
Porting GCC to the
AMD64 architecture

Jan Hubička

hubicka@suse.cz

SuSE ČR s. r. o.

Porting GCC to the AMD64 architecture – p.1/20



AMD64 architecture
• New architecture used by 8th generation

CPUs by AMD
• AMD Opteron
• AMD Athlon64

Porting GCC to the AMD64 architecture – p.2/20



AMD64 architecture
• New architecture used by 8th generation

CPUs by AMD
• AMD Opteron

• Available since April

• Server CPU
• SMP capable

• AMD Athlon64

Porting GCC to the AMD64 architecture – p.2/20



AMD64 architecture
• New architecture used by 8th generation

CPUs by AMD
• AMD Opteron

• Available since April

• Server CPU
• SMP capable

• AMD Athlon64
• To arrive in September
• Desktop CPU

Porting GCC to the AMD64 architecture – p.2/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.
• Four additional bits for instruction encoding

via rex prefix

• IP relative addressing is cheaper than direct
addressing

• Immediates remains 32-bit sign extended
• 32-bit operations zero extend
• movabs instruction to load 64-bit immediates

available

Porting GCC to the AMD64 architecture – p.3/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.

• Four additional bits for instruction encoding
via rex prefix
Bit 1 overwrite operand size to 64-bit

89 c3 movl %eax, %ebx

48 89 c3 movq %rax, %rbx

41 89 c3 movl %eax, %r10

44 89 c3 movl %r8, %ebx

• IP relative addressing is cheaper than direct
addressing

• Immediates remains 32-bit sign extended

• 32-bit operations zero extend

• movabs instruction to load 64-bit immediates available

Porting GCC to the AMD64 architecture – p.3/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.

• Four additional bits for instruction encoding
via rex prefix
Bit 1 overwrite operand size to 64-bit

89 c3 movl %eax, %ebx

48 89 c3 movq %rax, %rbx

41 89 c3 movl %eax, %r10

44 89 c3 movl %r8, %ebx

• IP relative addressing is cheaper than direct
addressing

• Immediates remains 32-bit sign extended

• 32-bit operations zero extend

• movabs instruction to load 64-bit immediates available

Porting GCC to the AMD64 architecture – p.3/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.

• Four additional bits for instruction encoding
via rex prefix
Bits 2–4 double amount of integer and SSE registers

89 c3 movl %eax, %ebx

48 89 c3 movq %rax, %rbx

41 89 c3 movl %eax, %r10

44 89 c3 movl %r8, %ebx

• IP relative addressing is cheaper than direct
addressing

• Immediates remains 32-bit sign extended

• 32-bit operations zero extend

• movabs instruction to load 64-bit immediates available

Porting GCC to the AMD64 architecture – p.3/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.
• Four additional bits for instruction encoding

via rex prefix
• IP relative addressing is cheaper than direct

addressing
• Immediates remains 32-bit sign extended

89 04 25 34 12 00 00 mov %eax,0x1234

89 05 34 12 00 00 mov %eax,0x1234(%rip)

• 32-bit operations zero extend

• movabs instruction to load 64-bit immediates available

Porting GCC to the AMD64 architecture – p.3/20



AMD64 instruction set
• 64-bit extension of the existing IA-32 ISA.
• Single byte encodings of inc and dec

removed.
• Four additional bits for instruction encoding

via rex prefix
• IP relative addressing is cheaper than direct

addressing
• Immediates remains 32-bit sign extended
• 32-bit operations zero extend
• movabs instruction to load 64-bit immediates

available

Porting GCC to the AMD64 architecture – p.3/20



GCC porting effort
• AMD disclosed specification and simulator

early
• Open development of GCC and Binutils

• Discussed in the public mailing lists
http://www.x86-64.org

• Implemented mostly by small team in SuSE
• The first available compiler for the platform

• Porting was easy
• System V Application Binary Interface;

AMD64 Processor Supplement (PSABI)
• First compiler port has chance to design ABI

