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This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture
the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by
modeling the directions of maximal variance by means of curves, instead of straight lines. Contrarily to previous
approaches, PPA reduces to performing simple univariate regressions, which makes it computationally feasible and
robust. Moreover, PPA shows a number of interesting analytical properties. First, PPA is a volume-preserving
map, which in turn guarantees the existence of the inverse. Second, such an inverse can be obtained in closed
form. Invertibility is an important advantage over other learning methods, because it permits to understand the
identified features in the input domain where the data has physical meaning. Moreover, it allows to evaluate the
performance of dimensionality reduction in sensible (input-domain) units. Volume preservation also allows an easy
computation of information theoretic quantities, such as the reduction in multi-information after the transform. Third,
the analytical nature of PPA leads to a clear geometrical interpretation of the manifold: it allows the computation
of Frenet-Serret frames (local features) and of generalized curvatures at any point of the space. And fourth, the
analytical Jacobian allows the computation of the metric induced by the data, thus generalizing the Mahalanobis
distance. These properties are demonstrated theoretically and illustrated experimentally. The performance of PPA is
evaluated in dimensionality and redundancy reduction, in both synthetic and real datasets from the UCI repository.

1 Introduction

Principal Component Analysis (PCA), also known as the
Karhunen-Loève transform or the Hotelling transform, is
a well-known method in machine learning, signal pro-
cessing and statistics [24]. PCA essentially builds an
orthogonal transform to convert a set of observations of
possibly correlated variables into a set of linearly uncor-
related variables. PCA has been used for manifold de-
scription and dimensionality reduction in a wide range of
applications because of its simplicity, energy compaction,
intuitive interpretation, and invertibility. Nevertheless,
PCA is hampered by data exhibiting nonlinear relations.
In this paper, we present a nonlinear generalization of
PCA that, unlike other alternatives, keeps all the above
mentioned appealing properties of PCA.

1.1 Desirable properties in manifold learning
In recent years, several dimensionality reduction meth-
ods have been proposed to deal with manifolds that can
not be linearly described (see [32] for a comprehensive
review): the approaches proposed range from local meth-
ods [50, 45, 52, 49, 4], to kernel-based and spectral de-

compositions [44, 46, 53], neural networks [26, 20, 15],
and projection pursuit methods [22, 27]. However, de-
spite the advantages of nonlinear methods, classical PCA
still remains the most widely used dimensionality reduc-
tion technique in real applications. This is because PCA:
1) is easy to apply, 2) involves solving a convex prob-
lem, for which efficient solvers exist, 3) identifies fea-
tures which are easily interpretable in terms of original
variables, and 4) has a straightforward inverse and out-
of-sample extension.

The above properties, which are the base of the suc-
cess of PCA, are not always present in the new nonlin-
ear dimensionality reduction methods due either to com-
plex formulations, to the introduction of a number of non-
intuitive free parameters to be tuned, to their high compu-
tational cost, to their non-invertibility or, in some cases,
to strong assumptions about the manifold. More plausi-
bly, the limited adoption of nonlinear methods in daily
practice has to do with the lack of feature and model in-
terpretability. In this regard, the usefulness of data de-
scription methods is tied to the following properties:

1. Invertibility of the transform. It allows both charac-
terizing the transformed domain and evaluating the
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quality of the transform. On the one hand, invert-
ing the data back to the input domain is important
to understand the features in physically meaning-
ful units, while analyzing the results in the trans-
formed domain is typically more complicated (if
not impossible). On the other hand, invertible
transforms like PCA allow the assessment of the
dimensionality reduction errors as simple recon-
struction distortion.

2. Geometrical interpretation of the manifold. Un-
derstanding the system that generated the data is
the ultimate goal of manifold learning. Inverting
the transform is just one step towards knowledge
extraction. Geometrical interpretation and analyti-
cal characterization of the manifolds give us further
insight into the problem. Ideally, one would like
to compute geometric properties from the learned
model, such as the curvature and torsion of the
manifold, or the metric induced by the data. This
geometrical characterization allows to understand
the latent parameters governing the system.

It is worth noting that both properties are scarcely
achieved in the manifold learning literature. For in-
stance, spectral methods do not generally yield intuitive
mappings between the original and the intrinsic curvilin-
ear coordinates of the low dimensional manifold. Even
though a metric can be derived from particular kernel
functions [6], the interpretation of the transformation is
hidden behind an implicit mapping function, and solving
the pre-image problem is generally not straightforward
[21]. In such cases, the application of (indirect) evalua-
tion techniques has become a relevant issue for methods
leading to non-invertible transforms [51]. One could ar-
gue that direct and inverse transforms can be alternatively
derived from mixtures of local models [4]. However, the
effect of these local alignment operations in the metric is
not trivial. In the same way, explicit geometric descrip-
tions of the manifold, such as the computation of curva-
tures, is not obvious from other invertible transforms, as
autoencoders or deep networks [26, 20, 15, 27].

In this paper, we introduce the Principal Polynomial
Analysis (PPA), which is a nonlinear generalization of
PCA that still shares all its important properties. PPA is
computationally easy as it only relies on matrix inversion
and multiplication, and it is robust since it reduces to a
series of marginal (univariate) regressions. PPA imple-
ments a volume-preserving and invertible map. Not only
the features are easy to interpret in the input space but,
additionally, the analytical nature of PPA allows to com-
pute classical geometrical descriptors such as curvature,
torsion and the induced metric at any point of the mani-
fold. Applying the learned transform to new samples is
also as straightforward as in PCA. Preliminary versions
of PPA were presented in [31], and applied to remote
sensing in [30]. However, those conference papers did
not study the analytical properties of PPA (volume preser-
vation, invertibility, and model geometry), nor compared

with approaches that follow similar logic like NL-PCA.

1.2 Illustration of Principal Polynomial Analysis

The proposed PPA method can be motivated by consid-
ering the conditional mean of the data. In essence, PCA
is optimal for dimensionality reduction in a mean square
error (MSE) sense if and only if the conditional mean in
each principal component is constant along the consid-
ered dimension. Hereafter, we will refer to this as the
conditional mean independence assumption. Unfortu-
nately, this symmetry requirement does not apply in gen-
eral, as many datasets live in non-Gaussian and/or curved
manifolds. See for instance the data in Fig. 1 (left): the
dimensions have a nonlinear relation even after PCA ro-
tation (center). In this situation, the mean of the second
principal component given the first principal component
can be easily expressed with a parabolic function (red
line). For data manifolds lacking the required symme-
try, nonlinear modifications of PCA should remove the
residual nonlinear dependence.

Following the previous intuition, PPA aims to remove
the condition mean. Left panel in Fig. 1 shows the input
2d data distribution, where we highlight a point of inter-
est, x. PPA is a sequential algorithm (as PCA) that trans-
forms one dimension at each step in the sequence. The
procedure in each step consists of two operations. The
first operation looks for the best vector for data projec-
tion. Even though different possibilities will be consid-
ered later (Section 2.3), a convenient choice for this oper-
ation is the leading eigenvector of PCA. Figure 1[middle]
shows the data after this projection: although the linear
dependencies have been removed, there are still relations
between the first and the second data dimensions. The
second operation consists in subtracting the conditional
mean to every sample. The conditional mean is estimated
by fitting a curve predicting the residual using the projec-
tions estimated by the first operation.

