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EQUATIONAL LOGIC AND THE EQUIVALENCE BETWEEN

HALL ALGEBRAS AND BÉNABOU THEORIES
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Abstract. The completeness theorem of equational logic of Birkhoff asserts
the coincidence of the model-theoretic and proof-theoretic consequence rela-
tions. Goguen and Meseguer, giving a sound and adequate system of inference
rules for many-sorted deduction, founded ultimately on the congruences on
Hall algebras, generalized the completeness theorem of Birkhoff to the com-
pleteness theorem of many-sorted equational logic. In this paper, after sim-
plifying the specification of Hall algebras as given by Goguen-Meseguer, we
obtain another many-sorted equational calculus from which we prove that the
inference rules of abstraction and concretion due to Goguen-Meseguer are de-
rived rules. Finally, after defining the Bénabou algebras for a set of sorts S we
prove that the category of Bénabou algebras for S is equivalent to the category
of Hall algebras for S and isomorphic to the category of Bénabou theories for
S, i.e., the many-sorted counterpart of the category of Lawvere theories, hence
that Hall algebras and Bénabou theories are equivalent.

1. Introduction.

The completeness theorem of many-sorted equational logic of Goguen-Meseguer
(in [4]), under which the classical completeness theorem of equational logic of Birk-
hoff (in [2]) falls, asserts, for a set of sorts S and an S-sorted signature Σ, the
coincidence of two consequence relations defined between subfamilies of the many-
sorted set EqH(Σ), of finitary Σ-equations, and elements of such a many-sorted set,
for an S-sorted signature Σ and an S-sorted set of variables V = (Vs)s∈S where,
for every sort s in S, Vs = { vs

n | n ∈ N } is a standard infinite countable set of
variables of type s.

Concretely, the above completeness theorem affirms that the consequence re-
lations |=Σ and `Σ are identical, where |=Σ= (|=Σ

w,s)(w,s)∈S?×S , with S? the un-
derlying set of the free monoid on S, the so-called semantical consequence rela-
tion, is obtained from the contravariant Galois connection between the ordered set
Sub(Alg(Σ)), of subsets of Alg(Σ), the category of Σ-algebras (identified in this
case to its underlying set of objects), and the ordered set Sub(EqH(Σ)), of subfam-
ilies of EqH(Σ); while `Σ= (`Σ

w,s)(w,s)∈S?×S , the so-called entailment relation, or
syntactical consequence relation, can be obtained, for instance, as has been pointed
out in [4], as the operator CgHTerS(Σ), of generated congruence, on the Hall algebra
HTerS(Σ) that has as underlying S? × S-sorted set (TΣ(↓w)s)(w,s)∈S?×S where,
for a word w ∈ S?, ↓w is the S-sorted set that has, for s ∈ S, as s-th coordinate the
subset of Vs defined as (↓w)s = { vs

i ∈ Vs | wi = s }, while TΣ(↓w) is the underlying
S-sorted set of TΣ(↓w), the free Σ-algebra on the S-sorted set ↓w.
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In the second section of this paper, once defined the variety of Hall algebras
for a set of sorts S, through a many-sorted specification slightly different from
that presented in [4], and after reproving the completeness theorem of many-sorted
equational logic, we obtain another many-sorted equational calculus from which
we prove that the inference rules of abstraction and concretion in [4] are derived
rules, thus providing a system of sound and adequate inference rules somewhat less
redundant than that presented by Goguen-Meseguer in [4].

In the third and last section, after defining the variety of Bénabou algebras for a
set of sorts S, through a many-sorted specification, we prove, on the one hand, that
the category of Bénabou theories for S, defined in [1], has the form of the category
of models for a convenient many-sorted specification because it is isomorphic to the
category of Bénabou algebras for S and, on the other hand, that the category of
Hall algebras for S, used by Goguen-Meseguer in their proof of the completeness
theorem of many-sorted equational logic, is equivalent to that of Bénabou algebras
for S, hence that Hall algebras and Bénabou theories are equivalent. Finally, we
prove that the algebraic lattice Cgr(BTerS(Σ)) associated to the Bénabou algebra
BTerS(Σ) is isomorphic to the algebraic lattice of fixed points of the operator CnΣ,
canonically associated to the semantical consequence relation |=Σ.

We point out that the category of Bénabou algebras for a set of sorts S is not
only interesting because it is isomorphic to the category of Bénabou theories for
S and equivalent to the category of Hall algebras for S, but also because in [3]
the Bénabou algebras have been used, among other things, to define what we have
called morphisms of Fujiwara from a many-sorted signature into another, as well
as morphisms from a many-sorted specification into another, from which we have
proved, in a convenient 2-category of many-sorted specifications, the equivalence
between the many-sorted specifications of Hall and Bénabou, and also, as a direct
consequence of the existence of a certain pseudo-functor from such a 2-category
into the 2-category of categories, the equivalence between the associated varieties.

In what follows we use standard concepts from many-sorted algebra, see e.g.,
[4]. Sometimes, to avoid any confusion, we will denote the family of structural
operations of a given Σ-algebra A by FA and the components of FA corresponding
to the different formal operations σ, τ , . . . , as FA

σ , FA
τ , . . . , respectively. Moreover,

every set we consider will be an element or subset of a Grothendieck universe U ,
fixed once and for all.

2. Hall algebras, the many-sorted completeness theorem of
Goguen-Meseguer, and some derived inference rules.

Hall algebras, as reflected by the defining axioms stated below, are a species of
algebraic construct in which the essential properties of the concepts of substitution,
for the many-sorted terms in the free many-sorted algebras, and of generalized com-
position, for the many-sorted operations on sorted sets, are embodied. And this
is precisely one of the reasons why Hall algebras are a powerful and fundamental
instrument to investigate many-sorted algebras. To this we add that Hall algebras
are not only worth of study because of its source in the above mentioned proce-
dures. Besides that, Hall algebras are interesting in themselves since they furnish
important examples of equationally defined many-sorted algebras, and also because
they have been used, as we have said in the introduction, by Goguen and Meseguer
in [4] to prove the completeness theorem of finitary many-sorted equational logic
(that generalizes the classical completeness theorem of finitary equational logic of
Birkhoff), providing in this way, a full algebraization of many-sorted equational
deduction.
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In this section after defining, for a set of sorts S, Alg(HS), the category of
Hall algebras for S, through a many-sorted specification HS slightly different from
that presented in [4], we prove the existence, for every S-sorted signature Σ, of
an isomorphism between THS (Σ), the free Hall algebra on Σ, and HTerS(Σ), the
Hall algebra for (S, Σ) which, we advance, formalizes the concept of substitution
and has as underlying S? × S-sorted set precisely (TΣ(↓w)s)(w,s)∈S?×S , i.e., the
different sets of finitary many-sorted Σ-terms. We point out that this isomorphism,
which allows us to replace everywhere HTerS(Σ) for THS

(Σ), together with the
adjunction THS

a GHS
from SetS?×S to Alg(HS), will be specially useful to state

some results in a more concrete and tractable way. Then, once reproved the com-
pleteness theorem of many-sorted equational logic, we obtain from it a many-sorted
equational calculus from which we prove that the rules of abstraction and concre-
tion in [4] are derived rules, hence providing a somewhat less redundant set of sound
and adequate inference rules than those in [4].

But before we begin to realize what has been announced we consider, for a set
of sorts S and an S-sorted signature Σ, the concepts of finitary Σ-term, finitary Σ-
equation and the relation of validation between finitary Σ-equations and Σ-algebras.
From these concepts we obtain, as is well known, a contravariant Galois connec-
tion between the ordered set of families of finitary Σ-equations and the ordered
set of families of Σ-algebras and, in particular, the closure operator of semantical
consequence on the set of finitary Σ-equations.

Definition 1. Let Σ be an S-sorted signature, w ∈ S?, and s ∈ S.

(1) A finitary Σ-term of type (w, s) is an element P of TΣ(↓w)s.
(2) A finitary Σ-equation of type (w, s) is an element (P, Q) of TΣ(↓w)2s, i.e.,

a pair of finitary Σ-terms of type (w, s).
From now on we agree that HTerS(Σ) denotes (TΣ(↓w)s)(w,s)∈S?×S , the S?×S-

sorted set of finitary Σ-terms, and that EqH(Σ) denotes (TΣ(↓w)2s)(w,s)∈S?×S , the
S? × S-sorted set of finitary Σ-equations.

Next we define for an S-sorted signature Σ, on the one hand, the realization of
the finitary Σ-terms in the Σ-algebras and, on the other, the concept of validation
of a finitary Σ-equation in a Σ-algebra.

Definition 2. Let Σ be an S-sorted signature, w ∈ S?, s ∈ S, A a Σ-algebra, and
P ∈ TΣ(↓w)s a finitary Σ-term of type (w, s). Then

(1) The Σ-algebra of the many-sorted w-ary operations on A is AAw , i.e., the
direct Aw-power of A, where Aw is

∏
i∈|w|Awi , with |w| the length of the

word w, or, since, for every s ∈ S, the sets (↓w)s = { vs
i ∈ Vs | wi = s } and

{ i ∈ |w| | wi = s } are isomorphic, AA↓w , i.e., the direct A↓w-power of A,
where A↓w is Hom(↓w, A), the set of all S-sorted mappings from ↓w to A.
From now on, to shorten terminology, we will speak of w-ary operations on
A instead of many-sorted w-ary operations on A.

