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ABSTRACT

Normalization of signals coming from linear sensors is an ubiquitous mechanism of neural adaptation.1 Local
interaction between sensors tuned to a particular feature at certain spatial position and neighbor sensors explains
a wide range of psychophysical facts including (1) masking of spatial patterns,2 (2) non-linearities of motion
sensors,3 (3) adaptation of color perception,4 (4) brightness and chromatic induction,5,6 and (5) image quality
assessment.7

Although the above models have formal and qualitative similarities, it does not necessarily mean that the
mechanisms involved are pursuing the same statistical goal. For instance, in the case of chromatic mechanisms
(disregarding spatial information), different parameters in the normalization give rise to optimal discrimination
or adaptation,8 and different non-linearities may give rise to error minimization or component independence.9

In the case of spatial sensors (disregarding color information), a number of studies have pointed out the benefits
of masking in statistical independence terms.10–13 However, such statistical analysis has not been performed for
spatio-chromatic induction models where chromatic perception depends on spatial configuration.

In this work we investigate whether successful spatio-chromatic induction models,6 increase component in-
dependence similarly as previously reported for masking models.12 Mutual information analysis suggests that
seeking an efficient chromatic representation may explain the prevalence of induction effects in spatially simple
images.
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1. MODELS: FORMAL SIMILARITY

The particular Induction5,6 and Masking7,12 models considered here have the same linear+nonlinear scheme:

x
T−→ w

R−→ r, (1)

where the input image, x, is first decomposed into achromatic and chromatically opponent channels, and each
one is analyzed by a set of wavelet-like linear sensors, w = Tx, that provide a scale and orientation decom-
position of the image.2,14 Then, the second nonlinear stage of the models, R, includes frequency selectivity
and divisive interaction between spatially neighbor responses. Despite this general similarity, it is important to
note that the particular parameters (e.g. frequency weights, excitation and inhibition exponents, and interaction
neighborhoods) were obtained to fit different psychophysical datasets (e.g. induction and subjective distortion
measures).
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Figure 1. Parameters in the Divisive Normalization Masking model. The panels show S, the linear weights for the different
scales, orientations and chromatic channels (left), the saturation constants, β (center), and an example of the interaction
neighborhood in H (right). The best fit for the excitation and inhibition exponent was γ = 1.7.

1.1 Divisive Normalization Masking Model

In this particular implementation of the above ideas,7,12 the rows of the matrix T contain a simulation of the
linear receptive fields of V1 neurons using an orthogonal 4-scales QMF wavelet transform.15

The second step consists of two main operations. First, a frequency dependent linear gain is applied according
to the achromatic and chromatic Contrast Sensitivity Functions (CSFs),16,17 through the application of a diagonal
matrix S on the wavelet coefficients. Then, the weighted response of these sensors is non-linearly transformed
according to the Divisive Normalization, RDN ,2,18 in which they are rectified and normalized by a pooling of
the responses of the neighboring sensors in space and orientation:

rDN
i = R(w)DN

i =

(
|Si · wi|γ−1

βγ
i +

∑n
k=1 Hik|Sk · wk|γ

)
· wi (2)

where the subindex i refers to the scale, orientation and spatial position; βi is a saturation constant; and Hik is
a kernel matrix that controls how the responses of neighboring linear sensors, k, affect the non-linear response
of sensor i.2

The parameters of this model (Fig. 1) were fitted in order to match observers opinion in a natural images
quality assessment experiment (see Laparra et al.7 for details).

1.2 The Chromatic Induction Wavelet Model

This model5,6 reproduces the brightness and color assimilation and contrast effects by applying a weighting
function (referred to as Extended-CSF, α) to each scale, s, and orientation, o, of the achromatic and chromatic
wavelet channels:

rIND
s,o = R(w)IND

s,o = αs,o(ρ) · ws,o (3)

It is important to note that the Extended-CSF, αs,o(ρ), is not a traditional CSF-like linear weighting function,
since its effects depend on ρ, which is the ratio of the energy of each wavelet coefficient (center) with regard to
the energies of its spatial neighbors (surround), and hence it is image dependent.