This step, composed of the two operations above, de-
scribes the d-dimensional data along one curvilinear di-
mension through (1) a projection score onto certain lead-
ing vector, and (2) a curve depending on the projection
score. PPA differs from PCA in this second operation be-
cause it bends the straight line into a curve, thus captur-
ing part of the nonlinear relations between the leading di-
rection and the orthogonal subspace. Since this example
is two-dimensional, PPA ends after one step. However,
when there are more dimensions, the two-operations are
repeated for the remaining dimensions. At the first step,
the (d− 1)-dimensional information still to be described
is the departure from the curve in the subspace orthogonal
to the leading vector. This data of reduced dimension is
the input for the next step in the sequence. The last PPA
dimension will be the 1d residual which, in this example,
corresponds to the residuals in the second dimension.



Principal Polynomial Analysis 3

Figure 1: The two operations in each stage of PPA: projection and subtraction of the polynomial prediction. Left: input
mean-centered data. An illustrative sample, x, is highlighted. This set is not suitable for PCA because it does not fulfil
the conditional mean independence assumption: the location of the conditional mean in the subspace orthogonal to PC1
strongly depends on PC1. Center: PCA projection (rotation) and estimation of the conditional mean by a polynomial of
degree 2 (red curve) fitted to minimize the residual |x − m̂| ∀x. The black square (α) is the projection of x onto PC1.
The diamond (in red), m̂, in the curve represents the estimated conditional mean of x predicted from the projection α. The
advantage of the polynomial with regard to the straight line is that it accounts for what can be nonlinearly predicted. Right:
the data after removing the estimated conditional mean (PPA solution). See the on-line paper for color figures.

1.3 Outline of the paper

The paper is organized as follows. Section 2 formalizes
the forward PPA transform and analytically proves that
PPA generalizes PCA and improves its performance in
dimensionality reduction. The objective function of PPA,
its restrictions, and its computational cost are then ana-
lyzed. Section 3 studies the main properties of PPA: Ja-
cobian, volume preservation, invertibility, and metric. In
Section 4 we discuss the differences between PPA and re-
lated work. In Section 5, we check the generalization of
Mahalanobis distance using the PPA metric, and its abil-
ity to characterize the manifold geometry (curvature and
torsion). Finally, we report results on standard databases
for dimensionality and redundancy reduction. Section 6
concludes the paper. Additionally, the appendix details a
step-by-step example of the forward transform.

2 Principal Polynomial Analysis

In this section, we start by reviewing the PCA formu-
lation as a deflationary (or sequential) method that ad-
dresses one dimension at a time. This is convenient since
it allows to introduce PPA as the generalization that uses
polynomials instead of straight lines in the sequence.

2.1 The baseline: Principal Component Analysis

Given a d-dimensional centered random variable x, the
PCA transform, R, maps data from the input domain,
X ⊆ Rd×1, to a response domain, R ⊆ Rd×1. PCA
can be actually seen as a sequential mapping (or a set of
concatenated d − 1 transforms). Each transform in the
sequence explains a single dimension of the input data by

computing a single component of the response:

 x0

 R1−→


α1

x1

 R2−→


α1

α2

x2

 · · · Rd−1−→


α1

α2

...
αd−1

xd−1

 ,

(1)
and hence the PCA transformation can be expressed as:
R = Rd−1 ◦Rd−2 ◦ · · · ◦R2 ◦R1. Here vectors, xp, and
transforms, Rp, refer to the p-th step of the sequence.
Each of these elementary transforms, Rp, acts only on
part of the dimensions of the output of the previous trans-
form: the residual, xp−1. Subscript p = 0 refers to the
input data so x0 = x. This sequential (deflationary) in-
terpretation, which is also applicable to PPA as we will
see later, is convenient to derive most of the properties of
PPA in Section 3.

In PCA, each transform Rp: (1) αp, which is the pro-
jection of the data coming from the previous step, xp−1,
onto the unit norm vector ep; and (2) xPCA

p , which are
the residual data for the next step, obtained by projecting
xp−1 in the complement space:

αp = e>p xp−1

xPCA
p = E>p xp−1, (2)

where E>p is a (d−p)× (d−p+1) matrix containing the
remaining set of vectors. In PCA, ep is the vector that
maximizes the variance of the projected data:

ep = arg max
e
{E[(e>xp−1)2]}, (3)

where e ∈ R(d−p+1)×1 represents the set of possible unit
norm vectors. E>p can be any matrix that spans the sub-
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space orthonormal to ep, and its rows contain d − p or-
thonormal vectors. Accordingly, ep and Ep fulfil:

E>p ep = Ø

E>p Ep = I(d−p)×(d−p), (4)

which will be referred to as the orthonormality relations
of ep and Ep in the discussion below.

In the p-th step of the sequence, the data yet to be ex-
plained is xp. Therefore, truncating the PCA expansion at
dimension p implies ignoring the information contained
in xp so that the dimensionality reduction error is:

MSEPCA
p = E[‖E>p xp−1‖22] = E[‖xp‖22]. (5)

PCA is the optimal linear solution for dimensionality re-
duction in MSE terms since Eq. (3) implies minimizing
the dimensionality reduction error in Eq. (5) due to the
orthonormal nature of the projection vectors ep and Ep.

2.2 The extension: Principal Polynomial Analysis
PPA removes the conditional mean in order to reduce the
reconstruction error of PCA in Eq. (5). When the data ful-
fill the conditional mean independence requirement, the
conditional mean at every point in the ep direction is zero.
In this case, the data vector goes through the means in the
subspace spanned by Ep, resulting in a small PCA trunca-
tion error. However, this is not true in general (cf. Fig. 1)
and then the conditional mean mp = E[xp|αp] 6= 0. In
order to remove the conditional mean mp from xp, PPA
modifies the elementary PCA transforms in Eq. (2) by
subtracting an estimation of the conditional mean, m̂p:

αp = e>p xp−1

xPPA
p = E>p xp−1 − m̂p (6)

Assuming for now that the leading vector, ep, is com-
puted in the same way as in PCA, PPA only differs
from PCA in the second operation of each transform Rp

(cf. Eq. (2)). However, this suffices to ensure the supe-
riority of PPA over PCA. We will refer to this particular
choice of ep as the PCA-based solution of PPA. In Sec-
tion 2.3, we consider more general solutions to optimize
the objective function at the cost of facing a non-convex
problem. In any case, and independently of the method
used to choose ep, the truncation error in PPA is:

MSEPPA
p = E[‖E>p xp−1 − m̂p‖22]. (7)

Estimation of the conditional mean at step p. The
conditional mean can be estimated with any regression
method m̂p = g(αp). In this work, we propose to esti-
mate the conditional mean at each step of the sequence
using a polynomial function with coefficients wpij and
degree γp. Hence, the estimation problem becomes:

m̂p =



wp11 wp12 · · · wp1(γp+1)

wp21 wp22 · · · wp2(γp+1)

wp31 wp32 · · · wp3(γp+1)

...
...

. . .
...

wp(d−p)1 wp(d−p)2 · · · wp(d−p)(γp+1)




1
αp
α2
p

...
α
γp
p

 ,

(8)

which, in matrix notation is m̂p = Wpvp, where
Wp ∈ R(d−p)×(γp+1), and vp = [1, αp, α

2
p, . . . , α

γp
p ]>.

