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Structural similarity metrics and information theory based metrics have

been proposed as a completely different alternative to the traditional metrics

based on error visibility and human vision models. Three basic criticisms were

raised against the traditional error visibility approach: (1) it is based on near

threshold performance, (2) its geometric meaning may be limited, and (3)

stationary pooling strategies may not be statistically justified. These criticisms

and the good performance of structural and information theory based metrics

have popularized the idea of their superiority over the error visibility approach.

In this work we experimentally or analytically show that the above criti-

cisms do not apply to error visibility metrics that use a general enough Divisive

Normalization masking model. According to this, the traditional Divisive Nor-

malization metric [1] is not intrinsically inferior to the newer approaches. In

fact, experiments on a number of databases including a wide range of distor-

tions show that Divisive Normalization is fairly competitive with the newer

approaches, robust, and easy to interpret in linear terms.

These results suggest that, despite the criticisms to the traditional error vis-

ibility approach, Divisive Normalization masking models should be considered

in the image quality discussion.

c© 2010 Optical Society of America

1. Introduction

Reproducing subjective opinion of image distortion has two broad applications: in engineer-

ing, image quality metrics may replace the (time consuming) human evaluation to assess the
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results of the algorithms, and in vision science, image quality results may provide insight on

the way the brain processes visual information.

Nowadays there is a fruitful debate about the right approach in the image quality as-

sessment problem. The image quality metrics have been classified according to this broad

taxonomy [2]: (1) error visibility techniques based on human visual system (HVS) models,

(2) structural similarity techniques, and (3) information theoretic techniques.

The classical error visibility approach to simulate human judgement naturally tried to

include empirical aspects of the HVS in the image metric [3, 4]. Basic features taken into

account include decomposition in orientation and scale channels [5], contrast sensitivity

[3, 6–8], and contrast masking non-linearities through simple point-wise models [9–11], the

more general Divisive Normalization [1, 12, 13], or equivalently, the non-uniform nature of

just noticeable differences (JND) [14]. The final distance measure is typically obtained from a

certain summation norm of the difference vector in the internal image representation domain

(Minkowski pooling) [3, 15].

Recently, alternatives to the above empirical approach have been proposed: structural

similarity methods [16–18] and information theoretic methods [19,20]. The common ground

of these new techniques rely on the relation between image statistics and the behavior of

the visual system [21,22]: since the organization and non-linearities of visual sensors seem to

emerge from image statistics [23,24], it is sensible to assess the image distortion by measuring

the departure of the corrupted image from the average behavior of natural images.

The structural similarity approach quantifies visual quality by comparing three statistical

measures in the original and distorted images: mean (related to luminance), variance (related

to contrast), and cross-correlation (related to structure). The aim of using a characterization

of the structure is achieving invariance under small changes in the image [25]. This general

concept has been applied both in the spatial domain (SSIM) [17] and in multi-scale image

representations (MSSIM) [16] and (CW-SSIM) [18].

The information theoretic approach (VIF [20]) quantifies the similarity by comparing the

information that could ideally be extracted by the brain from the distorted and the original

image respectively. The authors assume a certain image source model and characterize the

HVS as a simple channel that introduces additive noise in the wavelet domain. The amount

of information that can be extracted about the original signal from the perceived images is

modeled by the mutual information between the output of the above simplified HVS model

and the original image.

Despite some of the new approaches claim to be a new philosophy [17], a number of

qualitative relations have been pointed out among the newer approaches and Divisive Nor-

malization masking models [19,20,26]. However, no explicit comparison has been done with

metrics based on updated versions of the Divisive Normalization error visibility. Moreover,
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the new approaches criticize the classical error visibility approach in many ways:

• Suprathreshold problem. Since the empirical HVS models are based on near thresh-

old measurements using too simple (academic) stimuli, it is argued that there is no

guarantee that these models are applicable to suprathreshold distortions on complex

natural images [17,20].

• Geometric limitations of error visibility techniques. In [17], the authors criticize linear

and point-wise non-linear HVS models because they give rise to too rigid discrimination

regions, while stressing the flexibility of structural measures. Nevertheless, the authors

(qualitatively) recognize that general Divisive Normalization models (including inter-

coefficient masking) may induce a richer geometric behavior.

• Minkowski pooling assumes statistical independence among error coefficients. It has

been argued that this is not an appropriate summation strategy in linear domains

where there are statistical relations among coefficients [17]. This criticism is certainly

appropriate for linear (CSF-based) HVS models. Again, this wouldn’t be the case for

image representations with reduced relations among coefficients.

These non-addressed criticisms, and the fact that the new approaches are easy to use in a

number of engineering applications [2], have popularized the idea of their superiority over

the error visibility approach.

The aim of this work is to provide new results in favor of the classical error visibility

approach by showing that the above criticisms do not apply to the Divisive Normalization

masking models, and by showing that what will be referred to as Divisive Normalization

metric (originally proposed as image quality measure in [1]) can be easily adapted to be

competitive with the new approaches. This is an additional evidence to confirm the link

among the different strategies, and suggests that, despite the criticisms, Divisive Normaliza-

tion masking models should still be considered in the image quality discussion.

The paper is organized as follows: In Section 2 we review and generalize the Divisive

Normalization masking model, and we show that the resulting metric successfully addresses

the criticisms against the error visibility approach. Finally we show the relation of the pro-

posed metric to other error visibility techniques. In Section 3 we compare the performance

of the proposed metric to structural similarity techniques (SSIM [17] and MSSIM [16]), and

information theoretic techniques (VIF [20]). An extensive comparison is made according to

standard procedures in a number of recently available subjectively rated databases including

a total of 2173 distorted images and 25 kinds of distortion. Finally in Section 4 we draw

the conclusions of the work and discuss additional issues that may improve the Divisive

Normalization performance.