(2) We denote by Tr↓w,A the unique homomorphism from TΣ(↓w) to AAw such
that prA

↓w = Tr↓w,A ◦ η↓w, where prA
↓w is the S-sorted mapping (prA

↓w,s)s∈S

from ↓w to AAw defined, for s ∈ S, as prA
↓w,s = (prA

↓w,s,x)x∈(↓w)s
, and η↓w

the canonical embedding of ↓w into TΣ(↓w), the underlying S-sorted set of
TΣ(↓w). Furthermore, PA denotes the image of P under Tr↓w,A

s , and we
call the mapping PA from A↓w to As, the term operation on A determined
by P , or the term realization of P on A.

Definition 3. Let A be a Σ-algebra and (P, Q) a finitary Σ-equation of type
(w, s). We say that (P, Q) is valid in A, denoted by A |=Σ

w,s (P, Q), if PA = QA.
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If K ⊆ Alg(Σ), then we agree that K |=Σ
w,s (P, Q) means that, for every A ∈ K,

A |=Σ
w,s (P, Q).

From the concept of validation we obtain, as is well-known, the following con-
travariant Galois connection.

Definition 4. Let Σ be an S-sorted signature.
(1) If K ⊆ Alg(Σ), then ThΣ(K) = (ThΣ(K)w,s)(w,s)∈S?×S , the finitary Σ-

equational theory determined by K, is the sub-(S?×S)-sorted set of EqH(Σ)
whose (w, s)-th coordinate ThΣ(K)w,s, for (w, s) ∈ S?×S, has as elements
those finitary Σ-equations (P,Q) of type (w, s) such that K |=Σ

w,s (P, Q),
therefore

ThΣ(K) =
({

(P, Q) ∈ EqH(Σ)w,s | ∀A ∈ K (A |=Σ
w,s (P,Q))

})
(w,s)∈S?×S

.

(2) If E ⊆ EqH(Σ), then ModΣ(E), the finitary Σ-equational class determined
by E , has as elements the Σ-algebras A that validate each equation of E ,
i.e.,

ModΣ(E) =
{
A ∈ Alg(Σ)

∣∣∣∣
∀(w, s) ∈ S? × S, ∀(P, Q) ∈ Ew,s,

A |=Σ
w,s (P, Q)

}
.

Proposition 1. Let Σ be an S-sorted signature, E, E ′ two families of finitary
Σ-equations and K, K′ two sets of Σ-algebras. Then the following holds:

(1) If E ⊆ E ′, then ModΣ(E ′) ⊆ ModΣ(E).
(2) If K ⊆ K′, then ThΣ(K′) ⊆ ThΣ(K).
(3) E ⊆ ThΣ(ModΣ(E)) and K ⊆ ModΣ(ThΣ(K)).

Therefore the pair of mappings ThΣ and ModΣ is a contravariant Galois connection.

The categories associated to the lattices of sets of Σ-algebras and families of
finitary Σ-equations are related by the adjunction ModΣ a ThΣ, i.e., for every set K
of Σ-algebras and every family E of finitary Σ-equations, we have that K ⊆ ModΣ(E)
iff E ⊆ ThΣ(K), because of the contravariance.

Definition 5. We denote by CnΣ the closure operator ThΣ ◦ ModΣ on EqH(Σ)
and we call the CnΣ-closed sets Σ-equational theories. If E is a family of fini-
tary Σ-equations and (P, Q) a finitary Σ-equation of type (w, s), then we say
that (P,Q) is a semantical consequence of E if ModΣ(E) ⊆ ModΣ(P, Q), i.e., if
(P, Q) ∈ CnΣ(E)w,s = ThΣ(ModΣ(E))w,s, which we denote also by E |=Σ

w,s (P, Q).

Before we define the Hall algebras, through an appropriate many-sorted specifi-
cation, we agree that for a set of sorts U , a word x ∈ U? and a standard U -sorted
set of variables V U = ({ vu

n | n ∈ N })u∈U , ↓x is the U -sorted subset of V U defined,
for every u ∈ U as (↓x)u = { vu

i | i ∈ x−1[u] }, this will apply, in particular, when
the set of sorts U is S? × S or S? × S?.

Definition 6. Let S be a set of sorts and V HS the S? × S-sorted set of variables
(Vw,s)(w,s)∈S?×S where, for every (w, s) ∈ S? × S, Vw,s = { vw,s

n | n ∈ N }. A Hall
algebra for S is a HS = (S?×S, ΣHS , EHS )-algebra, where ΣHS is the S?×S-sorted
signature, i.e., the (S? × S)? × (S? × S)-sorted set, defined as follows:

HS1. For every w ∈ S? and i ∈ |w|,
πw

i : λ // (w,wi),

where |w| is the length of the word w and λ the empty word in (S? × S)?.
HS2. For every u, w ∈ S? and s ∈ S,

ξu,w,s : ((w, s), (u,w0), . . . , (u,w|w|−1)) // (u, s);
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while EHS is the sub-(S? × S)? × (S? × S)-sorted set of Eq(ΣHS ), where

Eq(ΣHS ) = (TΣHS (↓w)2(u,s))(w,(u,s))∈(S?×S)?×(S?×S),

defined as follows:
H1. Projection. For every u, w ∈ S? and i ∈ |w|, the equation

ξu,w,wi
(πw

i , vu,w0
0 , . . . , v

u,w|w|−1

|w|−1 ) = vu,wi

i

of type (((u,w0), . . . , (u, w|w|−1)), (u, wi)).
H2. Identity. For every u ∈ S? and j ∈ |u|, the equation

ξu,u,uj
(vu,uj

j , πu
0 , . . . , πu

|u|−1) = v
u,uj

j

of type (((u, uj)), (u, uj)).
H3. Associativity. For every u, v, w ∈ S? and s ∈ S, the equation

ξu,v,s(ξv,w,s(v
w,s
0 , vv,w0

1 , . . . , v
v,w|w|−1

|w| ), vu,v0
|w|+1, . . . , v

u,v|v|−1

|w|+|v| ) =

ξu,w,s(v
w,s
0 ,ξu,v,w0(v

v,w0
1 , vu,v0

|w|+1, . . . , v
u,v|v|−1

|w|+|v| ), . . . ,

ξu,v,w|w|−1(v
v,w|w|−1

|w| , vu,v0
|w|+1, . . . , v

u,v|v|−1

|w|+|v| ))

of type (((w, s), (v, w0), . . . , (v, w|w|−1), (u, v0), . . . , (u, v|v|−1)), (u, s)).

Remark. From H3, for w = λ, the empty word on S, we get the invariance of
constant functions axiom in [4]: For every u, v ∈ S? and s ∈ S, we have the
equation

ξu,v,s(ξv,λ,s(v
λ,s
0 ), vu,v0

1 , . . . , v
u,v|v|−1

|v| ) = ξu,λ,s(v
λ,s
0 )

of type (((λ, s), (u, v0), . . . , (u, v|v|−1)), (u, s)).

We call the formal constants πw
i projections, and the formal operations ξu,w,s

substitution operators. Furthermore, we denote by Alg(HS) the category of Hall
algebras for S and homomorphisms between Hall algebras. Since Alg(HS) is a
variety, the forgetful functor GHS

from Alg(HS) to SetS?×S has a left adjoint
THS

, situation denoted by THS
a GHS

, or diagrammatically by

Alg(HS)
GHS //
> SetS?×S

THS

oo

which assigns to an S?×S-sorted set Σ the corresponding free Hall algebra THS
(Σ).

For every S-sorted set A, HOpS(A) = (Hom(Aw, As))(w,s)∈S?×S , the S? × S-
sorted set of operation for A, is naturally endowed with a structure of Hall algebra,
as stated in the following proposition, if we realize the projections as the true pro-
jections and the substitution operators as the generalized composition of mappings.

Proposition 2. Let A be an S-sorted set and HOpS(A) the ΣHS -algebra with
underlying many-sorted set HOpS(A) and algebraic structure defined as follows

(1) For every w ∈ S? and i ∈ |w|, (πw
i )HOpS(A) = prA

w,i : Aw
// Awi .

(2) For every u,w ∈ S? and s ∈ S, ξ
HOpS(A)
u,w,s is defined, for every f ∈ AAw

s

and g ∈ AAu
w , as ξ

HOpS(A)
u,w,s (f, g0, . . . , g|w|−1) = f ◦ 〈gi〉i∈|w|, where 〈gi〉i∈|w|

is the unique mapping from Au to Aw such that, for every i ∈ |w|, we have
that

prA
w,i ◦ 〈gi〉i∈|w| = gi.

Then HOpS(A) is a Hall algebra, the Hall algebra for (S, A).

Remark. The closed sets of the Hall algebra HOpS(A) for (S,A) are precisely the
clones of (many-sorted) operations on the S-sorted set A.
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We agree that, for every Σ-algebra A, HOpS(A) is HOpS(A), where A is the
underlying S-sorted set of A. Thus, under this convention, every Σ-algebra A has
associated a Hall algebra.