Note that when considering n input examples, we
may stack them column-wise in a matrix X0 ∈ Rd×n.
In the above mentioned PCA-based solution, the p-th
step of the PPA sequence starts by computing PCA on
Xp−1. Then, we use the first eigenvector of the sam-
ple covariance as leading vector ep, and the remaining
eigenvectors as Ep. These eigenvectors are orthonor-
mal; if a different strategy is used to find ep, then Ep

can be chosen to be any orthonormal complement of ep
(see Section 2.3). From the projections of the n samples
onto the leading vector (i.e. from the n coefficients αp,k
with k = 1, . . . , n), we build the Vandermonde matrix
Vp ∈ R(γp+1)×n, by stacking the n column vectors vp k,
with k = 1, . . . , n.

Then, the least squares solution for the matrix Wp of
coefficients of the polynomial is:

Wp = (E>p Xp−1)V†p, (9)

where † stands for the pseudoinverse operation. Hence,
the estimation of the conditional mean for all the samples,
column-wise stacked in matrix M̂p, is:

M̂p = WpVp, (10)

and the residuals for the next step are, XPPA
p =

E>p Xp−1 − M̂p.
Summarizing, the extra elements with respect to PCA

are a single matrix inversion in Eq. (9) and the matrix
product in Eq. (10). Also note that the estimation of the
proposed polynomial is much simpler than fitting a poly-
nomial depending on a natural parameter such as the or-
thogonal projection on the curve, as one would do accord-
ing to the classical Principal Curve definition [19]. Since
the proposed objective function in Eq. (7) does not esti-
mate distortions orthogonal to the curve but rather those
orthogonal to the leading vector ep, the computation of
the projections is straightforward and decoupled from the
computation of Wp. The proposed estimation in Eq. (9)
consists of d − p separate univariate problems only: this
means that PPA needs to fit d− p one-dimensional poly-
nomials depending solely on the (easy-to-compute) pro-
jection parameter αp. Since lots of samples n � γp + 1
are typically available, the estimation of such polynomi-
als is usually robust. The convenience of this decoupling
is illustrated in the step-by-step example presented in the
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appendix. Since we compute Wp using least squares, we
obtain three important properties:

Property 1 The PPA error does not depend on the partic-
ular selection of the basis Ep if it satisfies the orthonor-
mality relations in Eq. (4).

Proof: Using different basis E′p in the subspace orthog-
onal to ep is equivalent to applying an arbitrary (d −
p)× (d− p) rotation matrix, G, to the difference vectors
expressed in this subspace in Eq. (7): MSEPPA

p (G) =

E[
(
G(E>p xp−1 − m̂p)

)>
G(E>p xp−1 − m̂p)]. Since

G>G = I, the error is independent of this rotation, and
hence independent of the basis.

Property 2 The PPA error is equal to or smaller than the
PCA error.

Proof: The PPA Eqs. (7) and (9) reduce to PCA Eq. (5)
in the restricted case of Wp = Ø. Since, in general,
PPA allows for Wp 6= Ø, this implies that MSEPPA

p ≤
MSEPCA

p . Even though the superiority of PPA over PCA
in MSE terms is clearer when taking ep as in PCA, this
property holds in general. If a better choice for ep is
available, it would reduce the error while having no neg-
ative impact in the cost function, since it is independent
from the basis Ep chosen (see Property 1 above).

Property 3 PPA reduces to PCA when using first degree
polynomials (i.e. straight lines).

Proof: In this particular situation (γp = 1, ∀p), the
first eigenvector of Xp−1 is the best direction to project
onto [24]. Additionally, when using first degree polyno-
mials, Vp is very simple and V†p can be computed analyt-
ically. Plugging this particular V†p into Eq. (9), it is easy
to see that Wp = Ø since the data is centered and αp is
decorrelated of E>p xp−1. Therefore, when using straight
lines Wp vanishes and PPA reduces to PCA.

Finally, also note that, as in any nonlinear method, in
PPA there is a trade-off between the flexibility to fit the
training data and the generalization ability to cope with
new data. In PPA, this can be easily controlled select-
ing the polynomial degree γp. This can be done through
standard cross-validation (as in our experiments), or by
using any other model selection procedure such as leave-
one-out or (nested) v-fold cross-validation. Note that this
parameter is also interpretable and easy to tune, since it
controls the flexibility of the curves or the reduction of
PPA to PCA in the γ = 1 case.

2.3 PPA cost function: alternative solutions and opti-
mization problems

By construction PPA improves the dimensionality reduc-
tion performance of PCA when using the restricted PCA-
based solution. Here we show that better solutions for
the PPA cost function may exist, but unfortunately are
not easy to obtain. Possible improvements would involve
(1) alternative functions to estimate the conditional mean,
and (2) more adequate projection vectors ep.

Better estimations of the conditional mean can be ob-
tained with prior knowledge about the system that gen-
erated the data. For instance, if one knows that samples
should follow an helical distribution, a linear combina-
tion of sinusoids could be a better choice. Even for these
cases, least squares would obtain the weights of the linear
combination. Nevertheless, in this work, we restrict our-
selves to polynomials since they provide flexible enough
solutions by using the appropriate degree. Below we
show that one can fit complicated manifolds, e.g. helices,
with generic polynomials. More interestingly, geomet-
ric descriptions of manifold, such as curvature or torsion,
can be computed from the PPA model despite being func-
tionally different from the actual generative model.

The selection of appropriate ep is more critical, since
Property 1 implies that MSE does not depend on Ep, but
only on ep. The cost function for ep measuring the di-
mensionality reduction error is f(e):

ep = arg min
e
f(e) = arg min

e
E[‖E>p xp−1 −Wpvp‖22],

s.t. E>p Ep = I

E>p ep = Ø

Wp = (E>p Xp−1)V†p.

This constrained optimization does not have a closed-
form solution, and one has to resort to gradient-descent
alternatives. The gradient of the cost function f(e) is:

∂f

∂epj
= E

[ d−p∑
i=1

2(E>pixp−1−m̂pi) WpiQ vp x(p−1)j

]
,

(11)
where E>pi and Wpi refer to the i-th rows of the corre-
sponding matrices, m̂pi and x(p−1)j are the i-th and j-th
components of the corresponding vectors, and Q ∈ Rp×p
is:

Q =


0 1 0 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 · · · 0 p− 1
0 0 · · · 0 0

 , (12)

In general, the PPA cost function is non-convex. The
properties of f(e) for the particular dataset at hand will
determine the complexity of the problem and the accu-
racy of the restricted PCA-based solution. Actually, the



6 Principal Polynomial Analysis
a b c

Figure 2: PPA objective is non-convex. (a) Samples drawn from a noisy parabola (blue) and the eigenvectors of the covariance matrix,
PC1 and PC2 (in gray). The PPA parabolas obtained from projections onto PC1 (PCA-based solution) and onto the PC2 are plot in ◦
and � respectively. (b) Dimensionality reduction error, f(e), for ep vectors with different orientation φ, where φ = 0 corresponds to
PC2 (�) and φ = π

2
corresponds to PC1 (◦). (c) Fitted PPA parabolas (∗) for a range of orientations of the corresponding ep (in black).

example in Fig. 2 shows that, in general, the PCA-based
solution for ep is suboptimal, and better solutions may
be difficult to find given the non-convexity of the cost
function. In this 2d illustration, the only free parame-
ter is the orientation of ep. Fig. 2(b) shows the values
of the error, f(e), as a function of the orientation of e.
Since PCA ranks the projection by increasing variance
(Eq. (3)), the PCA solution is suboptimal with respect to
the one obtained by PPA with gradient descent. The first
PCA eigenvector does not optimize Eqs. (7) or (11). Even
worse, the risk of getting stuck into a suboptimal solution
is high when using random initialization and simple gra-
dient descent search.