3



2. The Divisive Normalization metric

In this section we first review the Divisive Normalization model and the associated error

visibility metric as implemented here. In subsection 2.A we describe the procedure to set the

parameters of the model. Afterwards (in subsections 2.B to 2.D), we address the criticisms

made against error visibility techniques: we show (1) the ability to simultaneously reproduce

high level and low level distortion data, (2) the geometric richness of the model, and (3) the

statistical independence effect that justifies uniform Minkowski pooling. Finally in subsection

2.E we show how the proposed metric relates to other error visibility metrics.

The Divisive Normalization metric originally proposed by Teo and Heeger [1] is based on

the standard psychophysical and physiological model that describes the early visual process-

ing up to the V1 cortex [15,27–29]. In this model, the input image, x = (x1, · · · , xn), is first

analyzed by a set of wavelet-like linear sensors, Tij, that provide a scale and orientation

decomposition of the image [15]. The linear sensors have a frequency dependent linear gain

according to the Contrast Sensitivity Function (CSF), Sj, [27,28]. The weighted response of

these sensors is non-linearly transformed according to the Divisive Normalization, R [15,29],

in which they are rectified and normalized by a pooling of the responses of the neighboring

sensors in scale, orientation and spatial position:

x
T−→ w

S−→ w′ R−→ r (1)

In this scheme, the rows of the matrix T contain the linear receptive fields of V1 neurons. In

this work the V1 linear stage is simulated by an orthogonal 4-scales QMF wavelet transform

[30]. S is a diagonal matrix containing the linear gains to model the contrast sensitivity.

Here, the diagonal in S, is described by a function that depends on the scale, e = 1, 2, 3, 4,

(e ranges from fine to coarse), may depend on the orientation, o = 1, 2, 3, (the o values stand

for horizontal, diagonal and vertical), but it is constant for every spatial position, p:

Si = S(e,o,p) = Ao · exp

(
−(4− e)θ

sθ
o

)
(2)

where Ao is the maximum gain for the considered orientation, so controls the bandwidth of

the frequency response, and θ determines the sharpness of the decay with spatial frequency.

Finally, R is the Divisive Normalization response:

R(w′)i = ri = sign(w′
i)

|Si · wi|γ
βγ

i +
∑n

k=1 Hik|Sk · wk|γ (3)

where H is a kernel matrix that controls how the responses of neighboring linear sensors, k,

affect the non-linear response of sensor i [15].

Even though in the original use of Divisive Normalization for image quality purposes [1] the

interaction kernel weights every sensor in a certain neighborhood in the same way, here we
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use the Gaussian interaction kernel proposed by Watson and Solomon [15], which has been

successfully used in block-frequency domains [13, 31, 32], and in steerable wavelet domains

[33]. In the orthogonal wavelet domain this reduces to:

Hik = H(e,o,p),(e′,o′,p′) = K · exp

(
−

(
(e− e′)2

σ2
e

+
(o− o′)2

σ2
o

+
(p− p′)2

σ2
p

))
(4)

where (e, o,p) and (e′, o′,p′) refer to the scale, orientation and spatial position meaning

of the wavelet coefficients i and k respectively, and K is a normalization factor to ensure∑
k Hik = 1.

In our implementation of the model we set the profile of the regularizing constants βi

according to the standard deviation of each subband of the wavelet coefficients of natural

images in the selected wavelet representation. This is consistent with the interpretation of

the values βi as priors of the amplitude of the coefficients [22]. This profile (computed from

100 images of a calibrated image data base [34]) is further multiplied by a constant b to be

set in the optimization process.

Given an input image, x, and its distorted version, x′ = x+∆x, the above model provides

two response vectors, r, and r′ = r + ∆r. The perceived distortion can be obtained through

the appropriate pooling of the one dimensional deviations in the vector ∆r. Non-quadratic

pooling norms have been reported [3, 15, 35]. Moreover, different summation exponents, for

the pooling across spatial position, qp, and frequency, qf , may be used:

dpf (x,x′) =
1

n

[∑

f

[
[
∑
p

∆r
qp

fp]
1

qp

]qf
] 1

qf

(5)

dfp(x,x′) =
1

n

[∑
p

[
[
∑

f

∆r
qf

fp]
1

qf

]qp
] 1

qp

(6)

where f ≡ {e, o}. In this general case, the order in which dimensions are pooled matters.

Pooling across space and frequency is not commutative unless both pooling exponents are

the same. In particular, Teo and Heeger proposed to compute the perceived distortion as the

Euclidean norm of the difference vector (quadratic Minkowski pooling exponent qp = qf = 2).

The color version of the V1 response model involves the same kind of spatial transforms

described above applied on the image channels in an opponent color space [36]. Here we use

the standard YUV (luminance, yellow-blue, red-green) representation [37]. According to the

well known differences in frequency sensitivity in the achromatic and chromatic channels [38],

we will allow for different matrices S in the YUV channels. In particular, we will allow for

different gains (AoY , AoU = AoV ) and different bandwidths (soY , soU = soV ). We will assume

the same behavior for the other spatial transforms since the non-linear behavior of the

chromatic channels is similar to the achromatic non-linearities [36].
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2.A. Setting the model parameters

In the original work introducing the metric based on Divisive Normalization [1] and in the

sequels [12, 13] the parameters were inspired in psychophysical facts. In general there are

three basic strategies to obtain the parameters of the model:

• The direct empirical approach implies fitting the parameters to reproduce direct low-

level perception data such as physiological recordings on V1 neurons (as in [29]), or

psychophysical measurements of contrast incremental thresholds (as in [15]). Since

the realization of direct experiments is beyond the scope of this paper, this low-level

empirical approach is not straightforward because the physiological and psychophysical

literature is often interested in a subset of the parameters, and a variety of experimental

settings is used in these restricted experiments (e.g. different selected stimuli, different

contrast units...). As a result, it is not easy to unify the wide range of experimental

results into a common computational framework.

