Analysis of WISC-R subtests across different child brain diseases

Bernabeu, J. 1,3; Cañete, A. 1; Fournier, C 2; Suarez, J.M 3

- ¹ Pediatric Oncology Unit. La Fe Hospital. Valencia, Spain;
- ² Psychiatry and Psychology Unit. Niño Jesus Hospital. Madrid, Spain.
- ³ Research Methods and Diagnostic in Education. Universitat de València

Wechsier (D scales have been routinely used as standard measure for evaluation of neurocognitive functions in different diseases. Being able to predict the nature and depth of damage by analyzing the subtests results could give the professionals tools to evaluate and advise patients and families.

To find out differences among clinical variables in order to analyze the implication of brain structures in cognitive functioning in different types of diseases: neurological, oncological and learning difficulties. Besides that, we tried to find out the relationship among different clinical variables and damage location (posterior or anterior), and the effect of different treatments (surgery, chemotherapy, radiotherapy, megatherapy) in brain and leukemia

PATIENTS AND METHODS

Patients diagnosed and treated in our Units were evaluated. Wechsler scales were applied according to age: WPPSI, WISC-R, WAIS-III.

Patients diagnosed and treated in our Units were evaluated. Werchiser Scales were applied according to age: WPFS, WAISHIN, Although patients were initially divided into 5 disease groups (leukemias, brain tumors, epilepsy, traumatisms, degenerative disorders and learning difficulties) only brain tumors (benign and malignant) and leukemias were included in this analysis. The other groups were too heterogeneous, and therefore did not show consistent results as a group. Clinical variables were disease group, gender, neurofibromatosis, location, imaging sequelae, hydrocephalus, type of treatment, age at diagnosis and evaluation, and time between end of treatment and evaluation date.

Discriminate analysis was performed using the Wechsler scale subtest and Verbal and Performance IQ (as independent variables) to obtain a differential multivariate profile between groups (both disease and clinical variables).

The complementary subtests digits and mazes were not used, as these were patients without these score. Statistical analysis was carried out by using SPSS package. Discriminate analysis.

Variable	- CNS maligi - CNS Benigi - Leukemia		-Supratentorial - Infratentorial - Brainstem - Others			Chemotherapy Yes/no	- Cranial - Local - No
Group	CNS malign tumor	Leukemia	Infratentorial	Oncological	C-RT yes	Chemotherapy	Cranial RT
Information							
Similarities							
Arithmetic	*	*		**		**	
Vocabulary		***		章章	**	***	
Comprehension							
Picture completion							**
Picture arrangement							
Block design		*					
Object assembly	***			***	**	***	**
Coding	*			*	**		**
Verbal IQ				**	**		
Performance IQ			**		**		

ONCOLOGICAL

The results offer a function that allows us to identify oncological and non-oncological patients. The former shows lower scores in verbal components (arithmetic and vocabulary) and performance components (object assembly and coding). These data connect the findings of leukemias (major verbal component) and malignant CNS tumors (major performance component)

Classification res	ults			Functions at the	group centrols
ON_NE_DE	% Predicted	d group	Total		Function
		Benign		ON_NE_DE	
	Oncological	CNS		Oncological	- 436
Oncological	74.5	25.5	100.0	Benian CNS	794
Benign CNS		67.9	100.0	Denign One	
Non grouped	50.0	50.0	100.0	Non typified canoni functions evaluated	
72.2% of the origin	al cases correctly	dassified.		runctions evaluated	at the group m

CRANIAL RT YES/NO

Cranial RT as treatment employed for leukemias as much as for malignant tumors, affects both verbal and performance

components.						
Classification result	s			Functions at th	e group centre	oids
Cranial RT	% Predic	ted group	Total		Function	
	Yes	No		Cranial RT		
Yes		26.1	100.0	Yes	985	
No	16.7		100.0		.539	
Man assumed	20.5	04.5	400.0			

	Function
Information	998
Similarities	
Arithmetic	.301
Vocabulary	.550
Comprehension	224
Pic. completion	.351
Pic. arrangement	539
Block design	513
Object assembly	.748
Coding	806

CHEMOTHERAPY

CT affects verbal (vocabulary and arithmetic) and performance (object assembly) components, although the principal deterioration is in linguistic

Chemotherapy Yes / No		% Predicted group		functions at the g	roup centroids
	Yes	No		Chemotherapy	Function
Yes		17.6	100.0	Yes / No	
No	22.9		100.0	Yes	79
Non grouped	44.4	55.6	100.0	No	

