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Pyroendemics are plants inwhich seedling germination and successful seedling recruitment are restricted to im-
mediate postfire environments. Inmany fire-prone ecosystems species cue their germination to immediate post-
fire conditions. Herewe address how species have evolved one very specificmechanism,which is using the signal
of combustion products from biomass. This is often termed ‘smoke’ stimulated germination although it was first
discovered in studies of charred wood effects on germination of species strictly tied to postfire conditions
(pyroendemics). Smoke stimulated germination has been reported from a huge diversity of plant species. The
fact that the organic compound karrikin (a product of the degradation of cellulose) is a powerful germination
cue in many species has led to the assumption that this compound is the only chemical responsible for smoke-
stimulated germination. Herewe show that smoke-stimulated germination is a complex traitwith different com-
pounds involved. We propose that convergent evolution is a more parsimonious model for smoke stimulated
germination, suggesting that this trait evolved multiple times in response to a variety of organic and inorganic
chemical triggers in smoke. The convergent model is congruent with the evolution of many other fire-related
traits.
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1. Introduction

Since the middle of the 20th century fire-induced seed germination
has been widely reported in at least four of the five Mediterranean cli-
mate ecosystems of the world (Keeley et al., 2012). In California many
annual species are almost entirely restricted to the immediate year or
two after fire and thus have been described as pyroendemics as many
of these species are present only in the first year or two after fire.
Many Mediterranean woody species also show germination to be
restricted to the immediate postfire environment and their lifetime
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recruitment comprises a single pulse of germination in the first postfire
year.

The earliest studies on fire-stimulated germination focused on the
role of heat in breaking seed coat permeability (e.g., Sweeney, 1956;
Mott and McKeon, 1979; Jefferey et al., 1988; Trabaud and Oustric,
1989a,b). However, the world changed in 1977 with the report of
charred wood stimulated germination of the postfire chaparral annual
Emmenanthe penduliflora (Boraginaceae) (Wicklow, 1977), later con-
firmed by Jones and Schlesinger (1980) and Keeley and Nitzberg
(1984). Wicklow's study was the first report of chemicals from biomass
combustion playing a role in stimulating germination of postfire species.

In 1990 De Lange and Boucher reported the same phenomenon of
combustion products simulating the germination in a species from the
family Bruniaceae in South African fynbos, but used smoke or a leachate
ced seed germination in pyroendemic plants, South African Journal of
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Fig. 2. Germination of the chaparral pyroendemic Emmenanthe pendulifera for control
(O) and NO2 (7.7 g m−3) treatments of .5 or 5 min exposures for direct treatment or
indirect treatments, untreated seeds incubated on NO2 treated sand or filter paper on
untreated filter paper with water exposed to NO2 or untreated seeds or exposed to
vapors emitted from NO2 treated filter paper.
From Keeley and Fotheringham (1997).
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of smoke as the medium of transfer rather than water leached from
charred wood. He noted the similarity between his studies and those
from California. Subsequent studies have revealed that the combustion
products from burning biomass of a wide variety of woody plants in
California chaparral and South African fynbos will stimulate germina-
tion of species restricted to postfire environments. In addition, it is ap-
parent that the response is the same with both smoke and charred
wood (Brown, 1993; Keeley and Bond, 1997; Van Staden et al., 2000).
Indeed, it has been shown that the postfire Emmenanthe penduliflora,
which is deeply dormant, will germinate readily in response to direct
application of ground up charred wood, a water extract of charred
wood, smoke, a water extract of smoke, or vapors from smoke-treated
sediments (Fig. 1). This has also been demonstrated for South African
fynbos species. The role of combustion products in stimulating germina-
tion has now also been widely demonstrated in Australia (e.g, Dixon
et al., 1995) and the Mediterranean Basin (e.g., Moreira et al., 2010).
Since de Lange and Boucher's report, researchers have used the term
‘smoke’-stimulated germination, and because it is more succinct than
‘combustion product’ stimulated germination we will follow that
convention here.

2. Combustion products that stimulate germination

In recent years, a lot of effort by numerous labs has gone into trying
to determine which components in smoke stimulate germination. It is
now apparent, after two decades of work, that many chemicals in
smoke stimulate germination. There is clear evidence that there are
both inorganic and organic chemicals generated or released by smoke
that will stimulate germination of seeds of plants that exhibit fire-
stimulated germination.