• The indirect empirical approach implies fitting the parameters of the model to repro-

duce higher level visual tasks such as image quality assessment: for instance, in [35]

the authors fitted the parameters of the Standard Spatial Observer to the VQEG sub-

jectively rated data.

• The statistically-based approach assumes that the goal of the different signal transforms

is to increase the independence among the coefficients of the image representation

[21, 23, 24]. In this case, the parameters of the model may be optimized to maximize

some statistical independence measure as in [22].

In this work we take the second approach: we fitted the parameters of the Divisive Normal-

ization metric to maximize the Pearson correlation with the subjective ratings of a subset

of the LIVE Quality Assessment Database [39]. In order to point out the generalization

ability of the proposed metric, we optimized the Divisive Normalization model just for 3 of

the 27 images in the database (house, sailing2 and womanhat) that represents about 10%

of the available data. In Section 3 we not only test the behavior of the model in the whole

dataset but also in other databases not including LIVE distortions (TID [40], IVC [41], and

Cornell [14]). By using this testing strategy, we address one of the criticisms to the error

visibility techniques: the model is applicable to a variety of new supra-threshold distortions,

while still reproducing the low-level psychophysical results (as will be shown in Section 2.B).

Assuming the same behavior in the horizontal and vertical directions (o = 1, 3), and

assuming that the oblique effect in the frequency sensitivity [42] is described by a single

attenuation of the gain in the diagonal direction (i.e. A2 = d ·A1 in every chromatic channel),
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the model described so far has 13 free parameters:

Ω ≡ {A1Y , d, A1UV , sY , sUV , θ, γ, b, σe, σo, σp, qs, qf}. (7)

In order to simplify the optimization process, we didn’t explore all the dimensions of the

parameter space at the same time, but optimized the parameters using a three stages proce-

dure obtaining local optima in restricted subspaces. We first obtained the basic parameters

of the model by neglecting the chromatic channels, the oblique effect and the non-quadratic

summation, i.e. using A1UV = 0, d = 1, and qs = qf = 2, thus reducing the dimensions of

the parameter space to 8, Ω1 ≡ {AY , sY , θ, γ, b, σe, σo, σp}. Afterwards, we checked the

eventual improvements obtained from the previous (local) optimal configuration by consid-

ering the chromatic channels and allowing different values for the sensitivity in the diagonal

direction, Ω2 ≡ {AUV , sUV , d}. Finally, different summation exponents for the spatial and

frequency pooling (in both possible orders) were considered Ω3 ≡ { qs, qf}.
The only computational inconvenience of the proposed metric is the size of the kernel H.

In order to circumvent this problem, two approximations were necessary:

• Kernel thresholding and quantization. The Gaussian interaction matrices were con-

verted to sparse matrices by eliminating those elements below a given threshold, that

in our experiments was set to 1/500 of the maximum in each interaction neighborhood.

Once the best Gaussian kernel was obtained, their size was further reduced by quan-

tizing it using 6 bits. No appreciable reduction of the performance was introduced by

this quantization, while extremely reducing the storage requirements.

• Limitation of the image size. The LIVE database include images of size 512 × 768.

This size implies a huge kernel. Since the computation and storage of a number of

non-quantized kernels is necessary for the optimization process, we decided to restrict

ourselves to work with cropped versions of the images in the database. The cropped

versions of the images were obtained by selecting the 256× 256 area around the most

salient point of each (original) image for 10 observers. The most salient point was

estimated as the average of the points selected by the observers. This approximation is

relevant just in the optimization process. Actually, the resulting Divisive Normalization

is used for images of any size by applying it first to each 256× 256 block of the image

and then by merging the result of each block into a single pyramid.

The parameter ranges were set starting from an initial guess obtained from the low-level

psychophysical behavior [15] and previous use of similar models in image processing appli-

cations [12,13,31,32]. The explored ranges for the parameters and the optimal values found

are shown in Table 1. The optimal pooling strategy found in our experiment was Eq. 6: first

sum over subbands and then over spatial positions. Figure 1 shows the shape of the linear
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Fig. 1. Linear gains S (left), regularization constants βγ (center), and interac-

tion kernel H (right).

gains S, the regularization constants βγ and the interaction kernel H when using the optimal

parameters. The structure of the interaction kernel comes from the particular arrangement

of wavelet coefficients used in the transform [30].

Parameter Range Optimal Correlation

AY 30, . . . , 60 40

sY 0.25, . . . , 3 1.5

θ 2, . . . , 8 6

γ 0.5, . . . , 3 1.7

b 0.5, . . . , 8 2

σe 0.15, . . . , 3 0.25

σo 0.15, . . . , 3 3

σp 0.03, . . . , 0.4 0.25 (in deg) ρp = 0.916

AUV 30, . . . , 40 35

sUV 0.25, . . . , 1.5 0.5

d 0.6, . . . , 1.4 0.8 ρp = 0.922

qp 0.5, . . . , 6 2.2

qf 0.5, . . . , 6 4.5 ρp = 0.931

Table 1. Parameter space, optimal values found, and improvement of the Pear-

son correlation in the progressive stages of the optimization.
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2.B. Consistency with low level psychophysical data

In this section we show that the model optimized to reproduce (high-level) image quality

results also reproduces the basic (low-level) trends on frequency sensitivity and contrast

masking.

Here, the response of the model to a given incremental pattern (target), ∆x, seen on top

of a background, x, is computed as the perceptual distance d(x,x + ∆x).

The contrast sensitivity can be simulated by computing the above distances between si-

nusoids with fixed contrast, but different frequencies and orientations, and a uniform gray

background. Figure 2 compares the result of this simulation for achromatic sinusoids in a

wide range of spatial frequencies with the corresponding achromatic CSF of the Standard

Spatial Observer [42]. Note that the model approximately reproduces the band pass behavior

and the oblique effect.

