to avoid overflow and underflow
situations in the design process.

In this sense, recently published work describes methods to automaticaly adjust the bitwidth of
internal variables in the generation of digital circuits from high level specifications or in order to trans-
late float-point formulations into fixed-point formulations, specially for specific DSP applications (see
[Constantinides-20003] and therein). These approaches use fixed-point data types and are specified from
C/C++ like languages. Some of these approaches use analytic techniques to scaling and/or error stima-
tion [Constantinides-2003, Stephenson-2000], some use simulation [Cantin-2002], and other use a hybrid
of the two. The analytic approach is the most intersting since it does not require representative simula-
tion stimulus, and can be faster, but it tends to be more pesimistic. These methodologies are based on
type inference techniques and proposes propagation of integer/fixed-point variable ranges forward and/or
backward through dataflow graph. All these approach use library components in order to generate the
digital cicuitry.

Recently, there are some attempts to use embedded languages [Hudak-96] to design hardware de-
scription languages. An embedded description language is realized by means of a library in an already
existing programming language (the host language). Thus, Lava [Claessen-02] is an structural hardware
description language embedded in the funtional programming language Haskell. Another example of this
approach, called MADEQ, is described in [Lagadec-02]. In this system, a behavioral hardware descrip-
tion dialect is embedded in the object oriented programming language SmallTalk. The environment,
designed for the generation of combinatorial circuits, analyses the dataflow graph of the expressions to
automatically extract and exploit the existent parallelism among operations. This framework does not
use libraries to generate the final hardware configurations, but generates the required operators using
type inference. As a result, while the compiling process is quite time consuming, the size and performance
of the obtained circuit is near optimal when the input data set allows simpler operators implementation
than with standard library components. Moreover, the bitwidth of the inner operators is automatically
tuned to avoid overflows due to the forward propagation of integer variables though the dataflow graph.

Nowadays, SmallTalk is not a programming language common to the system developpers and em-
bedded system engineers, but these ideas can be moved to other object oriented languages as Java and
C++. The tool we present in the following section extends this framework adding new data types and
control flow constructs for SIMD applications.

4. EXTENDING MADEO TO SIMD APPLICATIONS

In this section, the compiler used to generate logic from an algorithmic specification in SmallTalk is
briefly presented in subsection 4.1. In subsection 4.2, a more detailed description of the compiling
process is shown. We focus mainly on the handling of iterative control structures.

4.1 Execution Model

The execution model followed by our compiler is adapted to the implementation of operations on LUTSs,
as it is shown in section 2. After a dataflow analysis of expressions, a Hierarchical dataflow Graph
(HDFG) is generated, where nodes are operations that will be implemented on LUTSs, and arcs are the
data dependencies. At each level of the hierarchy, nodes are evaluated over the set of inputs, in order
to obtain the set of possible outputs. This evaluation is carried out for all nodes, taking into account
possible data feedbacks. The process finalizes giving a tabular description of its behavior for each node,
which directly allows its implementation on LUTs.

This method presents total independence respect to input and output data types for each operator,
and only actual values (set of input/output values for each LUT) that will participate in the design of
operations are considered. Thus, input values for any LUT can be coded in order to obtain an adequate
use of physical resources (logic circuitry, communication buses between LUTs, etc). The evaluation of
nodes and their new coding of input/output values is carried out in a simple way by using a weakly
typed language like SmallTalk.

4.2 Compiling and Logic Synthesis

As we have described before, the compiler generates an HDFG, whose nodes are operations to be done
and arcs are the data dependencies between them. In a second step, this graph suffers a first set of
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transformations in order to propagate constants, remove common expressions and release non accessible
code. In this stage, with well defined HDFG inputs, a type assignment process is carried out for all
input values. This process is followed by the evaluation of the input data set and the type inference for
output and intermediate arcs. In order to complete this process, truth tables for all graph nodes are
generated. These tables are sent to a set of standard tools for optimization, partition and adaptation to
the characteristics of an specific RA.

The described method can be immediately applied to expressions of any complexity, but requires
different considerations when it is applied to iterative algorithmic structures, i.e. treatment of vectors.
Loop unrolling is the basic problem, but it will be implemented on an RA with limited resources. Since
the number of iterations executed in parallel is bounded to the available resources, and complete unrolling
cannot be always obtained, a mechanism to allow iterative execution must be provided.

a) new:=0.