For every S-sorted signature Σ, HTerS(Σ) = (TΣ(↓w)s)(w,s)∈S?×S is also en-
dowed with a structure of Hall algebra that formalizes the concept of substitution
as stated in the following

Proposition 3. Let Σ be an S-sorted signature and HTerS(Σ) the ΣHS -algebra
with underlying many-sorted set HTerS(Σ) and algebraic structure defined as follows

(1) For every w ∈ S? and i ∈ |w|, (πw
i )HTerS(Σ) is the image under η↓w,wi

of the variable vwi
i , where η↓w = (η↓w,s)s∈S is the canonical embedding of

↓w into TΣ(↓w). Sometimes, to abbreviate, we will write πw
i instead of

(πw
i )HTerS(Σ).

(2) For every u,w ∈ S? and s ∈ S, ξ
HTerS(Σ)
u,w,s is the mapping

ξHTerS(Σ)
u,w,s

{
TΣ(↓w)s × TΣ(↓u)w0 × · · · × TΣ(↓u)w|w|−1

// TΣ(↓u)s

(P, (Qi)i∈|w|) 7−→ Q]
s(P )

where, for Q the S-sorted mapping from ↓w to TΣ(↓u) canonically associ-
ated to the family (Qi)i∈|w|, Q] is the unique homomorphism from TΣ(↓w)
into TΣ(↓u) such that Q] ◦ η↓w = Q. Sometimes, to abbreviate, we will
write ξu,w,s instead of ξ

HTerS(Σ)
u,w,s .

Then HTerS(Σ) is a Hall algebra, the Hall algebra for (S, Σ).

Our next goal is to prove that, for every S? × S-sorted set Σ, THS
(Σ), the free

Hall algebra on Σ, is isomorphic to HTerS(Σ). We remark that the existence of
this isomorphism is interesting because it enables us, on the one hand, to get a
more tractable description of the terms in THS (Σ), and, on the other hand, as
we will show afterwards, to state, for every Σ-algebra A, taking into account the
adjunction THS a GHS , the existence of a homomorphism of Hall algebras TrA from
HTerS(Σ) to HOpS(A) = HOpS(A) such that ThΣ(A), the finitary Σ-equational
theory determined by A, is precisely Ker(TrA), the kernel of the homomorphism
TrA.

To attain the goal just stated we begin by defining, for a Hall algebra A, an
S-sorted signature Σ, an S? × S-mapping f : Σ // A, and a word u ∈ S?, the
concept of derived Σ-algebra of A for (f, u), since it will be used afterwards in the
proof of the isomorphism between THS

(Σ) and HTerS(Σ).

Definition 7. Let A be a Hall algebra and Σ an S-sorted signature. Then, for
every f : Σ // A and u ∈ S?, Af,u, the derived Σ-algebra of A for (f, u), is the
Σ-algebra with underlying S-sorted set Af,u = (Au,s)s∈S and algebraic structure
F f,u, defined, for every (w, s) ∈ S? × S, as

F f,u
w,s





Σw,s
// HOpw(Af,u)s

σ 7−→
{ ∏

i∈|w|Au,wi
// Au,s

(a0, . . . , a|w|−1) 7−→ ξA
u,w,s(f(w,s)(σ), a0, . . . , a|w|−1)

where HOpw(Af,u)s = A
Q

i∈|w| Au,wi
u,s .

Furthermore, we denote by pu the S-sorted mapping from ↓u to Af,u defined, for
every s ∈ S and i ∈ |u|, as pu

s (vs
i ) = (πu

i )A, and by (pu)] the unique homomorphism
from TΣ(↓u) to Af,u such that (pu)] ◦ η↓u = pu.

Remark. For a Σ-algebra B = (B,G), we have that G : Σ // HOpS(B) and
B ∼= HOpS(B)G,λ, where λ is the empty word on S. Besides, for every u ∈ S?, we
have that BBu , the direct Bu-power of B, is isomorphic to HOpS(B)G,u.
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Lemma 1. Let Σ be an S-sorted signature, A a Hall algebra, f : Σ // A and
u ∈ S?. Then, for every (w, s) ∈ S? × S, P ∈ TΣ(↓w)s and a ∈ ∏

i∈|w|Au,wi
, we

have that

PAf,u

(a0, . . . , a|w|−1) = ξA
u,w,s((p

w)]
s(P ), a0, . . . , a|w|−1).

Proof. By algebraic induction on the complexity of P . If P is a variable vs
i , with

i ∈ |w|, then

vs,Af,u

i (a0, . . . , a|w|−1) = a]
wi

(vs
i )

= ai

= ξA
u,w,s((π

w
i )A, a0, . . . , a|w|−1) (by H1)

= ξA
u,w,s((p

w)]
s(v

s
i ), a0, . . . , a|w|−1).

Let us assume that P = σ(Q0, . . . , Q|x|−1), with σ : x // s and that, for every
j ∈ |x|, Qj ∈ TΣ(↓w)xj

fulfills the induction hypothesis. Then we have that

(σ(Q0, . . . , Q|x|−1))A
f,u

(a0, . . . , a|w|−1)

= σAf,u

(QAf,u

0 (a0, . . . , a|w|−1), . . . , QAf,u

|x|−1(a0, . . . , a|w|−1))

= ξA
u,x,s(f(σ), QAf,u

0 (a0, . . . , a|w|−1), . . . , QAf,u

|x|−1(a0, . . . , a|w|−1))

= ξA
u,x,s(f(σ),ξA

u,w,x0
((pw)]

x0
(Q0), a0, . . . , a|w|−1), . . . ,

ξA
u,w,x|x|−1

((pw)]
x|x|−1

(Q|x|−1), a0, . . . , a|w|−1)) (by Ind. Hypothesis)

= ξA
u,w,s(ξ

A
w,x,s(f(σ), (pw)]

x0
(Q0), . . . , (pw)]

x|x|−1
(Q|x|−1)), a0, . . . , a|w|−1)(by H3)

= ξA
u,w,s(σ

Aw((pw)]
x0

(Q0), . . . , (pw)]
x|x|−1

(Q|x|−1)), a0, . . . , a|w|−1)

= ξA
u,w,s((p

w)]
s(σ,Q0, . . . , Q|x|−1), a0, . . . , a|w|−1)

= ξA
u,w,s((p

w)]
s(P ), a0, . . . , a|w|−1). ¤

Next we prove that, for every S? × S-sorted set Σ, the Hall algebra for (S, Σ) is
isomorphic to the free Hall algebra on Σ.

Proposition 4. Let Σ be an S-sorted signature, i.e., an S? × S-sorted set. Then
the Hall algebra HTerS(Σ) is isomorphic to THS

(Σ).

Proof. It is enough to prove that HTerS(Σ) has the universal property of the free
Hall algebra on Σ. Therefore we have to specify an S? × S-sorted mapping h from
Σ to HTerS(Σ) such that, for every Hall algebra A and S? × S-sorted mapping f

from Σ to A, there is a unique homomorphism f̂ from HTerS(Σ) to A such that
f̂ ◦ h = f . Let h be the S? × S-sorted mapping defined, for every (w, s) ∈ S? × S,
as

hw,s

{
Σw,s

// TΣ(↓w)s

σ 7−→ σ(vs
0, . . . , v

s
|w|−1)

Let A be a Hall algebra, f : Σ // A an S? × S-sorted mapping and f̂ the S? × S-
sorted mapping from HTerS(Σ) to A defined, for every (w, s) ∈ S? × S, as f̂w,s =
(pw)]

s, where, we recall, (pw)] is the unique homomorphism from TΣ(↓w) to Af,w

such that (pw)] ◦ η↓w = pw. Then f̂ is a homomorphism of Hall algebras, because,
on the one hand, for w ∈ S? and i ∈ |w| we have that

f̂w,wi((π
w
i )HTerS(Σ)) = f̂w,wi(v

s
i )

= pw
wi

(vs
i )

= (πw
i )A,
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and, on the other hand, for P ∈ TΣ(↓w)s and (Qi | i ∈ |w|) ∈ TΣ(↓u)w we have
that

f̂u,s(ξHTerS(Σ)
u,w,s (P, Q0, . . . , Q|w|−1))

= (pu)]
s(Q]

s(P ))

= ((pu)] ◦ Q)]
s(P ) (because (pu)] ◦ Q] = ((pu)] ◦ Q)])

= PAf,u

((pu)]
w0

(Q0), . . . , (pu)]
w|w|−1

(Q|w|−1))

= ξA
u,w,s((p

w)]
s(P ), (pu)]

w0
(Q0), . . . , (pu)]

w|w|−1
(Q|w|−1)) (byLemma 1)

= ξA
u,w,s(f̂w,s(P ), f̂u,w0(Q0), . . . , f̂u,w|w|−1(Q|w|−1)).