In order to simulate contrast masking results the contrast of a Gabor patch is increased

on top of different backgrounds (sinusoids with different contrasts and orientations). Figures

3 and 4 show examples of this kind of stimuli when test and background have the same and

different orientation. Note that the visibility of the target increases quickly for low contrast

targets, while remains more stable for higher contrast targets, thus revealing a non-linear

response. Moreover, the visibility of the target is reduced as the contrast of the background

is increased. This effect is bigger in figure 3 than in 4 because the background has the same

orientation as the target.

Figure 5 shows the responses of the model to the targets for the different background sets.

The model response to the target is a saturating non-linearity when the target is shown

on top of no background (auto-masking). The model predicts the reduction of the response

−30

−20

−10

0

10

20

30

−30
−20

−10
0

10
20

30
0

0.5
1

f
x
 (cl/deg)

f
y
 (cl/deg) −30

−20

−10

0

10

20

30

−30
−20

−10
0

10
20

30
0

0.5
1

f
x
 (cl/deg)

f
y
 (cl/deg)

Fig. 2. Frequency sensitivity prediction for achromatic sinusoids (left) and the

corresponding CSF of the Standard Spatial Observer (right).
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Fig. 3. Gabor patch of 6 cycl/deg (target) on top of sinusoids of the same

frequency and orientation (background). In each row the contrast of the Gabor

patch is increased from 0 to 0.6. The contrast of the background is 0 (top row)

0.1 (middle row) and 0.2 (bottom row).

Fig. 4. Gabor patch of 6 cycl/deg (target) on top of sinusoids of the same

frequency and different orientation (background). The visibility of the target

on top of non-zero backgrounds is reduced but not as much as in the previous

example.

when the target is shown on top of a background (cross-masking). The reduction increases

with the contrast of the mask. Moreover, note that the reduction in visibility is bigger for

backgrounds of the same nature. Therefore, the behavior of the model with the proposed
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Fig. 5. Response predictions for masks of the same orientation (left) and
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(mask) contrast. The three lines of each plot correspond to the visibility of the

three rows in figures 3 and 4.

parameters is compatible with the low-level behavior of human observers reported in [15].

The results in this section show that the Divisive Normalization model optimized for a

restricted set of high level distortions (such as those in the LIVE database) can reproduce

the basic features of low-level psychophysics, while dealing with different suprathreshold

distortions (as shown in Section 3). This shows that the suprathreshold criticism does not

apply to the Divisive Normalization metric.

2.C. Geometry of the Divisive Normalized domain

Assuming a quadratic pooling in the distance computation, a number of analytical results

can be obtained that show the appealing geometric behavior of the proposed metric. This

behavior still holds for non quadratic schemes.

In the quadratic summation case, the Euclidean metric, I, in the Divisive Normalization

domain may be interpreted as using non-Euclidean (Riemannian) metrics, M , in other image

representation domains [12,13]. The metric matrix, M , is a quadratic form that determines

the size and shape (orientation) of the ellipsoidal discrimination regions in the corresponding

image representation domain. The diagonal or non-diagonal nature of the metric determines

whether the discrimination regions are oriented along the axes of the representation. The

magnitude of the metric elements determines the size of the discrimination regions.
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In particular, in the spatial, the wavelet, and the normalized representations, we have:

d(x,x + ∆x)2 = ∆xT ·M(x) ·∆x =

= ∆wT ·M(w) ·∆w = ∆rT · I ·∆r
(8)

Since the sequence of transforms in Eq. 1 are differentiable, a small distortion ∆r may be

written as:

∆r = ∇R(w′) · S ·T ·∆x (9)

Therefore (from Eqs. 8 and 9), the expression of the metrics in the spatial and the wavelet

domain are:

M(x) = TT · S · ∇R(w′)T · ∇R(w′) · S ·T (10)

M(w) = S · ∇R(w′)T · ∇R(w′) · S (11)

According to the above expressions, the metric in the spatial and wavelet domains critically

depends on the Jacobian of the Divisive Normalization, which is:

∇R(w′)ij =
∂Ri

∂w′
j

= (12)

= γ

( |w′
i|γ−1

βi +
∑

k Hik|w′
k|γ

· δij −
|w′

i|γ|w′
j|γ−1

(βi +
∑

k Hik|w′
k|γ)2

·Hij

)

A number of interesting geometric conclusions can be obtained from the above expressions:

• Linear image spaces are not perceptually Euclidean since the distortion metric is image

dependent. As one could expect from contrast masking, the non-linear nature of the

Divisive Normalization transform implies that the visibility of a given distortion ∆x

depends on the background image x.

• Discrimination regions increase with the contrast of the image. Note that the elements

of the Jacobian ∇R (Eq. 12) decrease as the magnitude of the wavelet coefficients (or

contrast of the image components) increases. The reduction of the sensitivity is bigger

in high activity regions where a number of linear sensors |w′
k| have non-zero values in

the denominators of Eq. 12.

• Discrimination regions are not aligned with the axes of the wavelet representation.

Note that the Jacobian has a positive diagonal contribution (proportional to δij) and

a negative non-diagonal contribution due to the kernel, Hij, and depending on w′
i and

w′
j with i 6= j. This coupling implies that the discrimination ellipsoids are not oriented

along the axes of the wavelet representation. Since the Jacobian is input dependent, it

can not be strictly diagonalized in any linear representation.
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The above considerations on the metric, M(w), analytically demonstrate that the appealing

geometric behavior of structural similarity techniques (as in Fig. 4 in [17]) can be shared by

error visibility techniques when considering non-linearities including relations among wavelet

coefficients (e.g. Divisive Normalization).