The results in this section suggest that the simple
PCA-based solution for ep may be improved at the ex-
pense of solving a non-convex problem. According to
this, in Section 4 we will present results for PPA opti-
mized by using both the gradient descent and the PCA-
based solutions. But in all cases, and thanks to Property
2, PPA obtains better results than PCA.

2.4 PPA computational cost
PPA is computationally more costly than PCA, which in
a naı̈ve implementation roughly scales cubically with the
problem dimensionalityO(d3). In the case of PCA-based
PPA, this cost is increased because, in each of the d−1 de-
flationary steps, the pseudoinverse of the matrix Vp has
to be computed. These pseudoinverses involve d− 1 op-
erations of cost O((γ + 1)3). Therefore, in total, the cost
of PCA-based PPA is O(d3 + (d− 1)(γ + 1)3).

If the gradient-descent optimization, Eq. (11), is used,
the cost increases substantially since the same problem
is solved for a number of iterations k until convergence,
O(k(d3 + (d− 1)(γ + 1)3)). The cost associated to this
search may be prohibitive in many applications, but it is
still lower than the cost of other generalizations of PCA:
kernel-PCA scales with the number of samples, O(n3),
which is typically larger than the dimensionality n � d,
and non-analytic Principal Curves are slow to apply since
they require computing d curves per sample.

2.5 PPA Restrictions
PPA has two main restrictions that limit the class of man-
ifolds for which PPA is well suited. First, PPA needs
to fit uni-valued functions in each regression in order to
ensure the transform is a bijection. This may not be a
good solution when the manifold exhibits bifurcations,
self-intersections, or holes. While other (non-analytical)
principal curves methods can deal with such complexi-
ties [25, 42], their resulting representations could be am-
biguous, since a single coordinate value would map close
points, which are far in the input space. This can be in
turn problematic to define an inverse function.
Secondly, PPA assumes stationarity along the principal
directions as done in PCA. This is not a problem if the
data follow the same kind of conditional probability den-
sity function along each principal curve. However, such
condition does not hold in general. More flexible frame-
works such as the Sequential Principal Curves Analy-
sis [28] are good alternatives to circumvent this short-
coming, but at the price of a higher computational cost.

3 Jacobian, invertibility and induced metric
The most appealing characteristics of PPA (invertibility
of the nonlinear transform, its geometric properties and
the identified features) are closely related to the Jacobian
of the transform. This section presents the analytical ex-
pression of the Jacobian of PPA as well as the induced
properties of volume preservation and invertibility. Then
we introduce the analytical expression for the inverse and
the metric induced by PPA.

3.1 PPA Jacobian
Since PPA is a composition of transforms, cf. Eq. (1), its
Jacobian is the product of the Jacobians at each step:

∇R(x) =

1∏
p=d−1

∇Rp = ∇Rd−1∇Rd−2 · · · ∇R2∇R1.

(13)
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Therefore, the question reduces to compute the Jaco-
bian∇Rp for each elementary transform in the sequence.
Taking into account the expression for each elementary
transform in Eq. (6), and the way mp is estimated in
Eq. (10), simple derivatives lead to:

∇Rp =

 I(p−1)×(p−1) 0(p−1)×(d−p+1)

0(d−p+1)×(p−1)

(
e>p

E>p

)
−
(

01×(d−p+1)

upe>p

)
 ,

(14)
where up = Wpv̇p and v̇p = [0, 1, 2αp, . . . , γpα

γp−1
p ]>.

Note that the block structure of the Jacobian of each el-
ementary transform and the identity in the top left block
are justified by the fact that each Rp only acts on the
residual xp−1 of the previous transform, i.e. Rp does not
modify the first p− 1 components of the previous output.

3.2 PPA is a volume-preserving mapping
Proof: The volume of any d-cube is invariant under a
nonlinear mapping R if |∇R(x)| = 1, ∀x ∈ X [9]. In
the case of PPA, the above is true if |∇Rp| = 1 for ev-
ery elementary transform Rp in Eq. (13). To prove this,
we need to focus on the determinant of the bottom-right

submatrix of ∇Rp, since
∣∣∣∣A 0

0 B

∣∣∣∣ = |A||B|, where in our

case A is the identity matrix. Since the determinant of
a matrix is the volume of the parallelogram defined by
the row vectors in the matrix, the parallelogram defined
by the vector e>p and the vectors in E>p is a unit volume
(d − p + 1)-cube due to the orthonormal nature of these
vectors. The right-hand matrix subtracts a scaled version
of the leading vector, upie

>
p , to the vector in the i-th row

of E>p , with i = [1, . . . , d− p]. Independently of weights
upi, this is a shear mapping of the (d − p + 1)-cube de-
fined by e>p and E>p . Therefore, after the subtraction,
the determinant of this submatrix is still 1. As a result
|∇Rp| = 1, and hence |∇R(x)| = 1, ∀x ∈ X .

Volume preservation is an appealing property when
dealing with distributions in different domains. Note that
probability densities under transforms depend only on the
determinant of the Jacobian: px(x) = py(y)|∇R(x)|,
for PPA px(x) = py(y). A possible use of this prop-
erty will be shown in sec. 5.4 to compute the multi-
information reduction achieved by the transform.

3.3 PPA is invertible
Proof: A nonlinear transform is invertible if its deriva-
tive (Jacobian) exists and it is non-singular ∀x. This is
because, in general, the inverse can be thought as the in-
tegration of a differential equation defined by the inverse
of the Jacobian [33, 14]. Therefore, the volume preser-
vation property, which ensures that the Jacobian is non-
singular, also guarantees the existence of the inverse.

Here we present a straightforward way to compute the in-
verse by undoing each of the elementary transforms in the
PPA sequence. Given that there is no loss of information
in each PPA step, the inverse has perfect reconstruction,
i.e. if there is no dimensionality reduction the inverted
data is equal to the original one. Given a transformed
point, r = [α1, α2, . . . , αd−1,xd−1]>, and the parame-
ters of the learned transform (i.e. the variables ep, Ep,
and Wp, for p = 1, . . . , d−1), the inverse is obtained by
recursively applying the following transform:

xp−1 =

ep Ep

 αp

xp + Wpvp

 (15)

3.4 PPA generalizes Mahalanobis distance
When dealing with non-linear transformations, it is use-
ful to have a connection between the metrics (distances)
in the input and transformed domains. For instance, if
one applies a classification method in the transformed do-
main, it is critical to understand which are the classifica-
tion boundaries in the original domain.