	Function
rmation	-1.105
nilarities	442
hmetic	.823
abulary	1.092
mprehension	041
. completion	.213
arrangement	515
ck design	-1.375
ect assembly	1.516
ding	.050
	ormation illarities hmetic cabulary mprehension completion arrangement ck design lect assembly ding

Classification results								
	% Predicte	d group		Total				Informa
	Malignant	Benign			Functions at the group	centroids		Similar
	CNS tumors	CNS tumors	Leuke mia			Functi	on	Aritmet
Malignant CNS tumors	66.7	19.4	13.9	100.0	VAR00003			Vocabu
Benign CNS tumors	19.2		23.1	100.0	Malignant CNS	672	.139	Compr
Leukemia	22.2	.0	77.8	100.0	Benign CNS	.904		Pic. co
Non grouped	28.6	57.1	14.3	100.0	Leukemia	.076	-1.056	Pic. arr
64.8% of the original cases co	rrectly classifie				Non typified canonical of evaluated at the group		unctions	Block o

TYPE OF RT

Another analysis differentiating cranial RT, local and non-RT groups was performed. In previous works no

Another analysis differentiating cranial RT, local and non-RT groups was performed. In previous works no difference between local RT and non-RT was found in IQ. In the discriminant analysis a clear separation of these groups is found. Patients with cranial RT have both verbal and performance difficulties. However, in the discriminant analysis with the subtests, only performance (picture completion, object assembly and coding) are relevant, the vocabulary subtest then disappearing. The explanation for this result could show the RT effect on white matter. Processes associated with the right hemisphere are more dependent on white matter than the left ones. (these are more encapsulated) Likewise a white matter injury affects general processes such as processing speed and such processes are especially (dependent) relevant on WISC-R perceptive-performance tasks.

LOCATION

infratentorial location affects PIQ exclusively; we have not found a significative discriminant function from the

The first variable in the Table (Diagnoses) shows the characteristics of the malignant cns tumors and leukemia subgroups.

In leukemias, the low points in verbal subtests are in concordance with published data about a major.

weakness in language procedures in this disease, a selective deterioration of linguistic processes in children treated for this pathology.

la mailgnant umors we observe lower scores in arithmetic and coding, both have an attentional component. We also observe lower scores in object assembly, which needs good visual memory support. These facts are consistent with those reported in the literature (weaker attention and memory); these processes are more sensitive to deterioration in children with malignant CNS tumors.

The most common infratentorial location is cerebellum, which produces motor and sensorial deficits affecting PIQ more than in other locations.

% Predicted	group	Total
Infratentorial/ Cerebellum	Others	
	10.0	100.0
	66.7	100.0
45.5	22.7	100.0
	Infratentorial/ Cerebellum 52.5	Cerebellum Others 52.5 10.0 66.7

	i diles	UII		
tion			Standarized coefficie	
atentorial	.085	.057	canonical discrimina	an
entorial / bellum	246	054		1
stem	.300	.124	Verbal IQ	
	1.648	193	Performance IQ	

.054		Func	tion
.054			
.124	Verbal IQ	.169	1.413

	Cranial	Local	No				
anial	64.7	23.5		100.0	Type of RT		
cal			22.2	100.0	Cranial	-1.216	006
	20.0	26.7		100.0	Local	.509	.736

	Function	Function			
Type of RT					
Cranial	-1.216	006			
Local	.509	.736			
No	.537	217			

	Function	
Information	548	81
Similarities	.132	1.00
Arithmetic	.213	72
Vocabulary	048	.39
Comprehension	.028	36
Pic. completion	.505	.73
Pic. arrangement	272	32
Block design	483	.68
Object assembly	.525	51
Coding		.11

CONCLUSSIONS

These results are an approach of some characteristics of subjects with CNS tumors and leukemias in intelligence Wechsler scales. There are difficulties to analyze the effects in an independent way, because cases share different variables and it is difficult to separate the effects of only one.

For a more complex multivariate approach it is necessary to have better homogeneous groups, larger samples to determine the effects of protocols, drugs, image sequelae, location, etc.

Data point to different types of deterioration in diseases affecting cognitive functioning and posterior quality of life.

We wish to emphasize the importance of exploring more accurately the treatment and disease effects with complete follow-up assessments in order to clearly diagnose the difficulties to help in patient rehabilitation