Note also that the above considerations (that show that the geometric criticism does not

apply to the Divisive Normalization metric) still hold even though non-quadratic schemes are

considered. In that general case the shape of the discrimination regions will not be ellipsoidal,

but still its size and orientation will be determined by ∇R(w′) · S ·T or ∇R(w′) · S.

2.D. Statistical effect of the Divisive Normalization

Euclidean metrics and Minkowski pooling in the response domain implicitly assume statisti-

cal independence among the coefficients of the representation since the distortions in every

coefficient are individually considered. Existence of relations among the coefficients would

imply the consideration of couplings among pairs (or bigger groups) of coefficients. Therefore,

from the statistical point of view Minkowski pooling is fully justified in domains in which

the relations among coefficients are negligible.

In order to assess the independence among coefficients in the proposed Divisive Normal-

ization domain we use mutual information (MI) measures. In order to gather the appropriate

amount of data for MI estimation, we took 8000 patches of size 72 × 72 from the McGill

image data base [34] and computed their wavelet transform and their Divisive Normalization

transform. 120000 pairs of coefficients were used in each MI estimation. Two kinds of MI

estimators were used: (1) direct computation of MI, which involves 2D histogram estima-

tion [43], and (2) estimation of MI by PCA-based Gaussianization (GPCA) [44], which only

involves univariate histogram estimations. Table 2 shows the MI results (in bits) for pairs of

coefficients in the wavelet and the divisive normalized domains. The spatial (intra-band) and

the frequency (inter-scale and inter-orientation) relations were explored. Just for reference,

the MI among luminance values in the spatial domain is 1.79 bits.

These results are consistent with previous redundancy reduction results of Divisive Nor-

malization transform in other domains (and with different parameters) [13, 45], thus sug-

gesting that this particular vision model (optimized for image quality purposes) also reduces

dramatically the dependence among coefficients. The statistical effect of the proposed Di-

visive Normalization has been analyzed in detail in [46]. This fact statistically justifies the

use of simple Minkowski pooling in the considered case and addresses the corresponding

criticism.
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Table 2. MI measures in bits. GPCA MI estimations are shown in parenthesis.

Wavelet Div. Norm.
Intraband (scale = 2) 0.29 (0.27) 0.16 (0.15)
Intraband (scale = 3) 0.24 (0.22) 0.09 (0.09)

Inter-scale, scales = (1,2) 0.17 (0.17) 0.08 (0.08)
Inter-scale, scales = (2,3) 0.17 (0.15) 0.04 (0.04)
Inter-scale, scales = (3,4) 0.09 (0.07) 0.01 (0.01)

Inter-orientation (H-V), scale = 2 0.10 (0.08) 0.01 (0.01)
Inter-orientation (H-V), scale = 3 0.08 (0.06) 0.01 (0.01)
Inter-orientation (H-D), scale = 2 0.16 (0.15) 0.03 (0.03)
Inter-orientation (H-D), scale = 3 0.15 (0.14) 0.02 (0.02)

2.E. Relations to other error visibility metrics

The proposed model can reproduce Just Noticeable Differences (JNDs), which is a key factor

in other recent error visibility metrics [14]. JNDs of a certain target can be computed from

the inverse of the slope of the corresponding non-linear response.

On the other hand, if the proposed model is simplified to be completely linear by setting,

∇R = I, the proposed metric reduces to M(w) = S2. In this case, the distortion is just the

sum of differences in the transform domain weighted by the contrast sensitivity values (as

in [7]): d(x,x′) = (
∑

i S
2
i ∆w2

i )
1
2 .

If the proposed model is simplified to be point-wise non-linear by neglecting the non-

diagonal elements in ∇R, a contrast dependent behavior (smaller sensitivity for higher con-

trasts) is achieved as in [9–11].

3. Metric results

In this section we compare the performance of the proposed Divisive Normalization met-

ric2 with state of the art structural similarity metrics (SSIM [17] and MSSIM [16]), and

information theoretic measures (VIF [20]) on a number recently available subjectively rated

databases (LIVE [39, 47], TID [40], IVC [41], Cornell (on-line supplement to [14])3). Note

that more recent structural measures on wavelet domains (such as CW-SSIM [18]) are de-

signed to take into account phase distortions (translations and rotations). For registered

images, as is the case in the available databases, the results of CW-SSIM basically reduce to

2Available at: http://www.uv.es/vista/vistavalencia/div_norm_metric/
3Available at: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html
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the results of previously reported structural measures4. On-line available implementations

from the authors were used in each case (SSIM5, VIF and MSSIM6). In the SSIM case, the

two available implementations were used: the standard one (ssim_index.m), and a posterior

recommended modification (ssim.m) that subsamples the images to look for the best scale

to apply SSIM. This will be referred as SSIMsub in the experiments. SSIM results will not

be shown since they are always worse than those obtained with SSIMsub. In every case, we

used the RGB to Luminance conversion recommended by the authors. In the experiments

we also include the Euclidean measure RMSE for illustration purposes.

The experiments will be analyzed in two parts: (1) LIVE database, and (2) additional

databases with different distortions.

This distinction comes from the fact that even though a small subset of images of the

LIVE database was used to derive the parameters of the Divisive Normalization model, all

the five distortions in the LIVE database were used. One could argue that using LIVE to

check the performance of the model is not fair since it learnt the distortions. According to

this, we will show the results on the whole LIVE database for illustrative purposes, but

more interestingly, we will check the generalization ability of the model using data of other

subjectively rated databases corresponding to distortions not included in the LIVE database.

The good performance of the proposed metric on the new data can not come from over fit-

ting a particular database, but from the fact that it accurately models human perception. A

different indication of this accuracy is that even though the model was set using suprathresh-

old data, it also reproduces the basic trends of threshold psychophysics (frequency sensitivity

and contrast masking, as shown in Figs. 2 and 5).