(1 to:2) collect:[:ijnew:=new+((A at:i)*(B at:i)).].
b) new:=0.

(1 to:2) do:[:ijnew:=new+((A at:i)*(B at:i)).].

Figure 2. Messages collect:(a) and do:(b) applied to the scalar product.

With this aim we have developed two constructs, implemented as SmallTalk messages, that allow to
consider both cases:

e collect: when this message is sent over a range with a code block as argument (see Fig. 2.a), it
generates the unrolling of the block for the entire range (see Fig. 3.a). Once the loop is unrolled,
the previously described analysis and processing of the generated code can be performed.

e do: when this message is sent over a range with a code block as argument (see Fig. 2.b) it generates
the iterative execution of the operations specified in the block as many times as the range imposes.
The result is a synchronous sequential circuit, which is generated taking into account values passed
among different iterations (see Fig. 3.b). Thus the set of input values required by the compiling
process described previously is completed, and intermediate registers and multiplexors are added
as required to propagate values for future iterations.

5. EXPERIMENTAL RESULTS

Nowadays the wavelet transform (WT) is widely used in the treatment and compression of signals,
images and video. However, until recently, its use has been limited to lossy applications. This is due
to the fact that WT produce floating point coefficients which are not well-suited for lossless coding
applications. The introduction of reversible wavelet transforms that transform integers to integers, allow
perfect reconstruction of the original image. Thus there is an increasing interest in using integer WT
(IWT) for lossless image coding [Dewite-97]. This sort of algorithms is a good example of algorithms in
which the input and output data sets have bounded ranges. In this paper, only the Said and Pearlman
transform (S+P) [Said-96] is considered. This is one of the most well-known IWT due to its good
performance and use in the SPTHT compression algorithm. Fig. 4 shows this transform expressed in the
lifting scheme, where x is a integer input vector, d and s are the resulting high and low pass output
vectors (see [Said-96] for more datails).

The integer S+P wavelet transform has been programmed in SmallTalk and has been treated following
the proposed method for its implementation on a RA. Fig. 5. shows the SmallTalk code obtained for
the S+P wavelet transform, applied to a vector of four elements, using the message collect:/do: (we
denote as spcint/spint). The codes obtained can be either executed and evaluated on the SmallTalk
environment or transformed on a hardware description and implemented on a RA.

In order to evaluate the results of this approach, we have used the Celoxica RC1000 PCI based
FPGA board . The RC1000 is a PCI bus plug-in card for PC. It has one large Xilinx FPGA (in our
case a Virtex 2000E) with four banks of memory for data processing operations and two PCI Mezzanine
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Figure 3. Dataflow graph when the message collect: is applied to the expression in Fig. 2.a and when
the message do: is applied to the expression in Fig. 2.b.

d(l)[ [=a2n + 1] — 22n]
s[n] = z[2n] + Ld( iy
d[n] =dW[n] + L (s[nf 1] ,S[n])Jr

Figure 4. The S+P wavelet transform.

Cards. The FPGA Virtex 2000E is based on slices that contain two 4-bit LUTSs each one. Therefore,
the LUTs generated in a first step are simplified and adjusted to this granularity. To do this, the
circuit optimization tool SIS and the command line tool called Xflow, that allows to automate the Xilinx
implementation, simulation, and synthesis flows, are used. Finally, a programmable specification (EDIF
or Bitstream) is obtained. In this process, we have generated different implementations on the FPGA to
show the advantages obtained using a type inference based optimization. In all cases, the final circuits
are synthesized to optimize their size and the type of input data used on implementations are integers
from 4 to 7 bitwidths. Due to the very time consuming synthesis process, we have not used bitwidths
larger than 7 in our implementations.

For both algorithms, spcint and spint, two sort of optimizations are used to obtain the synthesized
circuit. In the first version (MADEO (OF)), operator fusion is applied to LUT description of the
algorithm before the optimization of SIS, and type inference technique is not used. In the second one
(MADEO (TT)), operator fusion is avoided, and type inference techniques are applied. In order to
compare our methodology with another current hardware description language, we have implemented a
HandelC version of spcint and spint algorithms. Each description of these algorithms has been compiled
to obtain its VHDL representation and the bitstream has been generated by using the Xflow tool.