• Draft versions released and discussed in public
• GCC used to test decisions

Porting GCC to the AMD64 architecture – p.4/20



GCC porting effort
• AMD disclosed specification and simulator

early
August 10, 2000 Specs

September, 2000 First GNU tools

October 6, 2000 Simulator

January 16, 2001 Emulator, working Linux kernel

January 8, 2002 AMD64 in GCC mainline

Februrary 26, 2002 First Hardware,

working userland, X11

August 15, 2002 GCC 3.2

April 22, 2003 AMD Opteron, SuSE GNU/Linux

• Porting was easy

• System V Application Binary Interface;
AMD64 Processor Supplement (PSABI)

• First compiler port has chance to design ABI

• Draft versions released and discussed in public

• GCC used to test decisions

Porting GCC to the AMD64 architecture – p.4/20



GCC porting effort
• AMD disclosed specification and simulator

early

• Porting was easy
• Hit just very few limitations of generic GCC code

• Majority of problems caused Binutils port
(lack of experience and crazy design)

• Enough time to concentrate on code quality

• System V Application Binary Interface;
AMD64 Processor Supplement (PSABI)
• First compiler port has chance to design ABI

• Draft versions released and discussed in public
• GCC used to test decisions

Porting GCC to the AMD64 architecture – p.4/20



GCC porting effort
• AMD disclosed specification and simulator

early
• Porting was easy
• System V Application Binary Interface;

AMD64 Processor Supplement (PSABI)
• First compiler port has chance to design ABI

• Draft versions released and discussed in public
• GCC used to test decisions

Porting GCC to the AMD64 architecture – p.4/20



PSABI
• Based on IA-32 PSABI

• Important changes in:
• Natural alignment for all types

• sizeof(long double)=16 (not 12).
• 48-bits of padding for fast loads/stores

• Register argument passing conventions

• Multiple code models

• PIC take advantage of IP relative addressing

• Stack unwinding done using DWARF2

• Red zone to reduce amount of stack frame
allocations

Porting GCC to the AMD64 architecture – p.5/20



Argument passing
• 6 Integer and 6 SSE registers used to pass

arguments
• 2 integer, 2 SSE and 2 x87 registers used to

return values
• Small (≤ 16 bytes) aggregates are passed in

registers
• Arguments are passed in registers only when

they fit as a whole
• Otherwise passed by value (unlike PPC

PSABI)
• Arguments are not promoted to 64-bits

(breaks some programs, like GNOME)
Porting GCC to the AMD64 architecture – p.6/20



Variadic argument
• va_list type definition
typedef struct {

unsigned int gp_offset;

unsigned int fp_offset;

void *overflow_arg_area;

void *reg_save_area;

} va_list[1];

Porting GCC to the AMD64 architecture – p.7/20



Variadic argument
• va_list type definition
typedef struct {

unsigned int gp_offset;

unsigned int fp_offset;

void *overflow_arg_area;

void *reg_save_area;

} va_list[1];

• Register al used to specify amount of SSE
operand registers when calling variadic or
prototypeless function
• Jump-table used in the prologues
• Breaks non-conforming programs calling variadic

functions with non-variadic prototype (strace)
Porting GCC to the AMD64 architecture – p.7/20



Variadic argument
• va_list type definition
typedef struct {

unsigned int gp_offset;

unsigned int fp_offset;

void *overflow_arg_area;

void *reg_save_area;

} va_list[1];

• Breaks non conforming code:
void t (va_list *);

void q (va_list a)

{

t(&a);