3.A. Accuracy of a metric: correlations and calibration functions

Representing the ground truth subjective distortions (referred to as DMOS) as a function

of the distances, d, computed by some metric leads to a scatter plot. Ideally, the data in

this scatter plot should follow a straight line thus showing a perfect correlation among the

computed distances and the subjective ratings. In real situations the data depart from this

ideal behavior.

From the engineering point of view, any monotonic (not necessarily linear) relation be-

tween d and DMOS is good enough provided that the calibration function, DMOS = f(d), is

known by the metric user. According to this, non-parametric rank order correlation measures

(such as the Spearman correlation) or prediction errors using standard non-linear calibration

functions have been used to measure the accuracy of the distortion metrics [47, 48]. Rank

order correlations have been criticized for a number of reasons [47]: they do not take into

4Personal communication by Z. Wang.
5Available at: http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
6Available at: http://live.ece.utexas.edu/research/quality/
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account the magnitude of the departure from the predicted behavior and, as a result, it

is difficult to obtain useful confidence intervals to discriminate between metrics. Therefore,

even though the Spearman correlation is usually given for illustrative purposes, F-test on

the quotient of the sum of squared prediction errors using standard non-linear calibration

functions is usually preferred [47], and has been extensively used [14,20,35,47,48].

However, from the vision science point of view, systematic deviations from the linear

prediction suggest a failure (or limitation) of the underlying model: residual non-linearities

should be avoided by including the appropriate (perceptually meaningful) correction in the

model, instead of using an ad-hoc calibration afterwards. Besides, since distortion metrics

are commonly used without reference to such calibration functions7, the unexperienced user

may (erroneously) interpret the metric results in a linear way.

In the experiments below we analyze the results of the considered metrics by using the

standard F-test [47] along with the intuitive linear calibration and the previously reported

(standard) non-linear calibration functions [14, 20, 48]. Even though we feel that linear cal-

ibration is the most intuitive scale for the final user and the most challenging situation for

a model intended to reproduce human perception, we will see that the basic message (the

proposed error visibility metric is competitive with the newer techniques) is independent

from the calibration measure. This is good since F-test may be criticized as well because it

depends on an arguable choice of the calibration function. For illustration purposes we will

also include the (linear) Pearson correlation and the Spearman correlation. Note that the

Pearson correlation on the raw data as done here conveys the same kind of information as

the F-test when using a linear calibration function. The difference is that the F-test is useful

to establish confidence levels in the results so that it is easy to assess when the differences

in prediction errors (or Pearson correlation) are statistically significant.

3.B. Performance of the metrics

In this section we show the scatter plots, the correlations, the fitted calibration functions

and the F-test results for (1) the LIVE database, and (2) additional databases (TID, IVC,

and Cornell) excluding LIVE-like distortions. Note that distortions in Cornell database are

different since it consists of achromatic images.

As stated above, we used the linear calibration and three additional non-linear calibration

functions used in the literature: a 4 parameter logistic [14], a 5 parameter logistic [20, 47],

and a 4th order polynomial [48]. In every case, the calibration functions were fitted using

the Nelder-Mead simplex search method [49] with equivalent initial guesses (according to

the corresponding ranges of the distances).

Provided that the prediction errors of the metrics mi and mj are independent and Gaus-

7The software implementations [14,16,17,20] do not come with this non-linearity.
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sian, the F-test gives the probability that the sum of squared errors of metric i, ε2
i , is smaller

than the corresponding value of metric j, ε2
j . This probability, P (ε2

i < ε2
j), can be used to

assess if metric i is better than metric j. The F-test has been applied to compare among

the previously reported metrics [14,47]. Here we apply the same standard procedure. In the

case of the proposed Divisive Normalization metric the correlation between its residuals and

the residuals of the other metrics is similar or smaller than the equivalent results among

the other (previously compared) metrics. Therefore, the independence condition holds as

accurately as in previously reported comparisons. Unless explicitly stated, residuals can be

taken as Gaussian according to previously used kurtosis-based criteria [14, 47]. Therefore,

the Gaussianity condition holds as accurately as in previously reported comparisons.

None of the available image quality databases used an experimental procedure similar

to [50] (that gives rise to subjective ratings in meaningful JND units). The differences in the

experimental procedures implies that the available results are not ready to be merged into

a single database. Nevertheless, the different DMOS data were linearly scaled to fall within

the range of the LIVE database for visualization purposes8. This convenient linear DMOS

scaling is not a problem since (1) a separate analysis for each database is done, and (2) it

does not modify the correlation results (either Pearson or Spearman), nor the F-test results

(since the scaling is taken into account in fitting the corresponding calibration functions and

it cancels out in the quotient of squared errors).

Figures 6-9 show the scatter plots and the fitted functions for the considered metrics in

the considered situations (1) LIVE, Fig. 6; and (2) TID, Fig. 7, IVC, Fig. 8, Cornell, Fig. 9.

Each distortion is identified by a different symbol/color combination. The details on these

distortions can be found in the corresponding references. In every case increasing functions

were obtained by linearly turning similarity measures, s, into distortion measures, d (as

indicated in the plots).

Note that non-linear fitting functions may be unreliable: too flexible fitting functions (such

as the 4th order polynomial and the 5 parameter sigmoid) may give rise to non-monotonic

behavior. The behavior of these functions strongly depends on the considered data, thus

suggesting that it may not account for more general data.

In tables 3-6 we show the results of the F-test for the quotients of the sum of residuals

of the considered metrics in the two considered situations: (1) LIVE, table 3; and (2) TID,

table 4, IVC, table 5, Cornell, table 6. In these tables, highlighted cells in a row mean that

the model in the row is better than the model in the column at 90% confidence level.

