Supporting Information

Appendix S1. Examples of alternative stable fire-driven vegetation states in different climates (more flammable/less flammable). Only cases of bistability in which one state is a forest are mentioned. Fire regimes in the two states (No: absent or infrequent low intensity understory fires) and the main fire strategy of woody species in the more flammable community are also included.

Climate	Alternative states	Fire regimes	Fire strategy	References
Tropical	Savanna / forest	Surface fires / No	Thick bark, fast sapling growth rate	Bond 2008, Hoffmann et al. 2012, Murphy & Bowman 2012, Dantas et al. 2013
Subtropical and warm temperate	Woodlands / broadleaved forests	Understory fires / No	Thick bark, fast sapling growth rate	Peterson & Reich 2001, Nowacki & Abrams 2008
Subtropical and warm temperate	Sclerophyll forests / rainforest	Crown fires / No	Resprouting, postfire seeding	Bowman 2000
Mediterranean	Shrubland / forest	Crown fires / understory fires	Resprouting, postfire seeding	Odion et al. 2010, Keeley et al. 2012
Cold temperate	Shrubland / forest	Crown fires / No	Resprouting	Paritsis et al. 2014

References

- Bond, W.J. 2008. What limits trees in C4 grasslands and savannas? *Annual Review of Ecology, Evolution, and Systematics* 39: 641-659.
- Bowman, D.M.J.S. 2000. *Australian Rainforests: Islands of Green in a Land of Fire*. Cambridge University Press, Port Chester, NY, US.
- Dantas, V.L., Batalha, M.A. & Pausas, J.G. 2013. Fire drives functional thresholds on the savanna-forest transition. *Ecology* 94: 2454-2463.
- Hoffmann, W.A., Geiger, E.L., Gotsch, S.G., Rossatto, D.R., Silva, L.C.R., Lau, O.L., Haridasan, M. & Franco, A.C. 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. *Ecology Letters* 15: 759–768.
- Keeley, J.E., Bond, W.J., Bradstock, R.A., Pausas, J.G. & Rundel, P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press, Cambridge, UK.
- Murphy, B.P. & Bowman, D.M.J.S. 2012. What controls the distribution of tropical forest and savanna? *Ecology Letters* 15: 748-758.
- Nowacki, G.J. & Abrams, M.D. 2008. The demise of fire and "mesophication" of forests in the eastern United States. *Bioscience* 58: 123-138.
- Odion, D.C., Moritz, M.A. & DellaSala, D.A. 2010. Alternative community states maintained by fire in the Klamath Mountains, USA. *Journal of Ecology* 98: 96-105.
- Paritsis, J., Veblen, T.T. & Holz, A. 2014. Positive fire feedbacks contribute to shifts from *Nothofagus pumilio* forests to fire-prone shrublands in Patagonia. *Journal of Vegetation Science* 26 (doi:10.1111/jvs.12225).
- Peterson, D.W. & Reich, P.B. 2001. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. *Ecological Applications* 11: 914-927.