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Abstract

Question: Inmany plant species from fire-prone ecosystems germination is pro-

moted by smoke. Mediterranean Basin (MB) flora is no exception. However,

most information regarding germination response to smoke in the MB comes

from a few experiments performed in laboratory conditions. This approach does

not consider factors that occur in the field, such as species interactions, density-

dependent processes or the fact that seeds spent time in the soil seed bank. In

addition, species selection has been biased (e.g. there is a lack of information

about annual species). Hence the importance of smoke relative to other fire cues

is not clear, and we have a biased knowledge of post-fire community assembly

in the MB. In this framework, we tested the following hypotheses: (1) smoke

enhances seedling emergence and establishment from the soil seed bank of

MB species, and (2) annual species are an important component of this smoke-

stimulated flora.

Location:Mediterranean fire-prone shrublands in eastern Spain.WesternMed-

iterranean Basin.

Methods:We performed a field experiment in which we applied a liquid smoke

treatment and tracked seedling emergence and seedling establishment during

1 yr. Differences between smoke and control subplots with respect to seedling

emergence and seedling establishment were analysed at different scales: com-

munity, growth form (annual or perennial), family and species level.

Results: At the community level, smoke played a clear role in seedling recruit-

ment, increasing seedling emergence and seedling establishment. In addition,

for most plots, families and species, establishment was higher in smoke subplots

compared to the control. Annual species establishment was clearly stimulated

by smoke but no effect was detected for perennials.

Conclusions: Smoke derived from wildfires has a key effect on plant recruit-

ment and hence on community assembly in theMB vegetation.

Introduction

Fire is one of the main drivers of vegetation dynamics in

mediterranean climate ecosystems, where plant species

have different mechanisms to persist under recurrent fires

(Pausas & Keeley 2009; Keeley et al. 2012). One of these

mechanisms is post-fire recruitment from soil or canopy

seed banks (Pausas et al. 2004); plants having this mecha-

nism take advantage of the reduced competition and the

increased resources available after fire. The post-fire flush

of seedling emergence has been associated with both the

heat and the chemicals produced by the fire (Keeley &

Fotheringham 2000). Moreover, different studies suggest

that chemicals in smoke produce an improvement of seed-

ling growth and resistance to stress (Blank & Young 1998;

Daws et al. 2007; Jain et al. 2006;Moreira et al. 2010).

Since the seminal paper of De Lange & Boucher (1990)

several laboratory experiments have demonstrated that
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certain chemical compounds of the smoke act as a germi-

nation cue in many species (Van Staden et al. 2000;

Flematti et al. 2004, 2011), particularly in those frommed-

iterranean climate ecosystems such as SouthAfrica (Brown

& Botha 2004), Australia (Dixon et al. 1995), California

(Keeley & Fotheringham 1998) and the Mediterranean

Basin (MB; Moreira et al. 2010). A positive smoke effect

has also been demonstrated ex situ (Hill & French 2003;

M�aren et al. 2009; Ghebrehiwot et al. 2011; Anderson

et al. 2012) and in field experiments (Rokich & Dixon

2007).

In the MB, data on seed germination in relation to

smoke come from a limited number of laboratory experi-

ments (Cruz et al. 2003; P�erez-Fern�andez & Rodr�ıguez-

Echeverr�ıa 2003; Buhk & Hensen 2006; Reyes & Trabaud

2009; Moreira et al. 2010). These laboratory experiments

have used few species and, in some cases, the species selec-

tion criteria were subjective and biased. For example,

while annual species are described as an important compo-

nent of the smoke stimulated flora in other mediterranean

climate ecosystems (e.g. California; Keeley et al. 1981),

most of the experiments performed with MB species have

inadvertently excluded this group (Paula et al. 2009; but

see Daws et al. 2007). This biased species selection might

have led to one-sided knowledge of vegetation response to

fire. In addition, while these experiments provide valuable

information on the potential reproduction of plants, they

do not consider important factors such as species interac-

tions, density-dependent processes or that the seeds have

spent time in soil exposed to environmental factors (Baker

et al. 2005). Thus, these experiments offer limited insight

over the realized plant fitness (i.e. successful seedling

establishment).

In situ field experiments allow monitoring of seedling

recruitment in natural conditions up to the establishment

phase (realized fitness) and thus are an important and reli-

able source of information in studying the role of smoke

on plant recruitment. In these in situ experiments, species

are framed in their community (i.e. in an unaltered envi-

ronment and interacting with co-existing species), which

allows to disentangle the effects of smoke on seedling

emergence and on seedling establishment (i.e. effective

recruitment).