Consistently with results reported for other nonlinear
mappings [13, 38, 29, 28], the PPA-induced distance in
the input space follows a standard change of metric un-
der change of coordinates [9] and can be computed as:

d2
PPA(x,x + ∆x) = ∆x>M(x)∆x, (16)

and the PPA-induced metric M(x) is tied to the Jacobian,

M(x) = ∇R(x)>Λ−1PPA∇R(x) (17)

and ΛPPA defines the metric in the PPA domain. In
principle, one can choose ΛPPA depending on the prior
knowledge about the problem. For instance, a classical
choice in classification problems is the Mahalanobis met-
ric [37, 10]. Mahalanobis metric is equivalent to using
Euclidean metric after whitening, i.e. after dividing each
PCA dimension by its standard deviation. One can gener-
alize Mahalanobis metric using PPA by selecting a ΛPPA

as a matrix whose diagonal is composed by the variance
of each dimension in the PPA domain. Or analogously,
employing the Euclidean metric after whitening the PPA
transform. Figure 3 shows an example of the unit dis-
tance loci induced by the generalized Mahalanobis PPA
metric in different domains. The benefits of this metric
for classification will be illustrated in Section 5.1.

4 Related Methods
The qualitative idea of generalizing principal components
from straight lines to curves is not new. Related work
includes approaches based on (1) non-analytical princi-
pal curves [11, 54, 12, 41, 42, 28], (2) fitting analytic
curves [24, 8, 3], and (3) implicit methods based on neu-
ral networks and autoencoders [26, 20, 15] as well as re-
producing kernels as in the kernel-PCA [46]. Here we re-
view the differences between PPA and these approaches.
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(a) Original data (b) Input domain (c) PPA domain (d) Whitened PPA domain

Figure 3: PPA curvilinear features and discrimination ellipsoids based on the PPA metric. (a) Non-linearly separable data. PPA results
for the first class data: (b) in the input domain, (c) in the PPA domain, and (d) in the whitened PPA domain, which is included here for
the sake of comparison with the Mahalanobis metric. The curvilinear features (black grid) are computed from the polynomials found by
PPA, while the unit radius spheres represent the metric induced by the whitened PPA domain in each domain.

Non-analytic Principal Curves. In the Principal
Curves literature, interpretation of the principal sub-
spaces as d-dimensional nonlinear representations is only
marginally treated in [42, 12, 41]. This is due to the
fact that such subspaces are not explicitly formulated as
data transforms. Actually, in [42] the authors acknowl-
edge that, even though their algorithm could be used as a
representation if applied sequentially, such an interpre-
tation was not possible at that point since the projec-
tions lacked the required accuracy. The proposed PPA
is closer to the recently proposed Sequential Principal
Curves Analysis (SPCA) [28] where standard and sec-
ondary principal curves [19, 7] are used as curvilinear
axes to remove the nonlinear dependence among the in-
put dimensions. While flexible and interpretable, defin-
ing a transformation based on non-parametric Principal
Curves (as in SPCA) has two main drawbacks: (1) it is
computationally demanding since, in d-dimensional sce-
narios, the framework requires drawing d individual Prin-
cipal Curves per test sample, and (2) the lack of analytical
form in the principal curves implies non-trivial parameter
tuning to obtain the appropriate flexibility of the curvilin-
ear coordinates. To resolve these issues and ensure min-
imal parameter tuning, we propose here to fit polynomi-
als that estimate the conditional mean along each linear
direction. We acknowledge that the higher flexibility of
methods based on non-parametric Principal Curves sug-
gests possibly better performances than PPA. However,
it is difficult to prove such intuition, since, contrarily to
PPA, these methods do not provide an analytic solution.

Methods fitting analytic curves. Additive Principal
Components (APC) proposed in [8] explicitly fits a se-
quence of nonlinear functions as PPA. However, the phi-
losophy of their approach differs from Principal Curves
since they focus on the low variance features. In the linear
case, sequential or deflationary approaches may equiva-
lently start by looking for features that explain most or
least of the variance. However, in the nonlinear APC
case, the interpretation of low variance features is very
different from the high variance features [8]. The high

variance features identified by APC do not represent a
summary of the data, as Principal Curves do. In the non-
linear case, minimizing the variance is not the same as
minimizing the representation error, which is our goal.
Therefore, our approach is closer to Principal Curves ap-
proaches of the previous paragraph than to APC.

Our method also presents a model and minimization
of the representation error substantially different to the
Fixed Effect Curvilinear Model in [3]. This difference in
the formulation is not trivial since it makes their formula-
tion fully d-dimensional, while we restrict ourselves to a
sequential framework where d−1 polynomials are fitted,
one at a time. Moreover, the PPA projections onto the
polynomial are extracted using the subspace orthogonal
to the leading vector, which makes the estimation even
simpler. Additionally, their goal (minimizing the repre-
sentation error in a nonlinearly transformed domain) is
not equivalent to minimizing the dimensionality reduc-
tion error in the input space (as it is the case for PPA).

Neural networks and autoencoders. Neural network
approaches, namely nonlinear PCA [26, 24, 15] and au-
toencoders [20], share many properties of PPA: they can
be enforced to specifically reduce the MSE, are non-
linear, invertible, and can be easily applied to new sam-
ples [48]. However, the nonlinear features are not explicit
in the formulation and one is forced to use the inverse
of the transformation to visualize the curvilinear coordi-
nates of the identified low dimensional subspace. An-
other inconvenience is selecting the network architecture
and fitting the model parameters (see [47] for a recent
review), upon which the regularization ability of the net-
work depends. The number of hidden units is typically
assumed to be higher than the dimensionality of the input
space, but there is still no clear way to set the network be-
forehand. As opposed to more explicit methods (PPA or
SPCA), the curvature of the d dimensional dataset is not
encoded using d nonlinear functions with different rele-
vance, which makes the geometrical analysis difficult.
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Figure 4: Effect of PPA metric in k-nearest neighbors classification for low (top) and high (bottom) curvatures.

Kernel PCA. This non-linear generalization of PCA is
based on embedding the data into a higher-dimensional
Hilbert space. Linear features in the Hilbert space cor-
respond to nonlinear features in the input domain [46].
Inverting the Hilbert space representation is not straight-
forward but a number of pre-imaging techniques have
been developed [21]. However, there is a more important
complication. While it is possible to obtain reduced-
dimensionality representations in the Hilbert space for
supervised learning [5], the KPCA formulation does not
guarantee that these representations are accurate in MSE
terms in the input domain (no matter the pre-imaging
technique). This is a fundamental difference with PCA
(and with PPA). For this reason, using KPCA in exper-
iments where reconstruction is necessary (as those in
Section 5.3) would not be fair to KPCA.

Similarly to [16], the main motivation of PPA is find-
ing the input data manifold that best represents that data
structure in a multivariate regression problem. The above
discussion suggests that the proposed nonlinear extension
of PCA opens new possibilities in recent applications of
linear PCA such as [2, 23, 40, 1, 17], and in cases where
it is necessary to take higher order relations into account
due to the nonlinear nature of the data [39].

5 Experiments
This section illustrates the properties of PPA through a
set of four experiments. The first one illustrates the ad-
vantage of using the manifold-induced PPA metric for
classification. The second one shows how to use the
analytic nature of PPA to extract geometrical properties
of the manifold. The third experiment analyzes the per-

formance of PPA for dimensionality reduction on differ-
ent standard databases. Finally, we show the benefits
of the PPA volume-preserving property to compute the
multi-information reduction. For the interested reader,
and for the sake of reproducibility, an online implemen-
tation of the proposed PPA method can be found here:

http://isp.uv.es/ppa.html.
The software is written in Matlab and was tested in Win-
dows 7 and Linux 12.4 over several workstations. It con-
tains demos for running examples of forward and inverse
PPA transforms. The code is licensed under the FreeBSD
license (also known as Simplified BSD license).