}
Porting GCC to the AMD64 architecture – p.7/20



Code models
• Limiting code and data size save resources

• small model code+data in the low 31-bits

• medium model code limited, data unlimited
3.28% slowdown, 14% code size growth

• large mode unlimited, not implemented

Porting GCC to the AMD64 architecture – p.8/20



Code models
• Limiting code and data size save resources

• small model code+data in the low 31-bits

• medium model code limited, data unlimited
3.28% slowdown, 14% code size growth

• large mode unlimited, not implemented

• Position Independent Code
• GOT, PLT and static data accessed by IP relative

addressing

• Limited to 31bits

• Large PIC libraries would need new relocations

• 8% performance penalty on AMD64, 20% on IA-32
• 5% growth AMD64, 0.8% on IA-32

Porting GCC to the AMD64 architecture – p.8/20



DWARF2 Stack Unwinding
• DWARF2 already used for exception handling
• First GCC target to use DWARF2 everywhere

• Pros:

• Cons:

• New support for the unwinding in GDB
• may be considered for other platforms too.
• s390 already adopted the scheme
• We should consider the shift for 386 to enable
-fomit-frame-pointer by default (3.26%
speedup, 0.95% growth on IA-32)

Porting GCC to the AMD64 architecture – p.9/20



DWARF2 Stack Unwinding
• DWARF2 already used for exception handling
• First GCC target to use DWARF2 everywhere

• Pros:
• Give maximal freedom of stack frame

optimizations
• Standard and used for EH in GCC
• Asynchronous unwind information generated by

default is useful for garbage collection and
debugging

• Cons:

• New support for the unwinding in GDB
• may be considered for other platforms too.
• s390 already adopted the scheme
• We should consider the shift for 386 to enable
-fomit-frame-pointer by default (3.26%
speedup, 0.95% growth on IA-32)

Porting GCC to the AMD64 architecture – p.9/20



DWARF2 Stack Unwinding
• DWARF2 already used for exception handling
• First GCC target to use DWARF2 everywhere

• Pros:

• Cons:

• Complex implementation
· PSABI specify unwinding API compatible with

IA-64
• Large unwind tables (7% of the code size)
• Unwinding is relatively slow
• Need to manually annotate assembly functions

· GAS extension urgently needed

• New support for the unwinding in GDB
• may be considered for other platforms too.
• s390 already adopted the scheme
• We should consider the shift for 386 to enable
-fomit-frame-pointer by default (3.26%
speedup, 0.95% growth on IA-32)

Porting GCC to the AMD64 architecture – p.9/20



DWARF2 Stack Unwinding
• DWARF2 already used for exception handling
• First GCC target to use DWARF2 everywhere

• Pros:

• Cons:

• New support for the unwinding in GDB
• may be considered for other platforms too.
• s390 already adopted the scheme
• We should consider the shift for 386 to enable
-fomit-frame-pointer by default (3.26%
speedup, 0.95% growth on IA-32)

Porting GCC to the AMD64 architecture – p.9/20



Floating point math
• i386 use x87 instruction set to implement

floating point arithmetics
• SSE Instruction set

• GCC use SSE for single and double
precision, x87 for extended precision

• Huge performance impact for both 64-bit and
32-bit code

• Can we adopt the scheme by default on
IA-32?
• Some programs rely on the 80-bit temporaries
• FLT_EVAL_METHOD is not invariant for all units

Porting GCC to the AMD64 architecture – p.10/20



Floating point math
• i386 use x87 instruction set to implement

floating point arithmetics
• All temporary registers are 80-bit values

• Produced code is not IEEE compliant
• Some algorithms fail to converge
• Results depend on compiler optimization
• Some algorithms enjoy the extra precision for free

• Registers do have stack organization wasting
performance

• SSE Instruction set

• GCC use SSE for single and double
precision, x87 for extended precision

• Huge performance impact for both 64-bit and
32-bit code

• Can we adopt the scheme by default on
IA-32?
• Some programs rely on the 80-bit temporaries
• FLT_EVAL_METHOD is not invariant for all units

Porting GCC to the AMD64 architecture – p.10/20



Floating point math
• i386 use x87 instruction set to implement

floating point arithmetics
• SSE Instruction set

• Originally designed for single precision vector code

• Support for scalar operations

• Later extended for double precision support

• Generally useful IEEE compliant floating point unit
with few oddities

• neg and abs done by vector logic operations

• 128-bit registers
• Fewer instructions, bigger code (1.6–7.3% growth)