In order to understand the actual effect of smoke on

plant recruitment, we performed a field experiment in a

fire-prone community of the western MB. We compared

seedling emergence and establishment between smoke-

treated and untreated subplots. This experiment allowed

us to test the following hypotheses: (1) smoke enhances

seedling emergence and establishment of MB species, and

(2) annual species are an important component of smoke-

stimulated flora of theMB.

Methods

Study area and sampling

The experiment was carried out in two adjacent areas in

eastern Spain (Valencia region, western MB), Serra Calde-

rona (39.728° N, 0.506° W) and Barranc de la Casella

(39.090° N, 0.304° W). Selecting two different sites

allowed us to maximize the range of species sampled. The

vegetation in Serra Calderona study site is dominated by

the shrubs Anthyllis cytisoides, Cistus albidus, C. monspeliensis

and Ulex parviflorus, while the Barranc de la Casella study

site is dominated by Pistacia lentiscus, Quercus coccifera, Erica

scoparia, E. multiflora, C. monspeliensis, Rosmarinus officinalis

and U. parviflorus. In both sites, scattered individuals of Pi-

nus halepensis compose the tree layer, while Brachypodium

retusum dominate the herbaceous layer. Climate in both

areas is mediterranean, mean annual precipitation is 584

and 633 mm and mean annual temperature 17.4 and

17.7 °C in Serra Calderona and Barranc de la Casella study

sites, respectively. Precipitation peaks in autumn, with a

secondary peak in spring. Summer is the dry period, when

fires are common (Pausas 2004).

In September 2007, 21 plots (2 9 1 m) were delimited,

nine in Barranc de la Casella and 12 in Serra Calderona. In

each plot, we cut all the standing vegetation and carefully

removed the litter without disturbing the soil profile.

Within each plot, we delimited eight subplots

(30 9 30 cm), four of which received a smoke treatment

and the remaining four were used as a control (see below).

Smoke application was performed using a commercial

liquid smoke (Reese Hickory Liquid Smoke) diluted at

1:100 in distilled water (see Doherty & Cohn 2000; Jäger

et al. 1996; for details on the effectiveness of commercial

liquid smoke). This concentration was chosen based on

preliminary tests in the laboratory with representative spe-

cies of the studied community (data not shown). In the

smoke subplots we applied 0.5 L of liquid smoke and in

the control subplots (interspersed design) 0.5 L of distilled

water. This amount of liquid does not significantly change

the natural pattern of soil water availability produced by

rainfall. Although liquid smoke might leach through the

soil profile (Roche et al. 1997a), the smoke effect remains

for long periods on the seeds of the soil seed bank (Roche

et al. 1997b).

Plots were surveyed ten times throughout 1 yr, start-

ing 1 mo after the treatments (September, October,

November and December 2007, and January, March,

April, June, July and September 2008). In each survey,

we recorded and tracked all seedlings within each sub-

plot with the help of a grid (30 9 30 cm, divided in

5 9 5 cm cells) that allowed us to follow the fate of

each seedling.
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Data analysis

Data on species growth form (perennial or annual) were

obtained from Mateo & Crespo (2001) and Paula et al.

(2009). A preliminary analysis showed that the effect of

smoke was not significantly different between sites

(P = 0.95) and thus, for all subsequent analyses, the data

from the two sites were pooled.

We studied two main variables: seedling emergence and

seedling establishment. Seedling emergence was studied

by pooling all the emerged seedlings without distinction

among species, families or growth forms because not all

emerged seedlings could be properly identified. Seedling

establishment was analysed considering only those seed-

lings that survived the first summer (in the case of peren-

nial species) or that flowered during the study period (in

the case of annual species). All established seedlings were

successfully identified (at least to genus level), which

allowed us to study the effect of smoke at different levels,

including community (all established seedlings), growth

form (annual or perennial species), family and species (or

genus) levels. When analysing a particular subset (com-

munity, growth form, family or species), we only consid-

ered the plots in which the mean establishment density, in

that subset, was at least equal to one seedling per subplot

in smoke or in control subplots (i.e. at least four seedlings

in one of the treatments).

We first evaluated whether the proportion of plots

with more seedlings emerged in smoke-treated subplots,

compared to the control, was different from the random

expectation by means of a one-tailed binomial exact

test. Then, for each plot, we evaluated the significance

of the differences in total seedling emergence between

smoke and control subplots (replicates) by means of

generalized linear models (GLM). Finally, we performed

the same comparison for the whole data set using gen-

eralized linear mixed models (GLMM), including plot as

random effects. The same analyses were used for

seedling establishment, considering the different levels:

community, growth form (annuals and perennials), fam-

ily and species. For GLM and GLMM analyses we

assumed a Poisson error distribution, which is adequate

for count data. When a large number of statistical com-

parisons were performed (i.e. plot, family and species

level analyses) the critical level for significance was

corrected using the false discovery rate method (FDR;

Benjamini & Hochberg 1995).