Therefore the S?×S-sorted mapping f̂ is a homomorphism. Furthermore, f̂ ◦h = f ,
because, for every w ∈ S?, s ∈ S, and σ ∈ Σw,s, we have that

f̂w,s(hw,s(σ)) = (pw)]
s(σ(vs

0, . . . , v
s
|w|−1))

= σAw(pw
w0

(vs
0), . . . , p

w
w|w|−1

(vs
|w|−1))

= ξA
w,w,s(f(w,s)(σ), (πw

0 )A, . . . , (πw
|w|−1)

A)

= fw,s(σ) (by H2).

It is obvious that f̂ is the unique homomorphism such that f̂ ◦ h = f . Henceforth
HTerS(Σ) is isomorphic to THS (Σ). ¤

As was announced above, this isomorphism together with the adjunction THS
a

GHS
has as an immediate consequence that, for every S-sorted set A and every

S-sorted signature Σ, the sets Hom(Σ, HOpS(A)), in the category SetS?×S , and
Hom(HTerS(Σ),HOpS(A)), in the category Alg(HS), are naturally isomorphic.

Actually, the isomorphism assigns, for an S-sorted set A, as we will prove imme-
diately below for the case in which A is the underlying S-sorted set of a Σ-algebra
A, to a structure of Σ-algebra F on A (i.e., an S? × S-sorted mapping F from Σ
to HOpS(A)) the homomorphism of Hall algebras Tr(A,F ) = (Tr↓w,(A,F )

s )(w,s)∈S?×S

from HTerS(Σ) to HOpS(A), where, for every w ∈ S?, the subfamily Tr↓w,(A,F ) =
(Tr↓w,(A,F )

s )s∈S of Tr(A,F ) is the unique homomorphism from TΣ(↓w) to (A, F )Aw ,
the direct Aw-power of (A,F ), such that Tr↓w,(A,F ) ◦ η↓w = pA

↓w, where pA
↓w is the

S-sorted mapping from ↓w to AAw defined, for every s ∈ S and vs
i ∈ (↓w)s, as

pA
↓w,s(v

s
i ) = prA

w,i; while the inverse isomorphism sends an homomorphism h from
HTerS(Σ) to HOpS(A) to, essentially, the algebraic structure GHS

(h) ◦ ηΣ on A,
where ηΣ is the canonical embedding of Σ into THS

(Σ).
After having stated, for an S-sorted set A and a structure of Σ-algebra F on

A, the definition of the S? × S-sorted mapping Tr(A,F ), we prove in the follow-
ing proposition, among others, that, for a Σ-algebra A = (A,F ), it is in fact an
homomorphism of Hall algebras from HTerS(Σ) to HOpS(A) = HOpS(A).

Proposition 5. Let A = (A,F ) be a Σ-algebra. Then TrA = Tr(A,F ) is a homo-
morphism of Hall algebras from HTerS(Σ) to HOpS(A) = HOpS(A). Moreover,
Ker(TrA) = ThΣ(A), the Σ-equational theory determined by A.

Proof. Let w ∈ S? be and i ∈ |w|. Then we have that

Tr↓w,A
s ((πw

i )HTerS(Σ)) = prA
w,i = (πw

i )HOpS(A).
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Next given u,w ∈ S?, s ∈ S, P ∈ TΣ(↓w)s, and (Qi)i∈|w| ∈ TΣ(↓u)w, we have
to prove that

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (P, (Qi)i∈|w|)) =

ξHOpS(A)
u,w,s (Tr↓w,A

s (P ), (Tr↓u,A
wi

(Qi))i∈|w|).

Let X u,w be the S-sorted set whose s-th coordinate, for s ∈ S, is the set of
all terms P ∈ TΣ(↓w)s which, for every (Qi)i∈|w| ∈ TΣ(↓u)w, satisfy the above
equation. We prove that X u,w = TΣ(↓w) by algebraic induction.

For every vs
i ∈ (↓w)s, we have that vs

i , identified to η↓w,s(vs
i ) = (πw

i )HTerS(Σ)

belongs to X u,w
s since

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (vs
i , (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,w,s ((πw
i )HTerS(Σ), (Qi)i∈|w|))

= Tr↓u,A
s (Qi) (by H1)

= ξHOpS(A)
u,w,s ((πw

i )HOpS(A), (Tr↓u,A
wi

(Qi))i∈|w|)

= ξHOpS(A)
u,w,s (prA

w,i, (Tr↓u,A
wi

(Qi))i∈|w|)

= ξHOpS(A)
u,w,s (Tr↓w,A

s (vs
i ), (Tr↓u,A

wi
(Qi))i∈|w|).

For every σ ∈ Σ, with σ : x // s, and every (Rj)j∈|x| ∈ Xx, σ((Rj)j∈|x|) ∈ X u,w
s

since

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (σ((Rj)j∈|x|), (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,w,s (ξHTerS(Σ)
w,x,s (σ((vj)j∈|x|), (Rj)j∈|x|), (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,x,s (σ((vj)j∈|x|),ξHTerS(Σ)
u,w,x0

(R0, (Qi)i∈|w|), . . . ,

ξHTerS(Σ)
u,w,x|x|−1

(R|x|−1, (Qi)i∈|w|))) (by H3)

= Tr↓u,A
s (σ((ξHTerS(Σ)

u,w,xj
(Rj , (Qi)i∈|w|))j∈|x|))

= FAAu

σ (Tr↓u,A
x0

(ξHTerS(Σ)
u,w,x0

(R0, (Qi)i∈|w|)), . . . ,

Tr↓u,A
x|x|−1

(ξHTerS(Σ)
u,w,x|x|−1

(R|x|−1, (Qi)i∈|w|)))

= FAAu

σ (ξHOpS(A)
u,w,x0

(Tr↓w,A
x0

(R0), (Tr↓u,A
wi

(Qi))i∈|w|), . . . ,

ξHOpS(A)
u,w,x|x|−1

(Tr↓w,A
x|x|−1

(R|x|−1), (Tr↓u,A
wi

(Qi))i∈|w|)) (by Ind. Hypothesis)

= ξHOpS(A)
u,x,s (FA

σ ,ξHOpS(A)
u,w,x0

(Tr↓w,A
x0

(R0), (Tr↓u,A
wi

(Qi)i∈|w|)), . . . ,

ξHOpS(A)
u,w,x|x|−1

(Tr↓w,A
x|x|−1

(R|x|−1), (Tr↓u,A
wi

(Qi)i∈|w|)))

= ξHOpS(A)
u,w,s (ξHOpS(A)

w,x,s (FA
σ , (Tr↓w,A

xj
(Rj))j∈|x|),

(Tr↓u,A
wi

(Qi))i∈|w|) (by H3)

= ξHOpS(A)
u,w,s (ξHOpS(A)

w,x,s (Tr↓x,A
s (σ((vj)j∈|x|)), (Tr↓w,A

xj
(Rj))j∈|x|,

(Tr↓u,A
wi

(Qi))i∈|w|))

= ξHOpS(A)
u,w,s (Tr↓w,A

s (ξHTerS(Σ)
u,w,s (σ((vj)j∈|x|), (Rj)j∈|x|)),

(Tr↓u,A
wi

(Qi))i∈|w|)

= ξHOpS(A)
u,w,s (Tr↓w,A

s (σ((Rj)j∈|x|)), (Tr↓u,A
wi

(Qi))i∈|w|).

Finally, ThΣ(A), the Σ-equational theory determined by A, is, by definition
(Ker(Tr↓w,A)s)(w,s)∈S?×S , which is precisely the kernel of TrA and, therefore, it is
a congruence on HTerS(Σ). ¤
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The last part of the proposition just stated can be extended to sets of Σ-algebras
and, in particular, to the models of a family E of finitary Σ-equations. From this
it will follow that the operator CgHTerS(Σ) is sound relative to the operator of
semantical consequence CnΣ.

Proposition 6. Let K a set of Σ-algebras. Then ThΣ(K) is a congruence on
HTerS(Σ).

Proof. Because ThΣ(K) is
⋂

A∈KKer(TrA) ∈ Cgr(HTerS(Σ)). ¤

Corollary 1 (Soundness Theorem). Let Σ be an S-sorted signature. Then we have
that CgHTerS(Σ) ≤ CnΣ.

Proof. Let E be a sub-sorted set of EqH(Σ). By definition CnΣ(E) = ThΣ(ModΣ(E)).
But ThΣ(ModΣ(E)) is a congruence on HTerS(Σ) and contains E . Therefore
CnΣ(E) contains CgHTerS(Σ)(E). ¤

The congruence generated in HTerS(Σ) by a family of finitary Σ-equations E
can be characterized as follows.

Proposition 7. Let E be a sub-sorted set of EqH(Σ). Then CgHTerS(Σ)(E) is the
smallest sub-sorted set E of EqH(Σ) that contains E and is such that, for every
u,w ∈ S? and s ∈ S, satisfies the following conditions:

(1) Reflexivity. For every P ∈ HTerS(Σ)w,s, (P, P ) ∈ Ew,s.
(2) Symmetry. For every P , Q ∈ HTerS(Σ)w,s, if (P, Q) ∈ Ew,s, then (Q,P ) ∈

Ew,s.
(3) Transitivity. For every P , Q, R ∈ HTerS(Σ)w,s, if (P,Q), (Q,R) ∈ Ew,s,

then (P,R) ∈ Ew,s.
(4) Substitutivity. For every (Mi)i∈|w|, (Ni)i∈|w| ∈

∏
i∈|w|HTerS(Σ)u,wi and

every (P, Q) ∈ Ew,s, if, for every i ∈ |w|, it happens that (Mi, Ni) ∈ Eu,wi ,
then

(ξu,w,s(P, M0, . . . , M|w|−1), ξu,w,s(Q,N0, . . . , N|w|−1)) ∈ Eu,s.