Table 1 shows that optimized areas obtained with our tools are in general better. In particuar, type
inference versions of spint and spcint algorithms from 4 to 7 bits have reduction in area size respet to
the HandelC version. Note that using type inference is more efficient than operator fusion respect to the
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spcint /spint
| ddh ddh2d3 s_low_d0 sp_diff_d0 s_high_d0
v_high_d1 vsp_diff_d0 v_low_d1]
vlow_d1:=0. v_high_d1:=0. vsp_diff_d0:=0.
(1 to: 4 by: 2) collect/do: [:i |
sdow_d0:=((X at: i)+(X at: (i+1)))/2.
s-high d0:=(X at: i)-(X at: (i+1)).
sp_diff_d0:=v_low_d1-s_low_dO.
ddh:=(vsp_diff_d0+sp_diff_d0)-s_high_dO0.
ddh2d3:=((ddh*2)+sp_diff_d0)+3.
high at: (i quo: 2) put:
(v_high_d1-(ddh2d3/8)).
low at: (i quo: 2) put: v_low_dl.
v_low_d1:=s_low_d0.
v_high_d1:=s_high_dO0.
vsp_diff_d0:=sp_diff_d0. ].

Figure 5. S4P WT code in SmallTalk using the message collect/do: denoted as spcint/spint.

Table 1. Results of area (in LUTS) obtained, using signed integers from 4 to 7 bits, for HandelC and our
implementation with operator fusion (OF) and type inference (TT).

spint spcint
Version 4 bits 5 bits 6 bits 7 bits 4 bits 5 bits 6 bits 7 bits
Handel-C 105 124 143 161 203 234 268 300

MADEO (OF) 106 116 141 184 148 167 213 268
MADEO (TI) 7 106 139 160 113 150 200 269

number of LUTSs needed to implement these circuits, but when the bitwidth is increased the difference
between the two implementations is reduced. The obtained results shown that area reductions are better
for the type inference spcint circuits. That is because spint is a sequential fed-back circuit and the input
set is increased with the results of previous iterations. So, type inference can obtain less optimization
due to an increasing of infered input data set of operator LUTs and the resulting reduction of “don’t
care” entries in their definition.

Type inference is generally better than operator fusion for all data bitwidths. This behavior is due
to the fact that operator fusion technique reduces the number of operator LUTSs of the circuit, but the
resultant operator LUTs are more complex and difficult to simplify (SIS spent less time to synthesize
the circuit when type inference is applied). Otherwise, type inference maintain the number of operator
LUTs, but reduce their complexity by introducing “don’t care” entries. Thus, in general, the SIS tool
(used to optimize the circuit in the final step) can obtain a more simplified circuit when type inference
is used. But the improvement of this optimization also depends on the input data bitwidth.

Table 2 shows similar delay results for the HandelC and our type inference implementations. However,
the HandelC version have better delays when the data bitwidth is increased. That is due to the fact that
the FPGA Virtex 2000E architecture in not completly regular and have fast lines to propagate the carry

Table 2. Results of Delay (in ns) obtained for the spcint circuit, using signed integers from 4 to 7 bits,
for HandelC and our implementation with operator fusion (OF) and type inference (TI).

spcint
Version 4 bits 5 bits 6 bits 7 bits
Handel-C 49.16 49.28 50.05 52.13
MADEO (OF) 5256 5523 59.69 62.23
MADEO (TI) 4446 46.69 5221 56.18
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bit when standard adder operators are used. These fast carry lines can not be used on our non standard
operator LUTs. We will try to solve this problem in a near future by using more advanced optimizing
techniques.

6. CONCLUSIONS AND FUTURE WORK

In this paper, new possibilities of a development environment to generate hardware on a RA from high
level specifications are described. The use of SmallTalk is essential due to their characteristics that
allow to delay the type assignment, and to evaluate the input and output data sets during the compiling
process. This work has been focused on the development of an efficient method to manage loops and
other iterative structures appropriately. The first results obtained in the management of loops on a case
study, the S+P integer wavelet transform, have been described. In these results, has been possible to
see that type inference is a powerful technique that allows reduction of area on a SIMD algorithm as
the S+P wavelet transform without significant impact on the delay. Currently, we are developing new
high level specifications that combines the benefits of collect: and do: and extending our study to
other SIMD algorithms. This message will allow to unroll a loop a given number of times and iterate as
required to complete all the loop iterations. An interesting aspect we are studying is the automatization
of this process for an specific architecture.
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