From these internal responses, rIND
s,o , the authors propose to simulate the perceived image by inverting the

wavelet transform:
xIND
perceived = T−1rIND (4)

In the implementation of the model, T, is computed using a redundant biorthogonal wavelet transform.



Figure 2. Illustration of the (achromatic) Extended-CSF, αν(ρ), used in the Chromatic Induction model.

It is assumed that αs,o(ρ) (figure 2) depends on the center-surround contrast energy ratio ρ and the spatial
frequency ν of the scale s (more details in Otazu et al.6), specifically:

α(ν, ρ) =
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In this case the parameters were fitted to match the behavior of human observers in induction experiments. The
experiment was performed by using classical induction stimuli (see Fig. 3 -left- for representative examples).
The parameters obtained where ν0 = 4 cpd for the luminance channel and ν0 = 2 cpd for the red-green and
yellow-blue chromatic channels. Both σ2 and σ3 were set to 1.25 and 2, respectively. To simulate the band-pass
profile of the intensity channel CSF and the low-pass profile of chromatic channels CSFs, they set σ1 = 1.25 for
the luminance channel, and σ1 = 2 for both the red-green and yellow-blue channels.

Equations 2 and 3 show the similarity between the models: the term in parenthesis in Eq. 2 could be
interpreted as an Extended-CSF. Alternatively, the quotient between center-surround contrast ratios in Eq. 5
could be interpreted as a divisive normalization.

2. METHODS

In order to assess the coding efficiency of certain representation, one has to empirically assess the reduction in
multi-information.19 When the computation of the Jacobian of the transform is not straightforward, and the
dimensionality is not preserved, reductions in mutual information between pairs of coefficients20 is also a sensible
approach.12

In this case, for a large set of images, we computed the responses in the two stages of the models: (1)
after the wavelet transform, and (2) after the non-linear interaction stage. Then, we computed the statistical
dependence mutual information (MI) between pairs of neighbor responses at each stage. A mechanism following
a redundancy reduction principle should reduce the mutual information along the stages of the model.

We estimated the mutual information using 2D histograms since it has been shown that this straightforward
approach is accurate enough for this class of heavy tailed signals.12 Since MI is invariant under point-wise
transforms,20 our MI estimator first equalizes the marginal PDF of each coefficient to obtain uniform densities
in the range [0, 1]. Then, the joint entropy is computed by using the 2D histogram and the Miller-Madow
correction.21 In our implementation, the total number of bins in the 2D histogram was set to be the square root



Figure 3. Representative images for two classes of stimuli. First and second: colorimetrically calibrated images where
induction effects are substantial, assimilation effect in left side and contrast effect in right side. Third and fourth: examples
of colorimetrically calibrated natural images.

of the number of available samples. In our case, the marginal entropies are zero due to the uniformization step.
Therefore the MI is equal to minus the joint entropy.

We made this analysis for two classes of visual stimuli:

• Colorimetrically calibrated images where induction effects are substantial -we used the stimuli reported in
Otazu et al.6-. These consisted of a set of two circularly symmetric patterns presented side by side and
separated 7.6 deg of visual angle from the observer’s viepoint on a dark background. We considered both
assimilation and contrast stimuli. The left side stimulus consisted of a series of concentric rings alternating
between two chromaticities with an extra ring of similar width. The right side was the reference stimulus
(see Fig. 3, left, for representative examples). The spatial frequencies used in the assimilation and contrast
stimuli were 0.81, 1.77, and 2.74 cpd, respectively. The stimulus rings were rendered using four sets of
colored patterns. All the considered spatiochromatic configurations lead to 24 images to extract samples
from. A total of 2 · 105 sample pairs were used in the MI computation.