¤
Let us remark that in the proposition just stated, the substitutivity condition

for w = λ, the empty word on S, demands that if (P, Q) ∈ Eλ,s then, for every
u ∈ S?, (P, Q) ∈ Eu,s.

Proposition 8. Let E be a sub-sorted set of EqH(Σ) and σ ∈ Σw,s. If, for every i ∈
|w|, we have that (Pi, Qi) ∈ Ew,wi , then (σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈
Ew,s.

Proof. By reflexivity (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) ∈ Ew,s hence, by substi-
tutivity, (σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈ Ew,s. ¤

Proposition 9. Let E be a sub-sorted set of EqH(Σ) and (w, s) ∈ S? × S. If
(P, Q) ∈ Ew,s and f is an endomorphism of TΣ(↓w), then (fs(P ), fs(Q)) ∈ Ew,s.

Proof. For every i ∈ |w|, the equation (fwi(vi), fwi(vi)) is in Ew,wi . By substitu-
tivity, we have that

(ξw,w,s(P, fw0(v0), . . . , fw|w|−1(v|w|−1)), ξw,w,s(Q, fw0(v0), . . . , fw|w|−1(v|w|−1)))

is in Ew,s, hence (fs(P ), fs(Q)) ∈ Ew,s. ¤

Corollary 2. Let E be a sub-sorted set of EqH(Σ) and w ∈ S?. Then Ew =
(Ew,s)s∈S is a fully invariant congruence on TΣ(↓w).
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Proof. By definition, Ew is an equivalence on TΣ(↓w), by Proposition 8 is com-
patible with the operations in Σ and by Proposition 9 is closed under endomor-
phisms. ¤

We remark that the congruence Ew contains Cgfi
TΣ(↓w)(Ew), the fully invariant

congruence generated by Ew = (Ew,s)s∈S and, in general, the containment is strict,
because Cgfi

TΣ(↓w)(Ew) contains only the consequences of the subfamily of E which
has the equations in E with variables in ↓w, whereas Ew contains the equations
with variables in ↓w that are consequence of all equations in E .

Proposition 10. Let E be a sub-sorted set of EqH(Σ) and w ∈ S?. Then TΣ(↓w)/Ew

is a model of E.
Proof. Let (P,Q) ∈ Eu,s be and R : ↓ u // TΣ(↓w)/Ew a valuation. Then

R](P ) = [P (R0, . . . , R|u|−1)] = [Q(R0, . . . , R|u|−1)] = R](Q).

¤

Proposition 11 (Adequacy Theorem). Let Σ be an S-sorted signature. Then we
have that CnΣ ≤ CgHTerS(Σ).

Proof. Let E be a sub-sorted set of EqH(Σ). If (P, Q) ∈ CnΣ(E)w,s, then, because
TΣ(↓w)/Ew is a model of E , PTΣ(↓w)/Ew = QTΣ(↓w)/Ew . Hence

[P ] = [ξw,w,s(P, πw
0 , . . . , πw

|w|−1)]

= [PTΣ(↓w)(v0, . . . , v|w|−1)]

= PTΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= QTΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= [QTΣ(↓w)(v0, . . . , v|w|−1)]

= [ξw,w,s(Q, πw
0 , . . . , πw

|w|−1)]

= [Q],

and (P, Q) ∈ CgHTerS(Σ)(E)w,s. ¤

Corollary 3 (Completeness theorem of Goguen-Meseguer). Let Σ be an S-sorted
signature. Then we have that CgHTerS(Σ) = CnΣ, or, what is equivalent, the alge-
braic lattice of all Σ-equational theories is isomorphic to the algebraic lattice of all
congruences on the Hall algebra HTerS(Σ).

The completeness theorem of Goguen-Meseguer allows us to obtain a calculus of
finitary Σ-equations, i.e., a calculus on sets of variables of the form ↓w, for w ∈ S?,
or, what amounts to the same, on finite sub-S-sorted sets X of the S-sorted set
V = (Vs)s∈S . Before we state the finitary Σ-equational inference rules we agree
that (P, Q) : (X, s) means that the finitary Σ-equation (P,Q) is of type (X, s), i.e.,
that P,Q ∈ TΣ(X)s, in addition if P ∈ TΣ(X)s and P = (Ps)s∈S : X // TΣ(Y ),
then P (x/Ps,x)s∈S, x∈Xs is P]

s(P ).

Proposition 12 (Inference Rules). The following finitary Σ-equational inference
rules determine a closure operator on EqH(Σ) that is identical to the closure oper-
ator CnΣ.

(R1) Reflexivity. For all P ∈ TΣ(X)s, (P, P ) ∈ EX,s, or diagrammatically

(P, P ) : (X, s) P ∈ TΣ(X)s·
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(R2) Symmetry. For all P,Q ∈ TΣ(X)s, if (P, Q) ∈ EX,s, then (Q,P ) ∈ EX,s,
or diagrammatically

(P,Q) : (X, s)
(Q,P ) : (X, s)

·

(R3) Transitivity. For all P, Q, R ∈ TΣ(X)s, if (P, Q) ∈ EX,s and (Q,R) ∈ EX,s,
then (P,R) ∈ EX,s or diagrammatically

(P, Q) : (X, s) (Q,R) : (X, s)
(P,R) : (X, s)

·

(R4) Generalized substitutivity. For all (P, Q) ∈ EX,s and P,Q : X // TΣ(Y )
such that, for every s ∈ S, x ∈ Xs, (Ps,x, Qs,x) ∈ EY,s,

(ξY,X,s(P, (Ps,x)s∈S, x∈Xs), ξY,X,s(Q, (Qs,x)s∈S, x∈Xs)) ∈ EY,s,

or diagrammatically

(P, Q) : (X, s) ((Ps,x, Qs,x) : (Y, s))s∈S, x∈Xs

(P (x/Ps,x)s∈S, x∈Xs , Q(x/Qs,x)s∈S, x∈Xs) : (Y, s)
·

Proof. Because the finitary Σ-equational inference rules are the translation of the
conditions in Proposition 7. ¤

Proposition 13. The inference rule R4 is equivalent, assuming R1, to the following
inference rule

(R4′) Substitutivity.

(P, Q) : (X, s) (P ′, Q′) : (Y, t)
(P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪ Y, s)

x ∈ Xt [δt,x
t = {x}, δt,x

s = ∅, if s 6= t].

Proof. We begin by proving that R4 implies R4′. If (P,Q) : (X, s) and (P ′, Q′) :
(Y, t) are deducible and x ∈ Xt, then also, by reflexivity, the finitary Σ-equations in
the family ((P ′′s,x, Q′′

s,x) : ((X − δt,x) ∪ Y, s))s∈S, x∈Xs , where P ′′t,x = P ′, Q′′t,x = Q′,
and otherwise P ′′s,y = Q′′s,y = y, are deducible. Then, by generalized substitu-
tivity, (P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪ Y, s) is deducible, because P (x/P ′) =
(P (x/P ′′s,x)s∈S, x∈Xs and Q(x/Q′) = Q(x/P ′′s,x)s∈S, x∈Xs .

Reciprocally, R4′ implies R4, by reiterating the application of R4′ card(
∐

X)-
times, where

∐
X is the coproduct of the S-sorted set X. ¤

In some presentations of many-sorted equational logic, e.g., in [4], two additional
inference rules that allow the adjunction and suppression of variables, under some
conditions, are introduced. But as we will prove below both rules are derived rules,
relative to the system of rules R1 to R4.

Definition 8 (Abstraction and concretion).

(R5) Abstraction.

(P, Q) : (X, s)
(P,Q) : (X ∪ δt,x, s)

x ∈ Vt −Xt.

(R6) Concretion.

(P, Q) : (X, s)
(P, Q) : (X − δt,x, s) x ∈ Xt, x /∈ var(P, Q), TΣ((∅)s∈S)t 6= ∅.

Proposition 14. The abstraction and concretion rules are derived rules.
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Proof. Abstraction is a derived rule. Let y ∈ Vs be such that y /∈ Xs. Then, by
reflexivity, the finitary Σ-equation (y, y) : (δs,y ∪ δt,x, s) is deducible. Hence, by
substitutivity, the finitary Σ-equation

(y(y/P ), y(y/Q)) : (((δs,y ∪ δt,x)− δs,y) ∪X, s)

that is identical to (P,Q) : (X ∪ δt,x, s), is also deducible. As a particular case we
have that if (P, Q) : ((∅)s∈S , s) is deducible, then (P, Q) : (δt,x, s) is also deducible.