Thefirst report of a compound in smoke that stimulated germination
was in 1997 and it showed that nitrogen dioxide, at levels that occur in
smoke, can generate 100% germination in the chaparral annual
Emmenanthe penduliflora (Keeley and Fotheringham, 1997). Seeds of
this species are deeply dormant but brief treatment with smoke can
trigger 100% germination (Fig. 1), and comparable germination with
500 ppm NO2 produces a remarkably similar response (Fig. 2). Howev-
er, itwas also found that not all pyroendemics in chaparral responded to
this gas and thus it was apparent that other chemicals were also active
germination stimulants in smoke and charred wood (Keeley and
Fotheringham, 2000). A number of lines of evidence support the idea
that nitrogen oxides affect the differential permeability of a sub-testa
cuticle (Keeley and Fotheringham, 1997; Egerton-Warburton, 1998),
Fig. 1. Germination of the chaparral pyroendemic Emmenanthe pendulifera for control
(O) and smoke treatments of 1- or 10 min exposures for direct treatments (smoke-
treated seeds incubated on nontreated filter paper) and indirect treatments (untreated
seeds incubated on smoke-treated sand or filter paper or untreated seeds incubated
with smoke water or exposed to gases emitted by smoke-treated filter paper.
From Keeley and Fotheringham (1997).
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[however, Baldwin et al. (2005), discounted the idea]). It has been
shown that both smoke in which nitrogen oxides are removed, or of in-
sufficient fire intensity to generate nitrogen oxides, will still stimulate
germination of Emmenanthe and other smoke-stimulated species
(Light and Van Staden, 2003; Preston et al., 2004). Such studies, of
course, do not rule out a role for nitrogen oxides in smoke stimulated
germination, but rather support the hypothesis that multiple chemicals
in smoke are involved. Other nitrogenous compounds resulting from
biomass combustion appear to have a role in smoke-stimulated germi-
nation of pyroendemics include glyceronitrile (cyanohydrin),which can
lead to nitrogen oxide formation (Flematti et al., 2011; Downes et al.,
2014).

Organic chemists searched for organic molecules in smoke responsi-
ble for germination, and finally, in 2004, two independent studies
reported the finding of an organic molecule in a class known as
butanolides, which had highly stimulatory activity in triggering germi-
nation of postfire recruiting species (Flematti et al., 2004; Van Staden
et al., 2004). This chemical known as karrikin has stirred huge interest
because, in addition to triggering germination of some deeply dormant
pyroendemics, it enhances germination and changes light dependent
germination characteristics of many agriculturally important weeds
and domesticated species (Daws et al., 2007).

This karrikin compound has gained attention as “the compound in
smoke” responsible for promoting seed germination of postfire species
(Flematti et al., 2007, 2009). However, much of the literature suggests
that smoke-stimulated germination is a far more complex trait and
supports the idea that multiple compounds in smoke can stimulate
germination. Indeed, there are a number of species that are stimulated
to germinate in response to smoke, but karrikin is clearly not the
responsible compound (Daws et al., 2007; Downes et al., 2010, 2014).

Karrikin is not responsible for this response in many species
(Table 1), and additionally elutions of stimulatory compounds from
smoke demonstrate clearly that there are many other organic
compounds in smoke that trigger germination (van Staden et al.,
1995). Although under laboratory conditions karrikin is more active,
this difference may not be meaningful under field conditions than
many of the other elutions showing stimulatory activity. Also, karrikin
has been shown to be broken down when exposed to solar irradiation
(Scaffidi et al., 2012), further raising questions of its efficacy in the
field. In addition to the role of inorganic compounds in smoke, there
are complex ecological interactions between stimulatory compounds
in smoke and the presence of soil inhibitors which are degraded by
fire (Egerton-Warburton and Ghisalberti, 2001; Krock et al., 2002).
Furthermore, signals such as nitrogen oxides may be generated for six
ced seed germination in pyroendemic plants, South African Journal of
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Table 1
Examples of genera with species that show germination stimulated by smoke and in
which both N-based compounds and karrikins have been tested.

Response
to karrikins

Response to N-based compounds

Yes No

Yes Andersonia (Ericaceae) [1]
Emmenanthe (Boraginaceae) [1]
Ficinia (Cyperaceae) [1]
Conostylis (Haemodoraceae) [4]

Stylidium (Stylidiaceae) [1]
Blancoa (Haemodoraceae) [2]
Conostylis (Haemodoraceae) [4]

No Rhodocoma (Restionaceae) [1]
Anigozanthos (Haemodoraceae)
[1,2,3]
Capsella (Brassicaceae) [5]

Gyrostemon (Gyrostemonaceae)
[3]

1 Flematti et al., 2011.
2 Downes et al., 2014.
3 Downes et al., 2013.
4 Downes et al., 2015.
5 Daws et al., 2007.

Fig. 3. Phylogenetic tree of plant families with evidence of smoke-stimulated germination
suggests that this trait is phylogenetically widespread (x-axis in millions of years).
Figure updated fromPausas andKeeley (2009); phylogenetic relatedness based on APG-III
(2009).
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months after fire from burned soils (Anderson and Levine, 1988). In
light of all of these factors, we need to be prudent in extrapolating
these laboratory results, particularly those involving agricultural spe-
cies, to the role of smoke in the germination of pyroendemics.