All statistical analyses were carried out in the R language

(R Foundation for Statistical Computing, Vienna, AT, US).

Specifically, binomial tests, GLM analyses and FDR correc-

tion were performed using the ‘stats’ package and GLMM

analyses were performed using the ‘lme4’ package.

Results

Seedling emergence

Seedling emergence occurred in all studied plots, ranging

from two to 757 seedlings per subplot. Overall, we scored

14 203 seedlings. The number of plots in which seedling

emergence was larger in smoke than in control was

significantly higher than the random expectation (18 out

of 21; P = 0.001, binomial test; Fig. 1). This increase was

significant in 12 plots (ranging from 27% to 350%

increase due to smoke). In contrast, two plots showed sig-

nificantly less seedling emergence in smoke than in con-

trol subplots (38% and 31% decrease due to smoke). No

significant differences between smoke and control sub-

plots were found in seven of the plots (Fig. 1). Analysing

all the plots together, we detected a significant overall

increase in seedling emergence produced by the smoke

treatment (Table 1).

Seedling establishment

Successful seedling establishment (i.e. seedlings that sur-

vived the first summer in the case of perennial species or

reached maturity during the study period in the case of

annual species) was recorded for only 1998 seedlings

(14% of total seedlings emerged). These seedlings

accounted for 59 species in 22 families, of which 33 species
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Fig. 1. Relation between mean seedling emergence in smoke and control

subplots (30 9 30 cm) in the 21 studied plots. Horizontal and vertical bars

represent SE in control and smoke subplots, respectively. Dashed line

represents equal seedling emergence in smoke and control (1:1 line); plots

above this line had higher emergence in smoke than in the control, and

plots below this line had higher emergence in the control than with smoke.

Differences are considered significant at P < 0.05 for FDR adjusted

P-values. Axes are represented in logarithmic scale.
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in ten families reached the minimum seedling density to

be studied (Appendix S1 and S2).

Community level

The number of plots in which seedling establishment was

higher in smoke than in control was significantly higher

than the random expectation (16 out of 20; P = 0.012,

binomial test; Fig. 2). When analysing plots individually,

we found that the increase in seedling establishment due

to smoke was significant in six plots (from 31% to 150%

increase due to smoke). One plot showed significantly

lower seedling establishment in smoke than in control sub-

plots, while 13 plots showed no significant differences

between treatments. In fact, the smoke effect was concen-

trated in plots with a higher density of seedlings (Fig. 2).

The combined analysis of all the plots, showed a significant

overall increase in seedling establishment due to smoke

(GLMM; Table 1).

Annual species

Only 13 plots reached the minimum seedling density of

annuals to be considered for this analysis. The proportion

of plots with more seedlings established in smoke than in

the control was significantly higher than the random

expectation (12 out of 13, P = 0.003, binomial test; Fig. 3).

This increase was significant in six plots (from 60% to

191% increase due to smoke). In the remaining seven

plots there were no significant differences between treat-

ments. Smoke effect was concentrated in plots with a

higher density of seedlings (Fig. 3). Analysing all the plots

together (including plot and species as a random effect in

the model) allowed us to detect a significant increase in

seedling establishment due to the smoke treatment

(GLMM; Table 1).

Perennial species

All but one plot reached the minimum density of seedlings

to be considered for this analysis. The proportion of plots

with more seedlings established in smoke than in the con-

trol was not significantly higher from the proportion

expected by chance (14 out of 20, P = 0.115, binomial
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Fig. 2. Relation between mean seedling establishment in smoke and

control subplots (30 9 30 cm) in the studied plots. Horizontal and vertical

bars represent SE in control and smoke subplots, respectively. Dashed line

represents equal seedling establishment in smoke and control (1:1 line);

plots above this line had higher establishment in smoke than in the

control, and plots below this line had higher seedling establishment in the

control than in smoke. Differences are considered significant at P < 0.05

for FDR adjusted P-values. Axes are represented in logarithmic scale.
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Fig. 3. Relation between mean seedling establishment of annual species

in smoke and control subplots (30 9 30 cm) in plots with established

annuals. Horizontal and vertical bars represent SE in control and smoke

subplots, respectively. Dashed line represents equal seedling

establishment in smoke and control (1:1 line); plots above this line had

higher establishment in smoke than in the control and plots below this line

had higher establishment in the control than in smoke. Differences are

considered significant at P < 0.05 for FDR adjusted P-values. Axes are

represented in logarithmic scale.

Table 1. Number of emerged and established seedlings and differences

in the mean number of seedlings between smoke and control subplots

(30 9 30 cm) for the different data subsets (community, annuals and

perennials). P-values refer to the GLMM analysis.