Concretion is a derived rule. Since TΣ((∅)s∈S)t 6= ∅ let us choose an R ∈
TΣ((∅)s∈S)t. Then, by reflexivity, the finitary Σ-equation (R, R) : ((∅)s∈S , t) is
deducible. Hence, by substitutivity, (P (x/R), Q(x/R)) : ((X − δt,x) ∪ (∅)s∈S , s) is
also deducible and, because x /∈ var(P, Q), (P, Q) : (X − δt,x, s) is deducible. ¤

Definition 9 (Replacement rule).
(R7) Replacement.

(P i, Qi) : (X, wi)
(σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) : (X, s) σ ∈ Σw,s.

Proposition 15. The replacement rule is a derived rule.

Proof. By reflexivity, (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) : (↓w, s) is deducible.
Now, by reiterating substitutivity |w|-times, we obtain the desired finitary Σ-
equation. ¤

Everything we have done until now can be extended to the case of S-finitary
Σ-equations, where, for X ∈ SubS−f(V ) = {X ⊆ V | ∀s ∈ S (card(Xs) < ℵ0) },
the set of S-finite sub-S-sorted sets of V , and s ∈ S, an S-finitary Σ-equation of
type (X, s) is a pair of coterminal parallel S-sorted mappings from the S-sorted set
δs = (δs

t )t∈S , the delta of Kronecker in s, such that δs
t = ∅ if s 6= t and δs

s = 1, to
TΣ(X). In this respect we only have to change the (finitary) structural operations
of the Hall algebras to S-finitary operations. Moreover, the equational calculus
has the same inference rules R1–R4, but generalized to S-sorted sets of variables
which are S-finite. However, the rule of substitution is no longer equivalent to the
generalized rule of substitution. Finally, the rules of abstraction and concretion for
this case are the following.

Definition 10.
(R5′) Generalized abstraction.

(P,Q) : (X, s)
(P, Q) : (X ∪ Y, s)

·

(R6′) Generalized concretion.

(P, Q) : (X, s)
(P, Q) : (X − Y, s)

Y ∩ var(P,Q) = ∅, supp(Y ) ⊆ supp(TΣ((∅)s∈S)),

where, for an S-sorted set Z, we agree that supp(Z), the support of Z, is
precisely supp(Z) = { s ∈ S | Zs 6= ∅ }.

3. The equivalence between Hall algebras and Bénabou theories.

Another approximation to the study of many-sorted algebras has been proposed
by Bénabou in [1], by making use of the finitary many-sorted algebraic theories
(categories with objects the words on a set of sorts S such that, for every word
w = (wi)i∈n, there exists a family of morphisms (pw

i )i∈n, where, for i ∈ n, pw
i is a

morphism from w to (wi), the word of length one associated to the letter wi, such
that (w, (pw

i )i∈n) is a product of the family ((wi))i∈n), that are the generalization
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to the many-sorted case of the finitary single-sorted algebraic theories of Lawvere,
see [5].

The equational presentation of the finitary many-sorted algebraic theories of
Bénabou gives rise to what we call Bénabou algebras. And the Bénabou algebras,
even having a many-sorted specification different from that of the Hall algebras, are
also models of the essential properties of the clones for the many-sorted operations.
This is so since, as we will prove below, for an arbitrary but fixed set of sorts S,
the Bénabou algebras for S are equivalent to the Hall algebras for S, i.e., there
exists an equivalence between the category Alg(HS), of Hall algebras for S, and
the category Alg(BS), of Bénabou algebras for S.

Moreover, the Bénabou algebras for S, as we will show below, are more strongly
linked to the finitary many-sorted theories algebraic theories than are the Hall
algebras, because, as we will prove afterwards, there exists an isomorphism between
the category Alg(BS) and the category BThf(S), of finitary many-sorted algebraic
theories for S.

In order to accomplish what has been announced we begin by defining the
Bénabou algebras as those that satisfy the laws of a convenient many-sorted spec-
ification.

Definition 11. Let S be a set of sorts and V BS the (S?)2-sorted set of vari-
ables (Vu,w)(u,w)∈(S?)2 where, for every (u, w) ∈ (S?)2, Vu,w = { vu,w

n | n ∈ N }.
A Bénabou algebra for S is a BS = ((S?)2, ΣBS , EBS )-algebra, where ΣBS is the
(S?)2-sorted signature defined as follows:

BS1. For the empty word λ ∈ S?, every w ∈ S? and i ∈ |w|, where |w| is the
domain of the word w, the formal operation of projection:

πw
i : λ // (w, (wi)).

BS2. For every u, w ∈ S?, the formal operation of finite tupling :

〈 〉u,w : ((u, (w0)), . . . , (u, (w|w|−1))) // (u,w).

BS3. For every u, x, w ∈ S?, the formal operation of substitution:

◦u,x,w : ((u, x), (x,w)) // (u,w);

while EBS is the sub-((S?)2)? × (S?)2-sorted set of Eq(ΣBS ), where

Eq(ΣBS ) = (TΣBS (↓w)2(u,x))(w,(u,x))∈((S?)2)?×(S?)2 ,

defined as follows:
B1. For every u, w ∈ S? and i ∈ |w|, the equation:

πw
i ◦u,w,(wi) 〈vu,(w0)

0 , . . . , v
u,(w|w|−1)

|w|−1 〉u,w = v
u,(wi)
i ,

of type (((u, (w0)), . . . , (u, (w|w|−1))), (u, (wi))).
B2. For every u, w ∈ S?, the equation:

vu,w
0 ◦u,u,w 〈πu

0 , . . . , πu
|u|−1〉u,u = vu,w

0 ,

of type (((u,w)), (u,w)).
B3. For every u, w ∈ S?, the equation:

〈πw
0 ◦u,w,w0 vu,w

0 , . . . , πw
|w|−1 ◦u,w,w|w|−1 vu,w

0 〉u,w = vu,w
0 ,

of type (((u,w)), (u,w)).
B4. For every w ∈ S?, the equation:

〈πw
0 〉w,(w0) = πw

0 ,

of type (((w, (w0))), (w, (w0))).
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B5. For every u, x, w, y ∈ S?, the equation:

vw,y
0 ◦u,w,y (vx,w

1 ◦u,x,w vu,x
2 ) = (vw,y

0 ◦x,w,y vx,w
1 ) ◦u,x,y vu,x

2 ,

of type (((w, y), (x,w), (u, x)), (u, y)),
where vu,w

n is the n-th variable of type (u,w), Q ◦u,x,w P is ◦u,x,w(P, Q), and
〈P0, . . . , P|w|−1〉u,w is 〈 〉u,w(P0, . . . , P|w|−1).

Since Alg(BS) is a variety, the forgetful functor GBS
from Alg(BS) to SetS?×S?

has a left adjoint TBS

Alg(BS)
GBS //
> SetS?×S?

TBS

oo

which assigns to an S? × S?-sorted set the corresponding free Bénabou algebra.

For every S-sorted set A, BOpS(A) = (Hom(Aw, Au))(w,u)∈S?×S? is endowed
with a structure of Bénabou algebra as stated in the following

Proposition 16. Let A be an S-sorted set and BOpS(A) the ΣBS -algebra with
underlying many-sorted set BOpS(A) and algebraic structure defined as follows

(1) For every w ∈ S? and i ∈ |w|, (πw
i )BOpS(A) = prA

w,i : Aw
// A(wi).

(2) For every u,w ∈ S?, 〈 〉BOpS(A)
u,w is defined, for every (f0, . . . , f|w|−1) in∏

i∈|w|Hom(Aw, A(wi)), as 〈 〉BOpS(A)
u,w (f0, . . . , f|w|−1) = 〈fi〉i∈|w|, where

〈fi〉i∈|w| is the unique mapping from Au to Aw such that, for every i ∈ |w|,
prA

w,i ◦ 〈fi〉i∈|w| = fi.

(3) For every u, x, w ∈ S?, ◦BOpS(A)
u,x,w is defined as the composition of mappings.

Then BOpS(A) is a Bénabou algebra, the Bénabou algebra for (S,A).

For every S-sorted signature Σ, BTerS(Σ) = (TΣ(↓w)u)(w,u)∈S?×S? , that is nat-
urally isomorphic to (Hom(↓u,TΣ(↓w)))(w,u)∈S?×S? , is endowed with a structure
of Bénabou algebra as stated in the following

Proposition 17. Let Σ be an S-sorted signature and BTerS(Σ) the ΣBS -algebra
with underlying many-sorted set BTerS(Σ) and algebraic structure that obtained, by
transport of structure, from the algebraic structure defined on the S? × S?-sorted
set (Hom(↓u, TΣ(↓w)))(w,u)∈S?×S? as follows

(1) For every w ∈ S? and i ∈ |w|, (πw
i )BTerS(Σ) is the composition of the

canonical embedding from ↓(wi) to ↓w and the canonical embedding from
↓w to TΣ(↓w).

(2) For every u,w ∈ S?, 〈 〉BTerS(Σ)
u,w is the canonical isomorphism from the

cartesian product
∏

i∈|w|Hom(↓(wi),TΣ(↓u)) to Hom(↓w, TΣ(↓u)).

(3) For every u, x, w ∈ S?, ◦BTerS(A)
u,x,w is defined as the mapping which sends a

pair P ∈ Hom(↓x, TΣ(↓u)) and Q ∈ Hom(↓w, TΣ(↓x)) to P] ◦ Q.
Then BTerS(Σ) is a Bénabou algebra, the Bénabou algebra for (S, Σ).