8Note that two sets of DMOS scores are available in the LIVE database. In this work we used the set
that comes with the on-line file databaserelease2.zip, as used in [20].

17



2 JPEG2000 compression ¦ JPEG compression / Additive Gaussian
◦ Gaussian blur / Fast fading

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

RMSE

D
M

O
S

ρ
p
=0.61

ρ
s
=0.82

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

1−SSIM
subsampl.

D
M

O
S

ρ
p
=0.73

ρ
s
=0.9

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

1−MSSIM

D
M

O
S

ρ
p
=0.66

ρ
s
=0.9

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

1−VIF

D
M

O
S

ρ
p
=0.94

ρ
s
=0.95

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

10

20

30

40

50

60

70

80

90

Div. Norm.

D
M

O
S

ρ
p
=0.89

ρ
s
=0.91

Fig. 6. Scatter plots, fitted functions and correlation coefficients for the consid-

ered metrics on the LIVE database. The legend shows the symbols representing

each distortion in the LIVE database. The solid line represents the linear fit-

ting. The dashed line represents the 4 parameter sigmoid function used in [14],

the dash-dot line represents the 5 parameter sigmoid used in [20,47]. The dot-

ted line stands for the 4th order polynomial used in [48].
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Fig. 7. Scatter plots, fitted functions and correlation coefficients for the con-

sidered metrics on the TID database (excluding LIVE-like distortions). The

legend represents the symbols corresponding to the distortions which are not

present in the LIVE database. Line styles for the calibration functions have

the same meaning as in figure 6.
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Fig. 8. Scatter plots, fitted functions and correlation coefficients for the consid-

ered metrics on the IVC database (excluding LIVE-like distortions). The only

non-LIVE distortion in the IVC database is what they call LAR distortion

(see [41] for details), depicted here in red stars. Line styles for the calibration

functions have the same meaning as in figure 6.
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Fig. 9. Scatter plots, fitted functions and correlation coefficients for the consid-

ered metrics on the Cornell database. The legend represents the symbols cor-

responding to the distortions which are not present in the LIVE database (no

Cornell distortion is present in LIVE since Cornell is an achromatic database).

Line styles for the calibration functions have the same meaning as in figure 6.
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Table 3. Quality of metrics on the LIVE database (F-test): probability that

the model in the row is better than the model in the column for the linear and

several non-linear fits. Highlighted cells mean that model in the row is better

than the model in the column at 90% confidence level. The models highlighted

with ? have non-Gaussian residuals, so the result is not strictly correct.

P (ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF DN

RMSE: - 0.00 0.08 0.00 0.00
SSIMsub.: 1.00 - 1.00 0.00 0.00
MSSIM: 0.92 0.00 - 0.00 0.00

VIF: 1.00 1.00 1.00 - 1.00
DN: 1.00 1.00 1.00 0.00 -

P (ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.64 0.00 0.09
MSSIM: 1.00 0.36 - 0.00 0.04
VIF?: 1.00 1.00 1.00 - 1.00
DN: 1.00 0.91 0.96 0.00 -

P (ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.58 0.00 0.14
MSSIM: 1.00 0.42 - 0.00 0.10
VIF?: 1.00 1.00 1.00 - 1.00
DN: 1.00 0.86 0.90 0.00 -

P (ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.12 1.00 0.00 0.00

SSIMsub.: 0.88 - 1.00 0.00 0.00
MSSIM: 0.00 0.00 - 0.00 0.00

VIF: 1.00 1.00 1.00 - 1.00
DN: 1.00 1.00 1.00 0.00 -
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Table 4. Quality of metrics on the TID database (excluding LIVE-like distor-

tions). See caption of table 3 for details.

P (ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF? DN

RMSE: - 0.00 0.00 0.00 0.00
SSIMsub.: 1.00 - 0.12 0.00 0.00
MSSIM: 1.00 0.88 - 0.01 0.03
VIF?: 1.00 1.00 0.99 - 0.75
DN: 1.00 1.00 0.97 0.25 -

P (ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.10 0.29
MSSIM?: 1.00 0.99 - 0.86 0.97

VIF?: 1.00 0.90 0.14 - 0.77
DN: 1.00 0.71 0.03 0.23 -

P (ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.13 0.32
MSSIM?: 1.00 0.99 - 0.91 0.98

VIF?: 1.00 0.87 0.09 - 0.75
DN: 1.00 0.68 0.02 0.25 -

P (ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.05 0.31
MSSIM?: 1.00 0.99 - 0.79 0.97

VIF: 1.00 0.95 0.21 - 0.86
DN: 1.00 0.69 0.03 0.14 -

23



Table 5. Quality of metrics on the IVC database (excluding LIVE-like distor-

tions). See caption of table 3 for details.

P (ε2
row < ε2

col) Linear Fit
RMSE SSIM?

sub. MSSIM? VIF DN
RMSE: - 0.00 0.00 0.00 0.00

SSIM?
sub.: 1.00 - 0.62 0.28 0.34

MSSIM?: 1.00 0.38 - 0.19 0.23
VIF: 1.00 0.72 0.81 - 0.56
DN: 1.00 0.66 0.77 0.44 -

P (ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.72 0.86 0.86
MSSIM?: 1.00 0.28 - 0.69 0.68

VIF: 1.00 0.14 0.31 - 0.50
DN: 1.00 0.14 0.32 0.50 -

P (ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.75 0.87 0.87
MSSIM?: 1.00 0.25 - 0.68 0.68

VIF: 1.00 0.13 0.32 - 0.50
DN: 1.00 0.13 0.32 0.50 -

P (ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.00 0.00 0.00 0.01

SSIMsub.: 1.00 - 0.64 0.81 0.89
MSSIM?: 1.00 0.36 - 0.70 0.82

VIF: 1.00 0.19 0.30 - 0.65
DN: 0.99 0.10 0.18 0.35 -
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Table 6. Quality of metrics on the (achromatic) Cornell database. See caption

of table 3 for details.