5.1 Benefits of the PPA metric in classification
As presented above, the PPA manifold-induced metric
provides more meaningful distance measures than the Eu-
clidean distance or its linear Mahalanobis distance coun-
terpart. To illustrate this, we consider k-nearest neighbors
(k-NN) classification, whose success strongly depends on
the appropriateness of the distance used [10].

We focus on the synthetic data in Fig. 3, where two
classes are presented. They have both been generated
from noisy parabolas. A cross-validation procedure on
1000 samples fitted the degree of the polynomials de-
scribing the data to γp = 2. Figure 4 shows the positive
effect of considering PPA metric when ΛPPA is a diago-
nal matrix with the variances of the response coefficients
(i.e. generalization of the Mahalanobis distance) for k-
NN classification [10]. Better performance is obtained
when considering the PPA metric compared to the Eu-
clidean or the linear Mahalanobis counterparts, especially
for few training samples (Fig. 4). Moreover, the accuracy
of the classifier built with the PPA metric is fairly insen-
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Figure 5: Geometric characterization of curvilinear PPA features in 3d helical manifolds. Scatter plots show data used to train the PPA
model (1000 training and 1000 cross-validation samples) under three different noise conditions (see text). Corresponding line plots show
the actual first principal curve (in cyan) and the identified first curvilinear PPA feature (in gray). The orders of the first polynomial found
by cross validation were γ1 = [12, 14, 12], in the respective noise conditions. Lines in RGB stand for the tangent, normal and binormal
vectors of the Serret-Frenet frame at each point of the PPA polynomial.

sitive to the number of neighbors k in k-NN, no matter
the number of samples. The gain observed with the PPA
metric increases with the curvature of the data distribu-
tion (bottom row of Fig. 4). Note that, with higher cur-
vatures, the Euclidean and the linear Mahalanobis metric
perform similarly poor. When a larger number of sam-
ples is available the results become roughly independent
of the curvature, but even in that situation the PPA metric
outperforms the others.

The generalization of the Mahalanobis metric using
PPA may also be useful in extending hierarchical SOM
models using more general distortion measures [35],
which are useful for segmentation [34].

5.2 Differential geometry of PPA curvilinear features
According to standard differential geometry of curves
in d-dimensional spaces [9], characteristic properties
of a curve such as generalized curvatures χp, with
p = [1, . . . , d − 1], and Frenet-Serret frames, are re-
lated to the p-th derivatives of the vector tangent to the
curve. At a certain point x, the vector tangent to the p-th
curvilinear dimension corresponds to the p-th column of
the inverse of the Jacobian.

We now use the analytical nature of PPA to obtain
a complete geometric characterization of the curvilinear
features identified by the algorithm. In each step of the
PPA sequence, the algorithm obtains a curve (polyno-
mial) in Rd. Below we compute such characterization
for data coming from helical manifolds where the com-
parison with ideal results is straightforward†. Note that
this is not just an illustrative exercise, because this man-
ifold arises in real communication problems, and due to
its interesting structure, it served as test case for Principal
Curves Methods [42].

The first example considers a 3d helix where the
Frenet-Serret frames are easy to visualize as orthonormal
vectors. Figure 5 shows the first curvilinear feature iden-
tified by PPA (in gray) compared to the actual helix used
to generate the 3d data (in cyan), for different noise lev-

els. We used a = 2, b = 0.8, and Gaussian noise of
standard deviations 0.1, 0.3, and 0.6, respectively. Note
that in the high noise situation, the noise scale is compa-
rable to the scale of the helix parameters.

The tangent vectors of this first curvilinear feature
(in red) are computed from the first column of the in-
verse of the Jacobian (using Eqs. (13) and (14)). The
other components of the Frenet-Serret frames (in 3d, the
normal and binormal vectors, here in green and blue),
are computed from the derivatives of the tangent vector,
and the generalized curvatures are given by the Frenet-
Serret formulas [9]. For each of the three examples, we
report the curvature values obtained by the PPA curves,
as well as the theoretical values for the generating helix.
Even though curvature and torsion are constant in an he-
lix, χPPA

1 and χPPA
2 are slightly point-dependent. That is

the reason for the standard deviation in the χPPA
i values.

In this particular illustration, the effect of noise leads to a
more curly helix, hence overestimating the curvatures.

In the second example, we consider a higher dimen-
sional setting and embed 3d helices with arbitrary radius
and pitch (in the [0,1] range) into the 4d space by first
adding zeros in the 4th dimension, and then applying a
random rotation in 4d. Since the rotation does not change
the curvatures, χtheor

1 and χtheor
2 can be computed as in

the 3d case, and χtheor
3 = 0. Fig. 6 shows the alignment

between χtheor
i and χPPA

i for different noise levels. We
also report the χPPA

3 values (that should be zero). Noise
implies different curvature estimations along the mani-
fold (larger variance), and, for particular combinations of
a and b, noise also implies bias in the estimations: diver-
gence form the (ideal agreement).

Also remind that the PPA formulation allows to ob-
tain Frenet-Serret frames in more than three dimensions.
However, visualization in those cases is not straightfor-
ward. For illustration purposes here we focus on the first
PPA curvilinear dimension. Nevertheless, the same geo-
metric descriptors (χi and Frenet-Serret frames) can be
obtained along the curvilinear features. Estimation of

†In 3d spaces, the two generalized curvatures that fully characterize a curve are known simply as curvature and torsion. In the case of an helix with
radius, a, and pitch, 2πb, the curvature and torsion are given by χ1 = |a|/(a2 + b2) and χ2 = b/(a2 + b2) [9].
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Figure 6: Geometric characterization of 4d helical manifolds using PPA. Prediction of generalized curvatures χ1 (left), and χ2, χ3

(right) for a wide family of 4d helical datasets (see text for details). Darker gray stands for lower noise levels. According to the way data
were generated, the theoretical value of the third generalized curvature is χtheor

3 = 0.

curvatures from the PPA model may be interesting in
applications where geometry determines resource alloca-
tion [43].

5.3 Dimensionality reduction
In this section, we first illustrate the ability of PPA to vi-
sualize high dimensional data in a similar way to Princi-
pal Volumes and Surfaces. Then, we compared the per-
formance of PCA, PPA and nonlinear PCA (NLPCA) of
[15] in terms of reconstruction error obtained after trun-
cating a number of features.

Data. We use six databases extracted from the UCI
repository‡. The selected databases deal with challeng-
ing real problems and were chosen according to these
criteria: they are defined in the real domain, they are
high-dimensional (d ≥ 9), the ratio between the num-
ber of samples and the number of dimensions is large
(n/d ≥ 40), and they display nonlinear relations between
components (which was evaluated by pre-visualizing the
data). See data summary below and in table I:

• MagicGamma. The dataset represent traces of high
energy gamma particles in a ground-based atmo-
spheric Cherenkov gamma telescope. The avail-
able information consists of pulses left by the in-
coming Cherenkov photons on the photomultiplier
tubes, arranged in an image plane. The input
features are descriptors of the clustered image of
gamma rays in an hadronic shower background.