Next, after defining the category BThf(S), of finitary many-sorted algebraic
theories of Bénabou (defined for the first time in [1]), that generalize the finitary
single-sorted algebraic theories of Lawvere, we prove that there exists an isomor-
phism between the category BThf(S) and the category Alg(BS).

Definition 12. We denote by BThf(S) the category with objects pairs B = (B, p),
where B is a category that has as objects the words on S and p a family (pw)w∈S?

such that, for every word w ∈ S?, pw is a family (pw
i : w // (wi))i∈|w| of morphisms

in B, the projections for w, where (wi) is the word of length 1 on S whose only letter



16 JUAN CLIMENT AND JUAN SOLIVERES

is wi, such that (w, pw) is a product in B of the family of words ((wi))i∈|w|, and as
morphisms from B to B′ functors F from B to B′ such that the object mapping
of F is the identity and the morphism mapping of F preserves the projections, i.e.,
for every w ∈ S? and i ∈ |w|, F (pw,B

i ) = pw,B′
i .

Proposition 18. There exists an isomorphism from the category Alg(BS) to the
category BThf(S).

Proof. The isomorphism from Alg(BS) to BThf(S) is the functor Ba,t which to a
Bénabou algebra B assigns the Bénabou theory Ba,t(B) which has as underlying
category that given by the following data

(1) The set of objects is S? and, for u,w ∈ S?, Hom(u,w) = Bu,w,
(2) For every w ∈ S?, idw = 〈(πw

i )B | i ∈ |w|〉w,w,
(3) If P : u // x, Q : x // w, then the composition of P and Q is ◦Bu,x,w(P,Q),

and as underlying family of projections that given, for every w ∈ S?, as πw =
((πw

i )B)i∈|w|; and which to a morphism of Bénabou algebras f : B // B′ as-
signs the morphism of Bénabou theories Ba,t(f) that to P : w // u associates
fw,u(P ) : w // u.

The inverse of Ba,t is the functor Bt,a which to a Bénabou theory B = (B, p)
assigns the Bénabou algebra Bt,a(B) that has

(1) As underlying (S?)2-sorted set the family (HomB(w, u))(w,u)∈(S?)2 , and
(2) As structure of Bénabou algebra on (HomB(w, u))(w,u)∈(S?)2 that obtained

by interpreting, for every w ∈ S? and i ∈ |w|, πw
i as pw

i , for every u,w ∈ S?,
〈 〉u,w as the canonical mapping from

∏
i∈|w|HomB(u, (wi)) to HomB(u,w)

obtained by the universal property of the product for w, and, for every
u, x, w ∈ S?, ◦u,x,w as the composition in B;

and which to a morphism of Bénabou theories F : B // B′ assigns the morphism
of Bénabou algebras Bt,a(F ), that for every u, w ∈ S?, is the bi-restriction of F to
the corresponding hom-sets Hom(u, w) and Hom(u, w). ¤

Remark. The isomorphism between BThf(S) and Alg(BS) can be interpreted
as meaning, and this can be algebraically reassuring, that the category of finitary
many-sorted algebraic theories of Bénabou, a purely formal entity, has the form of a
category of models for a finitary many-sorted equational presentation, a semantical,
or substantial, entity, therefore confirming, once more, that apparently form is
substance. Moreover, the isomorphism shows that the Bénabou algebras are more
closely related to the finitary many-sorted algebraic theories of Bénabou than are
the Hall algebras.

Next we prove that the categories Alg(HS) and Alg(BS) of Hall and Bénabou
algebras, respectively, are equivalent.

Proposition 19. For every set of sorts S, the categories Alg(HS) and Alg(BS)
are equivalent.

Proof. The equivalence from Alg(HS) to Alg(BS) is the functor Fh,b which to a
Hall algebra A assigns the Bénabou algebra Fh,b(A) that has

(1) As underlying (S?)2-sorted set ((Aw)u)(w,u)∈(S?)2 where Aw = (Aw,s)s∈S

and (Aw)u =
∏

i∈|u|Aw,ui , and
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(2) As structure of Bénabou algebra on ((Aw)u)(w,u)∈(S?)2 that defined as

(πw
i )Fh,b(A) = ((πw

i )A),

〈(a0), . . . , (a|w|−1)〉Fh,b(A)
u,w = (ξA

u,w,w0
(πw

0 , a0, . . . , a|w|−1), . . . ,

ξA
u,w,w|w|−1

(πw
|w|−1, a0, . . . , a|w|−1)),

◦Fh,b(A)
u,x,w (a, b) = (ξA

u,x,w0
(b0, a0, . . . , a|x|−1), . . . ,

ξA
u,x,w|w|−1

(b|w|−1, a0, . . . , a|x|−1));

and which to a morphism f : A // B of Hall algebras assigns the morphism
Fh,b(f) = ((fw)u)(w,u)∈(S?)2 from Fh,b(A) to Fh,b(B) defined, for (a0, . . . , a|u|−1)
in (Aw)u, as

(a0, . . . , a|u|−1) 7−→ (fw,u0(a0), . . . , fw,u|u|−1(a|u|−1))).

The quasi-inverse equivalence from Alg(BS) to Alg(HS) is the functor Fb,h

which to a Bénabou algebra A assigns the Hall algebra Fb,h(A) that has
(1) As underlying S? × S-sorted set (Aw,(s))(w,s)∈S?×S , and
(2) As structure of Hall algebra on (Aw,(s))(w,s)∈S?×S that defined as

(πw
i )Fb,h(A) = (πw

i )A,

ξ
Fb,h(A)
u,w,s (a, a0, . . . , a|w|−1) = a ◦u,w,s 〈a0, . . . , a|w|−1〉u,w;

and which to a homomorphism f : A // B of Bénabou algebras assigns the bi-
restriction of f to Fb,h(A) and Fb,h(B).

Next, for a Bénabou algebra A, we prove that A and Fh,b(Fb,h(A)) are iso-
morphic. Let f : A // Fh,b(Fb,h(A)) be the S? × S?-sorted mapping defined, for
(u,w) ∈ S? × S? and a ∈ Au,w, as

a 7→ ((πw
0 )A ◦ a, . . . , (πw

|w|−1)
A ◦ a).

The definition is sound because, for a ∈ Au,w, we have that (πw
i )A◦a ∈ Fb,h(A)u,wi ,

hence ((πw
0 )A ◦ a, . . . , (πw

|w|−1)
A ◦ a) ∈ Fh,b(Fb,h(A))u,w. Thus defined f is a homo-

morphism, since we have, on the one hand, that

f((πw
i )A) = (π(wi)

0 ◦ πw
i )

= (〈π(wi)
0 〉(wi),(wi) ◦ πw

i ) (by B4)

= (〈π(wi)
0 ◦ (〈π(wi)

0 〉 ◦ πw
i )〉w,(wi)) (by B3)

= (〈π(wi)
0 ◦ πw

i 〉w,(wi)) (by B2 and B5)

= (πw
i ) (by B3)

= (πw
i )Fh,b(Fb,h(A)),

on the other hand, that

f(〈a0, . . . , a|w|−1〉Au,w) = ((πw
0 )A ◦ 〈a0, . . . , a|w|−1〉Au,w, . . . ,

(πw
|w|−1)

A ◦ 〈a0, . . . , a|w|−1〉Au,w)

= (ξFb,h(A)((πw
0 )Fb,h(A), a0, . . . , a|w|−1), . . . ,

ξFb,h(A)((πw
|w|−1)

Fb,h(A), a0, . . . , a|w|−1))

=〈(a0), . . . , (a|w|−1)〉Fh,b(Fb,h(A))
u,w

=〈f(a0), . . . , f(a|w|−1)〉Fh,b(Fb,h(A))
u,w ,
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and, lastly, that

f(b ◦A a) = ((πw
0 )A ◦ (b ◦ a), . . . , (πw

|w|−1)
A ◦ (b ◦ a))

= ((πw
0 )A ◦ b ◦ 〈a0, . . . , a|w|−1〉, . . . ,

(πw
|w|−1)

A ◦ b ◦ 〈a0, . . . , a|w|−1〉)
= (f(b0) ◦ 〈a0, . . . , a|w|−1〉, . . . ,

b(b|w|−1) ◦ 〈a0, . . . , a|w|−1〉)
= (ξFb,h(A)(f(b0), f(a0), . . . , f(a|w|−1)), . . . ,

ξFb,h(A)(f(b|w|−1), f(a0), . . . , f(a|w|−1)))

= f(b) ◦Fh,b(Fb,h(A)) f(a).

Reciprocally, let g : Fh,b(Fb,h(A)) // A be the S?×S?-sorted mapping defined,
for (u, w) ∈ S? × S? and b ∈ Fh,b(Fb,h(A)), as

b 7→ 〈b0, . . . , b|w|−1〉Au,w.

The definition is sound because, for b = (b0, . . . , b|w|−1) ∈ Fh,b(Fb,h(A)), we have
that bi ∈ Fb,h(A)u,wi , hence bi ∈ Au,(wi), therefore 〈b0, . . . , b|w|−1〉A ∈ Au,w. Thus
defined it is easy to prove that g is a homomorphism.