• GCC use SSE for single and double
precision, x87 for extended precision

• Huge performance impact for both 64-bit and
32-bit code

• Can we adopt the scheme by default on
IA-32?
• Some programs rely on the 80-bit temporaries
• FLT_EVAL_METHOD is not invariant for all units

Porting GCC to the AMD64 architecture – p.10/20



Floating point math
• i386 use x87 instruction set to implement

floating point arithmetics
• SSE Instruction set
• GCC use SSE for single and double

precision, x87 for extended precision
• Huge performance impact for both 64-bit and

32-bit code
• Can we adopt the scheme by default on

IA-32?
• Some programs rely on the 80-bit temporaries
• FLT_EVAL_METHOD is not invariant for all units

Porting GCC to the AMD64 architecture – p.10/20



The AMD Opteron
• Translate AMD64 instruction into micro

instruction
• Register renaming, on-chip scheduling
• 3 integer, 3 address generation symmetric

pipes
• Floating point load/store, adder and multiplier

pipes
• Speculative loads and stores with on-chip

memory controller allowing operations to be
canceled early

Porting GCC to the AMD64 architecture – p.11/20



Optimizing for the Opteron
• Many optimizations done in hardware
• Almost insensitive for integer instruction code

choice
• Important optimizations

• Avoid SSE reformatting penalties

• Use right SSE move instructions

• Optimize prologues and epilogues to avoid function
call bottleneck

• Avoid use of push and pop instructions for
argument passing in hot code

• Local scheduling is still effective, global scheduling
may be important win

• 10% speedup compared to 386 tuning
• 1.13% speedup compared to Pentium II

tuning

Porting GCC to the AMD64 architecture – p.12/20



Optimizing for the Opteron
• Many optimizations done in hardware
• Almost insensitive for integer instruction code

choice
• Important optimizations
• 10% speedup compared to 386 tuning
• 1.13% speedup compared to Pentium II

tuning

Porting GCC to the AMD64 architecture – p.12/20



Optimizations
Effect on SPECint2000
Optimization 64-bit 32-bit Alpha

overall effect 106.9% 89.12% 115.07%

profile feedback 9.49% 7.37% 6.16%

loop unrolling 3.12% 1.25% 1.30%

basic block reorder 2.18% 1.26% 2.64%

omitting frame pointer 2.10% 3.26% 2.64%

function inlining 1.85% 2.17% 6.84%

tracer 1.60% 1.78% −2.59%

scheduling 1.47% 1.52% 8.08%

Porting GCC to the AMD64 architecture – p.13/20



Optimizations
Effect on SPECfp2000 (C, f77 only)

Optimization 64-bit 32-bit Alpha

overall effect 149.9% 98.56% 115.07%

use of SSE 13.80% 10.14%

profile feedback 3.39% 1.66% 3.14%

scheduling 1.41% −0.72% 21.69%

tracer 0.15% −0.37% 2.36%

Porting GCC to the AMD64 architecture – p.14/20



SPECint2000 32-bit to 64-bit

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

−20

−10

0

10

20

30

40

GCC/64bit

Porting GCC to the AMD64 architecture – p.15/20



LP64 problems
• 64-bit pointers increase data structures
• Combining integer and pointer arithmetics

introduces sign extensions

Porting GCC to the AMD64 architecture – p.16/20



LP64 problems
• 64-bit pointers increase data structures

• Memory bound pointer chrunking slows down

• Larger programs load more slowly

• Higher memory requirements

• The faster CPU, the worse relative performance

• Can be solved by adding “tiny model” with 32-bit
pointers in 64-bit mode.
• Lose benefits of 64-bit system
• Require kernel emulation layer, glibc support,. . .
• Perhaps just a benchmark trick