• Colorimetrically calibrated natural images -from the Barcelona database22-. The database consists of 419
natural images where each colour plane corresponds to the human LMS cone activations. The images were
chosen to represent five different visual environments and were taken under natural illumination at different
times of the day. At the bottom-left corner of each picture there was a matte grey ball of approximately
constant spectral reflectance and nearly Lambertian reflective properties, which allows to compute the
illuminant (see Fig. 3, right, for representative examples). We did not consider the area corresponding to
the grey ball in the MI computations. MI estimations were done using 3.2 · 105 samples.

3. RESULTS

This section shows the mutual information results for coefficients of the third scale after the wavelet transform and
after the non-linear interaction, for the Chromatic Induction Model6 (Figure 4, top panel) and for the Masking
Model7,12 (Figure 4, bottom panel). For useful reference, results for the achromatic channel and natural images
of the Masking Model are consistent with the MI values previously reported on a different database.7,12

The different scale in the mutual information values in the Masking and the Induction models comes from the
use of different wavelet transforms. Nevertheless, this is just a global scaling factor, while the relevant issue here
is how the MI decreases or increases with the application of the nonlinear transform in each case. In the case
of induction stimuli, the MI values are substantially larger than for natural images. This is not surprising since
these images have a quite simple spatial structure leading to highly redundant values in the wavelet domain.
Therefore, the MI values are large even though wavelet transforms are known to be efficient for natural images.

Results for the Chromatic Induction model show two distinctive trends: (1) for spatially simple images (in
which induction is relevant), the induction nonlinearity substantially reduces mutual information (dashed versus
solid lines); however (2) for natural stimuli, the induction nonlinearity gives rise to no reduction of redundancy
with regard to the previous wavelet stage.

In the Masking model the situation reverses: while for natural images the efficiency gain is substantial in the
achromatic case (as previously reported), and no clear gain is obtained in the chromatic channels; for spatially
simple images the efficiency of the chromatic channels clearly decreases after the nonlinear stage.
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Figure 4. Assessment of coding efficiency for the Chromatic Induction Model (top row) and for the Masking Model (bottom
row), for induction images (left column) and natural images (right column). Plots show the Mutual Information between
pairs of coefficients (at different spatial distance ∆x) of the third wavelet scale after the wavelet transform (solid lines)
and after the non-linear interaction (dashed lines). Red, Blue and Black lines stand for the behavior at the Red-Green,
Yellow-blue and Achromatic channels of the models.

4. DISCUSSION

Given the formal similarity of the considered brightness and chromatic induction model5,6 with divisive normal-
ization masking models2,7, 12 one could expect that chromatic induction also give rise to reductions in mutual
information. However, this is not the case for natural images with the current parameters of the induction model.
Interestingly, induction mechanisms seem to provide more efficient image representations for images in which
induction effects are substantial. These facts can be interpreted in alternative ways:

• Efficient coding skeptics. The organization of mechanisms responsible for induction is not guided by a
redundancy reduction principle since for the images that really matter (natural stimuli) they lead to no
coding gain. In natural environments the advantage of induction (if any) is not in coding but somewhere
else (e.g. increasing color contrast for better discrimination).

• Efficient coding lovers. Masking and Induction models differ mainly in the values of their parameters
(for example, the saturation non-linearity is smoother in the masking case). One could think that the
same spatio-chromatic sensors change depending on the environment to attain the same efficiency goal.
When dealing with complex images the sensors behave according to masking-like nonlinearities since they
give rise to better coding efficiency for those images. However, when facing spatially simple images their
nonlinearity changes to the one used in the induction model to obtain better coding performance. Induction



would be just a by product of this change of behavior. This would explain why induction is more apparent
in spatially simple images.

Further work may clarify which is the correct interpretation. In this regard we will explore modifications
of the model parameters (both in the masking and the induction models) to see whether the reproduction of
chromatic induction psychophysics is compatible with coding gains in natural environments.
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