• Japanese Vowels. This dataset deals with vowel
identification in japanese, and contains cepstrum
coefficients estimated from speech. Nine speak-
ers uttered two Japanese vowels /ae/ successively.
Linear analysis was applied to obtain a discrete-

time series with 12 linear prediction cepstrum co-
efficients, which constitute the input features.

• Pageblocks. The database describes the blocks of
the page layout of documents that have been de-
tected by a segmentation process. The feature vec-
tors come from 54 distinct documents and charac-
terize each block with 10 numerical attributes such
as height, width, area, eccentricity, etc.

• Sat. This dataset considers a Landsat MSS im-
age consisting of 82×100 pixels with a spatial res-
olution of 80m×80m, and 4 wavelength bands.
Contextual information was included by stack-
ing neighboring pixels in 3×3 windows. There-
fore, 36-dimensional input samples were gener-
ated, with a high degree of redundancy.

• Segmentation. This dataset contains a collection
of images described by 16 high-level numeric-
valued attributes, such as average intensity, rows
and columns of the center pixel, local density de-
scriptors, etc. The images were hand-segmented to
create a classification label for every pixel.

• Vehicles. The database describes vehicles through
the application of an ensemble of 18 shape feature
extractors to the 2D silhouettes of the vehicles. The
original silhouettes come from views from many
different distances and angles. This is a suitable
dataset to assess manifold learning algorithms that
can adapt to specific data invariances of interest.

For every dataset we normalized the values in each di-
mension between zero and one. We use a maximum of 20
dimensions which is the limit in the available implemen-
tation of NLPCA (http://www.nlpca.org/) [47]. Note that
our implementation of PPA does not have this problem.

‡The databases are available at http://archive.ics.uci.edu/ml/datasets.html
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Table 1. Summary of the data-sets.
Database n (] samples) d (dimension) n/d

1 MagicGamma 19020 10 1902
2 Japanese Vowels 9961 12 830
3 Pageblocks 5473 10 547
4 Sat 6435 36 179
5 Segmentation 2310 16 144
6 Vehicles 846 18 47

PPA learning strategies. In the experiments, the alter-
native strategies described in Sections 2.2 and 2.3 will be
referred to as: (1) PPA, which is the PCA-based solution
that inherits the leading vectors ep from PCA; and (2)
PPA GD, which is the gradient-descent solution that ob-
tains ep via minimization of Eq. (11). In both cases, the
transforms are obtained using 50% of the data, and the
polynomial degree is selected automatically (in the range
γ ∈ [1, 5]) by cross-validation using 50% of the training
data.

PPA Principal Curves, Surfaces and Volumes. First
we illustrate the use of PPA to visualize the ”Mag-
icGamma” data using a small number of dimensions.
Figure 7 shows how the model obtained by PPA (red line
and grey grids) adapts to the samples (in blue). All plots
represent the same data from different points of view.
Note that the relation between data dimensions cannot be
explained with linear correlation.

The curve (red) in the plots corresponds to the first
identified polynomial or to the data reconstructed using
just one PPA dimension. The grids in the first row of
Fig. 7 were computed by defining a uniform grid in the
first two dimensions of the transformed PPA domain, and
transforming it back into the original domain. Second
row in Fig. 7 represents visualizations in three dimen-
sions, together with grids computed inverting uniform
samples in a 5 × 5 × 5 cube (or 5 stacked surfaces) in
the PPA domain.

The qualitative conclusion is that despite the differ-
ences in the cost function (see discussions in Sections 2.2
and 4), the first PPA polynomial (red curve) also passes
through the middle of the samples, so it can be seen as
an alternative to the Principal Curve of the data [18].
The gray grids also go through the middle of the sam-
ples, which suggests that not only alternative Principal
Curves can be obtained with PPA, but also Principal Sur-
faces and Volumes [18, 7, 41]. Moreover, these surfaces
and volumes help to visualize the structure of the data.
This advantage can be seen clearly in the third and fourth
plots of the first row, where the data manifold seems to
be embedded in more than two dimensions.

Reconstruction error To evaluate the performance in
dimensionality reduction, we employ the reconstruction
mean square error (MSE) in the original domain. For
each method, the data are transformed and then inverted

retaining a reduced set of dimensions. This kind of di-
rect evaluation can be used only with invertible methods.
Distortion introduced by method m is shown in terms
of the relative MSE (in percentage) with regard to PCA:
Rel.MSEm = 100 × MSEm/MSEPCA Results in this
section are the average over ten independent realizations
of the random selection of training samples.

Figure 8 shows the results in relative MSE as a func-
tion of the number of retained dimensions. Performance
on the training and test sets is reported in the top and the
bottom panels respectively. Note that 100 % represents
the base-line PCA error.

Several conclusions can be extracted from these re-
sults. The most important conclusion is that PCA-based
PPA performs always better than PCA in the training set,
as expected. This may not be the case with new (unob-
served) test data. On the one hand, PPA is more robust
in general than NLPCA for a high number of extracted
features. On the other hand, NLPCA only achieves good
performance with a low number of extracted features. It
is worth noting that PPA GD obtains good results for the
first component in the training sets, in particular always
better than PPA (as proved theoretically in sec. 2.3). Gen-
eralization ability (i.e. performance in test) depends on
the method and the database. Even though a high samples
per dimension ratio may help to obtain better generaliza-
tion, it is not always the case (see for instance results for
database “Sat”). More complex methods (as PPA GD and
NLPCA) perform better in training but not necessarily in
test, probably due to over-fitting. More adapted schemes
for training could be employed (see for instance [47]).

Computational Cost. Table 2 illustrates the computa-
tional load for each method. The main conclusion is
that PCA is the less computationally demanding, and the
NLPCA the most costly, as expected. The basic PPA
takes around one order of magnitude more than PCA. Al-
though this increases the demanding time to perform an
experiment it is still useful for large databases. At this
point, it is worth noting that the implementation of PPA
has not been optimized, it is just the straight application
of the algorithm presented in Section 2. More efficient
implementations could be implemented, but this is out of
the scope of this work. Searching the optimal direction
by gradient descent makes PPA as costly as NLPCA.

Table 2. Computational time (in min.) to learn the transform
(per method and database).

Method
Database PCA PPA PPA GD NLPCA

1 MagicGamma 0.0010 0.0092 142.7 80.8
2 Japanese Vowels 0.0006 0.0095 50.1 50.8
3 Pageblocks 0.0002 0.0025 7.4 20.0
4 Sat 0.0023 0.0390 68.2 122.4
5 Segmentation 0.0002 0.0065 2.5 19.8
6 Vehicles 0.0002 0.0019 0.3 9.8
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[2,5] [3,9] [4,3] [5,7] [9,1]

Figure 7: Principal Curves, Surfaces and Volumes using PPA. First row shows a 2d visualization. Titles of the panels in-
dicate the dimensions being visualized. In each panel, are the original data (blue dots), the curve (red) is the reconstructed
data (when using only one dimension) and the gray lines correspond to a grid representing the two first PPA dimensions.
The second row shows 3d visualizations of dimensions [3, 5, 10] from different camera positions. In this case, the inverted
uniform grid has been constructed in the three first dimensions of the transformed domain. See text for details.