Now we prove that the homomorphisms f and g are such that g ◦ f = idA and
f ◦ g = idFh,b(Fb,h(A)). On the one hand, if a ∈ Au,w, then, by B3, we have that

〈(πw
0 )A ◦ a, . . . , (πw

|w|−1)
A ◦ a〉 = a,

hence g ◦ f = idA. On the other hand, if b ∈ Fh,b(Fb,h(A)), then gu,w sends b to
〈b0, . . . , b|w|−1〉Au,w, and fu,w sends 〈b0, . . . , b|w|−1〉Au,w to

((πw
0 )Fh,b(Fb,h(A)) ◦ 〈b0, . . . , b|w|−1〉Au,w, . . . , (πw

|w|−1)
Fh,b(Fb,h(A)) ◦ 〈b0, . . . , b|w|−1〉Au,w),

but this last coincides with

((πw
0 )Fh,b(A) ◦ 〈b0, . . . , b|w|−1〉Au,w, . . . , (πw

|w|−1)
Fh,b(A) ◦ 〈b0, . . . , b|w|−1〉Au,w),

thus, by the axiom B1, we have that this, in its turn, coincides with

〈b0, . . . , b|w|−1〉Au,w,

therefore fu,w ◦ gu,w(b) = b. From which we can assert that f ◦ g = idFh,b(Fb,h(A)).
Finally, for a Hall algebra A we have that A and Fb,h(Fh,b(A)) are identical,

because a ∈ Aw,s iff a ∈ Fh,b(A)w,(s) iff a ∈ Fb,hFh,b(A)w,s. ¤

Corollary 4. There exists an equivalence between the category Alg(HS) and the
category BThf(S).

In the following proposition, for a set of sorts S, we state some relations among
the equivalence between the categories Alg(HS) and Alg(BS), the adjunctions
THS a GHS and TBS a GBS , and the adjunction

∐
1×GS

a ∆1×GS
determined by

the mapping 1× GS from S? × S to S? × S? which sends a pair (w, s) in S? × S
to the pair (w, (s)) in S? × S?. From these relations we will get as an easy, but
interesting, corollary, that, for every S? × S-sorted set Σ, TBS

(
∐

1×GS
Σ), the free

Bénabou algebra on
∐

1×GS
Σ, is isomorphic to BTerS(Σ).
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Proposition 20. Let S be a set of sorts. Then for the diagram

SetS?×S Alg(HS)

SetS?×S? Alg(BS)

oo
GHS

>
THS

//OO

∆1×GSa
∐

1×GS

²²

OO

Fb,h≡Fh,b

²²oo
GBS

>
TBS

//

we have that ∆1×GS
◦GBS

= GHS
◦ Fb,h and TBS

◦∐
1×GS

∼= Fh,b ◦THS .

Proof. The equality ∆1×GS
◦GBS

= GHS
◦ Fb,h follows from the definitions of the

functors involved. Then, being TBS
◦ ∐

1×GS
and Fh,b ◦ THS

left adjoints to the
same functor, we can assert that TBS

◦∐
1×GS

∼= Fh,b ◦THS
. ¤

Corollary 5. Let Σ be an S-sorted signature. Then the free Bénabou algebra
TBS (

∐
1×GS

Σ) on
∐

1×GS
Σ is isomorphic to the Bénabou algebra BTerS(Σ) for

(S, Σ).

Proof. It follows after BTerS(Σ) = Fh,b(HTerS(Σ)). ¤

If we agree that EqB(Σ) denotes BTerS(Σ)2, then the congruence generated in
BTerS(Σ) by a subfamily E of EqB(Σ) can be characterized as follows.

Proposition 21. Let E be a sub-sorted set of EqB(Σ). Then CgBTerS(Σ)(E) is
the smallest subfamily E of BTerS(Σ) that contains E and is such that, for every
u,w, x ∈ S? satisfies the following conditions:

(1) Reflexivity. For every P ∈ BTerS(Σ)w,u, (P,P) ∈ Ew,u.
(2) Symmetry. For every P, Q ∈ BTerS(Σ)w,u, if (P,Q) ∈ Ew,u, then (Q,P) ∈

Ew,u.
(3) Transitivity. For every P, Q, R ∈ BTerS(Σ)w,u, if (P,Q), (Q,R) ∈ Ew,u,

then (P,R) ∈ Ew,s.
(4) Product compatibility. For every P, Q ∈ BTerS(Σ)u,w, if, for every i ∈

|w|, (Pi, Qi) ∈ Eu,(wi), then (〈P0, . . . , P|w|−1〉, 〈Q0, . . . , Q|w|−1〉) ∈ Eu,w.
(5) Substitutivity. For every P, Q ∈ BTerS(Σ)u,x and M,N ∈ BTerS(Σ)x,w,

if (P,Q) ∈ Eu,x and (M,N ) ∈ Ex,w, then it happens that (M◦P,N ◦Q) =
(P] ◦M,Q] ◦ N ) ∈ Eu,w.

Next we define two pairs of order preserving mappings, in opposite directions,
between the ordered sets Sub(EqH(Σ)) and Sub(EqB(Σ)) that will allow us to
determine the exact relation that there exists between the category Sub(EqH(Σ))
and the category Sub(EqB(Σ)) in the category Adj of categories and adjunctions.

Proposition 22. Let Σ be an S-sorted signature. Then the mappings H, D from
Sub(EqB(Σ)) into Sub(EqH(Σ)) defined, for every sub-sorted set E of EqB(Σ), re-
spectively, as

H(E) = ({(P, Q) ∈ EqH(Σ)w,s | (P,Q) ∈ Ew,(s)})(w,s)∈S?×S ,

D(E) =
({

(P, Q) ∈ EqH(Σ)w,s

∣∣∣∣
∃(R,S) ∈ Ew,u, ∃i ∈ u−1[s],

(P, Q) = (Ri, Si)

})

(w,s)∈S?×S

,
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and the mappings I, B from Sub(EqH(Σ)) into Sub(EqB(Σ)) defined, for every
sub-sorted set E ′ of EqH(Σ), respectively, as

I(E ′) = ({ (P, Q) ∈ EqB(Σ)w,u | ∃s ∈ S (u = (s) & (P, Q) ∈ E ′w,s) })(w,u)∈S?×S? ,

B(E ′) = ({ (P,Q) ∈ EqB(Σ)w,u | ∀i ∈ |u| ((Pi, Qi) ∈ E ′w,ui
) })(w,u)∈S?×S? ,

are order preserving. Moreover, H ◦I = D◦I = H ◦B = D◦B = idSub(EqH(Σ)) and,
for every E ⊆ EqH(Σ) and E ′ ⊆ EqB(Σ), we have that D(E) ⊆ E ′ iff E ⊆ B(E ′) and
I(E ′) ⊆ E iff E ′ ⊆ H(E), hence D a B and I a H. Finally, because the composite
adjunction D ◦I a H ◦B is the identity adjunction, we conclude that Sub(EqH(Σ))
is a retract of Sub(EqB(Σ)) in the category Adj of categories and adjunctions.

After this we prove, for an S-sorted signature Σ, that there is an isomorphism
between the lattices Cgr(HTerS(Σ)) and Cgr(BTerS(Σ)).

Proposition 23. Let Σ be an S-sorted signature. Then the congruence lattices
Cgr(HTerS(Σ)) and Cgr(BTerS(Σ)) are isomorphic.

Proof. If E is a congruence on HTerS(Σ), then we have that CgBTerS(Σ)(B(E)) =
B(CgHTerS(Σ)(E)) is included in B(E) and B(E) ∈ Cgr(BTerS(Σ)).

Reciprocally, if E is a congruence on BTerS(Σ), then CgHTerS(Σ)(H(E)) is in-
cluded in H(CgBTerS(Σ)(E)), which in its turn is included in H(E), and H(E) is a
congruence on HTerS(Σ). But, because H ◦ B = idSub(EqH(Σ)), we only have to
verify that, for every congruence E on BTerS(Σ), B(H(E)) = E .

If (P,Q) ∈ B(H(E))u,w, then, for every i ∈ |w|, (Pi, Qi) ∈ H(E)u,wi , hence
(Pi, Qi) ∈ Eu,(wi) and (P,Q) ∈ Eu,w, thus B(H(E)) ⊆ E .

If (P,Q) ∈ Eu,w, then, for every i ∈ |w|, (Pi, Qi) ∈ Eu,(wi), hence (Pi, Qi) ∈
H(E)u,wi and (P,Q) ∈ B(H(E))u,w, thus E ⊆ B(H(E)). ¤

From this it follows immediately the following

Corollary 6. Let Σ be an S-sorted signature. Then the algebraic congruence lattice
Cgr(BTerS(Σ)) is isomorphic to the algebraic lattice of fixed points of CnΣ, i.e.,
the algebraic lattice of the finitary equational theories for S is isomorphic to the
algebraic lattice of the congruences on the Bénabou algebra BTerB(Σ).

References

[1] J. Bénabou, Structures algebriques dans les categories, Cahiers de Topologie et Géometrie
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