3. Evolution

Bradshaw et al. (2011) have contended that postfire recruitment
species do not represent an adaptation to fire but rather an exaptation
arising from deep seated evolutionary change in primary metabolism.
They point out that 2500 species in a vast phylogenetic range have
been shown to respond to smoke; though it should be noted that only
a small subset of these species exhibit a dependence on smoke for ger-
mination as many merely exhibit increased germination or increased
growth rates with smoke. Studies that show a mere increase in germi-
nation in response to smoke are very hard to interpret in terms of
their ecological significance since doses experienced under field condi-
tions are critical to understanding their adaptive significance. In addi-
tion, finding a positive smoke response in species that do not live in a
fire-prone ecosystem (e.g., Pierce et al., 1995; Daws et al., 2007), may
be interesting from a physiological point of view, but can hardly be
used to explain the evolutionary relevance of how pyroendemics have
exploited this signal for postfire recruitment.

Bradshaw et al. (2011) further contend that all postfire species also
respond to soil disturbance and therefore there is some common factor
in recently burned and recently disturbed soil. However, communities
following simple soil disturbance are different from postfire communi-
ties (e.g., Roche et al., 1997; Keeley et al., 2012). Bradshaw et al. further
speculate that the postfire response is related to ethylene generation, al-
though they cite nodata to support such a conclusion and ignore reports
of smoke-induced responses shown not to be due to ethylene (Keeley,
1993). They then go on to propose a model of smoke-induced germina-
tion that hypothesizes that after disturbance of any type, microbes pro-
duce karrikinolide, “the responsible chemical in smoke.” They speculate
that, after any disturbance, microbes generate karrikinolide and this
triggers germination. In their words, because of the very wide phyloge-
netic spread of species responding to karrikinolide, which includes
major clades from monocots to dicots, this trait probably was an early
development in the evolution of angiosperms. Thus, this response has
been present for hundreds of millions of years but just since themiddle
Cenozoic, when in their view fire suddenly appeared on the scene, it
was pre-empted for cueing germination to postfire conditions (this
issue of adaptation vs exaptation is explored more fully in Keeley
et al., 2011).

A somewhat similar model was proposed by Flematti et al. (2015),
although they accept the evidence that fires have been a feature of the
Earth since land plants evolved, over 400 million years ago (Pausas
Please cite this article as: Keeley, J.E., Pausas, J.G., Evolution of ‘smoke’ indu
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and Keeley, 2009). Consistent with previous work by this Flematti, it is
assumed that there is only one chemical in smoke that postfire species
respond to, namely karrikin. They point out that the KA12 gene respon-
sible for the signaling system in plants can be traced back to the earliest
plants. In their view this gene first evolved in response to either
karrikins or the closely related strigolactones (following soil distur-
bance) and has been passed down throughout land plant evolution
and is not a trait specifically evolved in response to fire.
ced seed germination in pyroendemic plants, South African Journal of
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An alternative hypothesis is that smoke-stimulated germination is
an example of convergent evolution that has evolved multiple times
in response to a variety of organic and inorganic chemical triggers in
smoke (Keeley and Bond, 1997; Pausas and Keeley, 2009). The fact that
the trait occurs in several of the geographically separate mediterranean
climate ecosystems and in awide diversity of taxa suggests a convergent
evolution mode (Fig. 3). To support this view is the experimental evi-
dence thatmultiple products of smoke are shown to trigger germination,
including many unidentified organic compounds that are not associated
with the karrikin elution in separation techniques.

Other evidence supporting the convergent evolution model come
from the remarkable similarity between themode of action of karrikins
and the structurally similar strigolactones (Daws et al., 2008), chemical
triggers important in the germination of root parasites. The very recent
report by Conn et al. (2015) shows that the karrikin gene KA12
underwent convergent evolution enabling developmental responses
to strigolactones in angiosperms and host detection in parasites on
multiple independent origins. We hypothesize the same is true for the
evolution of both karrikin dependent and non-karrikin dependent
germination of pyroendemics.

Of perhaps greater importance is the fact that a vast majority of
adaptive traits in plants have been shown to be the result of convergent
evolution. For example, metabolic pathways such as C4 photosynthesis
share many similarities across unrelated clades but the specific
pathways are sufficiently different to support a hypothesis of multiple
origins. When it comes to other fire related traits such as serotiny,
heat stimulated germination of hard seeded species and others, the ev-
idence is over-whelming that globally these are the result of convergent
evolution (Keeley et al., 2011).

We support the adaptive evolutionmodel for smoke stimulated ger-
mination as suggested by the evolutionary perspectives in Van Staden
et al. (2000); Pausas and Keeley (2009), and Lamont and He (2012).
This trait is found in widely disparate parts of the world in widely
separate clades and the better supported hypothesis is this evolved in
response to different mutations that occurred in different clades at
different times as selected by changes in local fire regimes.
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