5.4 Multi-information reduction
Redundancy between the features of a representation is
described by the multi-information, I(x). Therefore cer-
tain transform is suitable for efficient coding if it reduces
this redundancy. Direct estimation of I(x) is difficult
since it involves Kullback-Leibler divergences between
multivariate densities. However, multi-information re-
duction under a transform R is given by [36]:

∆I = I(x)− I(R(x))

=

d∑
j=1

h(xj)−
d∑
j=1

h(R(x)j) + E[log |∇R(x)|],
(18)

where superscript j in zj indicates its j-th feature, and
h(zj) is the (easy to estimate) zero-order entropy of the
univariate data zj .

Therefore, multi-information reduction is particularly
easy to estimate when R preserves the volume because
in this case |∇R| = 1 so the only multivariate term in
Eq. (18) vanishes. In that situation redundancy reduction
just depends on comparing marginal entropies before and
after the mapping, which only involves univariate densi-
ties.

Table 3 reports the multi-information reduction in bits
per dimension for each database and each method. Note
that NLPCA is not a volume-preserving map, and there-
fore its multi-information reduction can not be computed

in practice. The main conclusion is that PPA obtains big-
ger reduction than PCA. This means that PPA obtains a
representation where the dimensions of the data are more
statistically independent. This is an important property of
PPA when used as a preprocessing method, because one
can safely apply classifiers on the projected data that as-
sume independence between dimensions, as for instance
the naive Bayes classifier.

Table 3. Multi-information reduction (in bits per dimension)
achieved by each method (bigger is better).

Method
Database PCA PPA PPA GD

1 MagicGamma 0.35 0.42 0.47
2 Japanese Vowels 0.38 0.45 0.49
3 Pageblock 0.16 0.23 0.25
4 Sat 1.76 1.78 1.82
5 Segmentation 1.20 1.23 1.34
6 Vehicles 1.32 1.49 1.38

6 Conclusions

Features extracted with linear PCA are optimal for di-
mensionality reduction only when data display a very par-
ticular symmetry. The proposed PPA is a nonlinear gen-
eralization of PCA that relaxes such constraints. Essen-
tially, PPA describes the data with a sequence of curves
aimed at minimizing the reconstruction error.
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Figure 8: Relative reconstruction MSE (with regard to PCA) as a function of the retained dimensions for PCA, PPA, PPA
GD and NLPCA. Top panel: results on the training data. Bottom panel: results on the test data.
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We analytically proved that PPA outperforms PCA in
truncation error and in energy compaction. PPA also in-
herits all the appealing properties that make linear PCA
successful: the PPA transform is computationally easy to
obtain, invertible (we presented a closed-form solution
for the inverse), geometrically interpretable (computable
metric and curvatures), allows out-of-sample projections
without resorting to approximated methods, returns a hi-
erarchically layered representation, and does not depend
on the target dimension. Additionally we showed that
PPA is a volume-preserving transform, which is conve-
nient to assess its redundancy reduction performance.

We also showed that the PPA functional is not convex.
To address this problem we presented (1) a near-optimal
closed-form solution based on PCA that is guaranteed to
outperform PCA, and (2) the tools for a gradient descent
search of the optimal solution. We analyzed the compu-
tational cost of both approaches. In the gradient descent
solution the cost is very high, similar to representations
based on Principal Curves, non-linear PCA, or kernel
PCA. On the contrary, the cost of the PCA-based solution
is only moderately bigger than PCA and clearly inferior
to the above methods. Finally, results on real data showed
the practical performance of PPA on dimensionality and
redundancy reduction compared to PCA and non-linear
PCA. In average, PPA roughly reduces a 15% both the
MSE reconstruction error and the redundancy of PCA.
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A Appendix: Forward PPA illustrated
Figure 9 presents a step-by-step example to illustrate how
the sequence of PPA curvilinear components and projec-
tions are computed on a manifold of well-defined geom-
etry: an helix embedded in a 3d space corrupted with ad-
ditive Gaussian noise which is a usual test case in Prin-
cipal Curves [42]. Data (in gray) were sampled from the
same helix as in section 5.2 and noise with standard de-
viation 0.3. Since d = 3, PPA consists of a sequence of
two transforms (see Eq. (1)): R1 (first row in Fig. 9) and
R2 (second row). A representative sample is highlighted
throughout the transform.

In this example we use the PCA-based solution.
Therefore, the leading vector e1 is the first eigenvector
(biggest eigenvalue) of the covariance matrix of x0. In
the example, e1 (or PC1, in orange), and the vectors PC2
and PC3 (in green and blue respectively) constitute the
basis E1. The first PPA component, α1, is the projec-
tion of the data onto the first leading vector, α1 = e>1 x0,
in Eq. (6) (orange dots and the circle for the highlighted
sample). The conditional mean, m1, is shown decom-
posed in two subspaces in the top center panel. We will
call m1a the conditional mean in the subspace spanned

by e1 and PC2 (green dots), and let m1b be the condi-
tional mean in the subspace spanned by e1 and PC3 (blue
dots). It is obvious the strong non-linear dependence of
the conditional mean with α1, i.e. given the value of α1

(e1 axis -black line-) it is easy to predict the value of the
data in the orthogonal subspaces (blue and green dots)
using a non-linear function.

Fitting the first PPA polynomial in 3 dimensions
with regard to the parameter α1 is equivalent to fit-
ting the polynomials in the 2d subspaces in the cen-
ter plot (simple univariate regressions). The polynomi-
als in the 2d subspaces have the coefficients W1a =
[w1a1 w1a2 w1a3 . . . w1a(γ1+1)], and equivalently, W1b;
which are the rows of the matrix W1. Polynomial coef-
ficients are easy to fit by constructing the Vandermonde
matrix of degree γ1 using α1, v1 = [1 α1 α

2
1 ... α

γ1+1
1 ]>

and applying Eq. (9). This ensures the best fitting in least
squares terms. Then, we estimate m1a (and correspond-
ingly m1b) using α1 and the weights, Eq. (8):

m̂1a = w1a1 +w1a2α1 +w1a3α
2
1 . . . w1aγ1+1α

γ1
1 (19)

In the top center panel, the estimated conditional mean,
m̂1 = [m̂1a m̂1b]

>, is represented by the curve (red),
while the curve projected in the bottom plane (green) and
the curve projected in the vertical plane (blue) represent
the conditional means in the respective subspaces (m̂1a

and m̂1b). Once the polynomial has been fitted, we can
remove m̂1 from each sample (second line in Eq. (6))
obtaining the residuals (departures from the conditional
mean) represented in the top right plot (yellow dots).

Summarizing the process in the top row, the transform
R1, the first Principal Polynomial (red curve) accounts
for the first curvilinear dimension of the data. After R1,
we have (d − 1) = 2 dimensions yet to be explained:
x1, at the top right and bottom left plots. The second
row of Fig. 9 reproduces the same steps in the reduced
dimension residual: projection onto the first PC in the
bottom left plot (orange dots), fitting the polynomial (in
this case, the best cross-validation solution was a second
order polynomial, represented by the curve (red) in the
bottom center plot, and removing the conditional mean
so that the residuals (yellow dots) are aligned, and pro-
jected in the orthogonal subspace.
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