Process Subset Total

seedlings

Mean seedlings/

subplot

P-Value

Smoke Control

Emergence Community 14 203 98.9 70.2 <0.001

Establishment Community 1998 13.88 9.90 <0.001

Establishment Annuals 971 8.08 4.70 <0.001

Establishment Perennials 1027 6.57 5.65 0.098
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test). Seedling establishment of perennial species in

smoke-treated subplots was significantly higher in one plot

(177% increase) and significantly lower in one plot (33%

decrease). In the remaining 18 plots there were no signifi-

cant differences between treatments. The combined analy-

sis of all plots, showed a non-significant effect of smoke on

seedling establishment (P = 0.098; Table 1).

Family level

Seedling establishment was higher in smoke than in con-

trol subplots in all studied families, and thus clearly higher

than the proportion expected by chance. Lamiaceae

showed significantly (P < 0.05) higher seedling establish-

ment in smoke than in control subplots, and Scrophularia-

ceae showed a marginal (P = 0.054) positive effect

(Appendix S1).

Species level

From the 33 species that met the criteria for analysis, the

proportion in which seedling establishment was higher in

smoke compared to the control was significantly larger

than expected by chance (26 out of 33, P = 0.001, bino-

mial test). However, when analysing species individually,

no single species showed a significant effect of smoke

(Appendix S2).

Discussion

The results of our field-based approach suggest that

smoke not only enhances germination of MB species

(P�erez-Fern�andez & Rodr�ıguez-Echeverr�ıa 2003; Moreira

et al. 2010), but also seedling emergence and establish-

ment. The effect of smoke was also evident in annual

species. This result coincides with observations in fire-

prone areas of South Africa, Australia and California,

where annual species are strongly related to post-fire

dynamics (Keeley et al. 1981; Cowling et al. 1996). This

suggests that the importance of smoke chemicals for the

regeneration of annual species might be a common fea-

ture in fire-prone mediterranean climate ecosystems

(Keeley et al. 2012). Most of the emerged annual species

were missing in the surrounding undisturbed vegetation,

suggesting the presence of a persistent soil seed bank of

ephemeral species, as described by other authors (Ferran-

dis et al. 1999; Ne’eman & Izhaki 1999). That is, our

results suggest that in the MB flora, smoke-stimulated

annuals might be more important in the post-fire envi-

ronment than previously thought.

Despite the clear results at community level and that

most species and all families had higher seedling establish-

ment in the smoke than in the control subplots, there were

very few families and species in which the effect of smoke

was statistically significant. Smoke effect was detected only

in Lamiaceae, confirming the importance of smoke for

regeneration of species in this family (Keeley & Fothering-

ham 1998; Moreira et al. 2010). This shortage of signifi-

cant differences could be due to the inherent variability of

field experiments – particularly those involving soil seed

banks – that made the scale of our experiment and replica-

tion insufficient to properly test the hypotheses at family

and species level. Controlled experiments, e.g. seed addi-

tion experiments, might help to overcome this limitation

in future studies. In addition, the smoke effect might have

been more conspicuous if we had used aerosol rather than

liquid smoke because evidence exists that aerosol smoke

might produce a higher stimulatory effect than liquid

smoke (Roche et al. 1997b; van Staden et al. 2000); if so,

our results are conservative in relation to our hypothesis.

In any case, our results coincide with previous studies per-

formed in Australian ecosystems, where a clear effect of

smoke at community level was only reflected in a small

proportion of species in the community. For example,

Lloyd et al. (2000) found an eight- to ten-fold increase in

seedling emergence, but in only two of the 18 studied spe-

cies was the smoke effect significant (and it is worth men-

tioning that significance was not adjusted for multiple tests

in Lloyd’s study). Altogether, these results suggest that the

community response to smoke cannot be inferred from

individual species; it is the sum of small differences in each

species towards the same direction that produces a signifi-

cant pattern at community scale. This emerging property

of the community is often neglected by considering the

role of smoke from laboratory experiments only.

Despite the fact that our experimental approach did not

emulate the conditions of a genuine wildfire (e.g. heat

shock was not considered), our results support that in the

MB flora, in addition to the effect on seed germination

described in previous laboratory experiments, the chemi-

cals produced during a fire have a positive effect on seed-

ling emergence and establishment. Our results also suggest

that the effect of smoke in annual species might be more

relevant than previously thought, encouraging further

work on the role of annual species for post-fire regenera-

tion in theMB.
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Supporting Information

Additional supporting information may be found in the

online version of this article:

Appendix S1. Total number of established seedlings

and mean number of established seedlings per subplot

(30 9 30 cm) in control and smoke-treated subplots for

each of the studied families.

Appendix S2. Total established seedlings and mean

number (seedling/subplot) of established seedlings in con-

trol and smoke-treated subplots (30 9 30 cm) for each of

the studied species.
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