P (ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF? DN

RMSE: - 0.17 0.00 0.63 0.27
SSIMsub.: 0.83 - 0.03 0.90 0.63
MSSIM: 1.00 0.97 - 1.00 0.99
VIF?: 0.37 0.10 0.00 - 0.17
DN: 0.73 0.37 0.01 0.83 -

P (ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.07 0.00 0.64 0.18

SSIMsub.: 0.93 - 0.06 0.97 0.72
MSSIM: 1.00 0.94 - 1.00 0.98
VIF?: 0.36 0.03 0.00 - 0.10
DN: 0.82 0.28 0.02 0.90 -

P (ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.05 0.00 0.63 0.17

SSIMsub.: 0.95 - 0.08 0.97 0.74
MSSIM: 1.00 0.92 - 1.00 0.98
VIF?: 0.37 0.03 0.00 - 0.10
DN: 0.83 0.26 0.02 0.90 -

P (ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.08 0.00 0.64 0.28

SSIMsub.: 0.92 - 0.06 0.96 0.80
MSSIM: 1.00 0.94 - 1.00 0.99
VIF?: 0.36 0.04 0.00 - 0.17
DN: 0.72 0.20 0.01 0.83 -
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3.C. Discussion

In the LIVE case, VIF is the best performing metric. The proposed Divisive Normalization

metric is the second best and shows a significantly better performance than structural meth-

ods. This reveals that the proposed model can adequately account for the whole database

even though its parameters were set by using the 10% of the data (and cropped images).

This good performance is independent from the fitting function.

When considering a wider range of distortions (TID and IVC), and using the most chal-

lenging linear fit, no algorithm outperforms the proposed Divisive Normalization metric. In

the (small) Cornell database, MSSIM is the only metric that significantly outperforms the

proposed metric. However, note that the proposed metric significantly outperforms MSSIM

in the (bigger) LIVE case no matter the calibration function.

To summarize, the proposed metric performs quite well in the LIVE database (5 distor-

tions) and successfully generalizes to a wide range of distortions (e.g. 20 new distortions in

the TID, IVC and Cornell databases). This suggests that the parameters found are perceptu-

ally meaningful thus giving rise to a robust metric. In most of the cases the proposed metric

is statistically indistinguishable from structural and information theoretic methods. In some

particular cases, it is outperformed by VIF (as in LIVE) or by MSSIM (as in Cornell), but

it is important to note that, conversely, it significantly outperforms MSSIM in LIVE, and

works better than VIF in Cornell (at 80% confidence level). The above is true for all the

considered calibration functions.

As a result, the proposed error visibility metric based on Divisive Normalization seems

to be competitive with structural and information theoretic metrics. It is quite robust and

easy to interpret in linear terms. This is consistent with the fact that the criticisms made to

the error visibility techniques do not apply to the Divisive Normalization metric as shown

in sections 2.B, 2.C and 2.D.

4. Conclusions and further work

In this work, the classical Divisive Normalization metric [1] was revisited to address the

criticisms raised against error visibility techniques. The model was generalized to include

weighted relations among coefficients (as in [15]) and extended to work with color images

(as in [36]). It was straightforwardly fitted by using a small subset of the subjectively rated

LIVE database, and proved to generalize quite well for the whole database as well as for

more general databases including distortions of different nature (e.g. TID, IVC, Cornell) .

We showed that the three basic criticisms made against error visibility techniques do not

apply to the Divisive Normalization metric: (1) even though the Divisive Normalization is

inspired in low-level (threshold) psychophysical and physiological data, it can account for

higher-level (suprathreshold) distortions while approximately reproducing the frequency sen-
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sitivity and masking results. (2) It was analytically shown that the Divisive Normalization

has a rich geometric behavior, so it is not a singular feature of structural similarity metrics.

(3) It was shown that the Divisive Normalization representation reduces the statistical rela-

tions among the image coefficients, thus justifying the use of uniform Minkowski summation

strategies in the normalized domain.

The experiments show that the proposed metric is competitive with structural and infor-

mation theoretic metrics, it performs consistently when facing a wide range of distortions

and it is easy to interpret in linear terms. These results suggest that the classical error visi-

bility approach based on gain control models should still be considered in the image quality

discussion.

In fact, the proposed Divisive Normalization framework can still be improved in many

ways. The linear chromatic and spatial transforms can be improved by (1) using non-linear

color representations to account for the chromatic adaptation ability of human observers [51],

and (2) better wavelet transforms may be used for a better simulation of V1 receptive fields

(e.g. steerable pyramids [52]). Useful Divisive Normalization transforms for image enhance-

ment have already been proposed on steerable pyramids [53]. Different wavelet basis (as in

CW-SSIM [18]) could be used to introduce translation and rotation invariance. Better (non-

linear) color representations can be useful to assess changes in average luminance or in the

spectral radiance (i.e. including color constancy). Linear models may overestimate the effect

of such distortions. The proposed non-linear transform can also be generalized since mask-

ing interactions among sensors of different chromatic channels may occur [54], but they were

not considered here in order to keep the interaction kernel small. Summation over the color

dimension can be generalized as well by including different summation exponents on the op-

ponent channels. Another issue to be explored is the role of the low-frequency residual which

was neglected in this work. Weber-law like non-linearities should be used in this case (in

agreement with non-linear color appearance models) together with and appropriate relative

weight between the low-pass and the higher frequency subbands. From a more general point

of view, the proposed model may be complemented by bottom-up techniques for saliency

prediction based on the V1 image representation [55]. Finally, better optimization techniques

instead of the reported exhaustive search of the parameter subspaces may be used in order to

obtain a more accurate estimation of the optimal parameters with a reduced computational

burden.
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