• Combining integer and pointer arithmetics
introduces sign extensions

Porting GCC to the AMD64 architecture – p.16/20



LP64 problems
• 64-bit pointers increase data structures
• Combining integer and pointer arithmetics

introduces sign extensions
• Undefined overflows allow cheap conversion of

32-bit arithmetics to 64-bit

• Not applicable. AMD64 has cheaper 32-bit
operations than 64-bit operations

• Can be converted to zero extensions

• Zero extensions are often for free
• Still limits use of addressing modes

Porting GCC to the AMD64 architecture – p.16/20



SPECfp2000 32-bit to 64-bit

wupwise swim mgrid applu mesa art equake ammp sixtrack apsi

0

10

20

30

40

50

60

70

80 GCC/64bit

Porting GCC to the AMD64 architecture – p.17/20



Comparison to 32-bit system
• AMD should provide first cheap 64-bit box
• Performance

test speedup

SPECint2000 3.4%

SPECfp2000 (C/f77) 19.3%

bootup time −0.9%

KDE startup from disk 18.1%

KDE startup from cache 14.6%

compilation 12.9%

./configure −4.3%

Porting GCC to the AMD64 architecture – p.18/20



Comparison to 32-bit system
• AMD should provide first cheap 64-bit box
• Performance
• Memory consumption

test growth

konqueror 28%

gimp 15%

mozilla 22%

Porting GCC to the AMD64 architecture – p.18/20



Comparison to 32-bit system
• AMD should provide first cheap 64-bit box
• Performance
• Memory consumption
• Binary file sizes

section growth

code section −5%

data sections 37%

unwind info 1414%

total 13%

Porting GCC to the AMD64 architecture – p.18/20



Future work
• Proper implementation of 128 bit integer

arithmetics (partial hardware support is
available)

• GAS support for Dwarf2 unwinding
• Implementation of __float128, true 128bit

floating point type in software emulation
• More optimizations

• More fun :)

Porting GCC to the AMD64 architecture – p.19/20



Future work
• Proper implementation of 128 bit integer

arithmetics (partial hardware support is
available)

• GAS support for Dwarf2 unwinding
• Implementation of __float128, true 128bit

floating point type in software emulation
• More optimizations
• More fun :)

Porting GCC to the AMD64 architecture – p.19/20



Credits

Geert Bosch designed stack unwinding and exception handling ABI.
Richard Brunner, Alex Dreyzen and Evandro Menezes provided a lot of help in

understanding the AMD Opteron hardware. Zdeněk Dvořák implemented the new loop
unrolling pass, improved DWARF2 support and did number of improvements to profile

based optimizations framework. Andrew Haley finished the gcj (Java compiler) port
started by Bo Thorsen. Richard Henderson reviewed majority of the GCC changes. Jan

Hubička implemented the first versions of GCC and Binutils ports, co-edited ABI
document, realized the AMD Opteron specific optimizations and some generic ones (unit

at a time mode, profile feedback optimizations framework, tracer). Andreas Jaeger
ported glibc, provided SPEC2000 testing framework, co-edited ABI document and fixed
number of GCC and Binutils bugs. Jakub Jelínek designed and implemented the thread

local storage ABI. Michal Ludvig and Jiří Šmíd realized the GDB port. Michael Matz
worked on the new register allocator and fixed plenty of GCC bugs. Mark Mitchell edited
the ABI document and set up WWW and CVS of the project. Andreas Schwab and Bo

Thorsen fixed number of problems in the linker and assembler. Josef Zlomek redesigned
the basic block reordering pass and fixed number of bugs in GCC.

Porting GCC to the AMD64 architecture – p.20/20


	AMD64 architecture
	AMD64 instruction set
	GCC porting effort
	PSABI
	Argument passing
	Variadic argument
	Code models
	DWARF2 Stack Unwinding
	Floating point math
	The AMD Opteron
	Optimizing for the Opteron
	Optimizations
	Optimizations
	SPECint2000 32-bit to 64-bit
	LP64 problems
	SPECfp2000 32-bit to 64-bit
	Comparison to 32-bit system
	Future work
	Credits

