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Abstract

The early detection of the outbreaks of diseases is one of the most challenging objectives of

epidemiological surveillance systems. In this paper, a Markov switching model is introduced to

determine the epidemic and non-epidemic periods from influenza surveillance data: the process

of differenced incidence rates is modelled either with a first-order autoregressive process or with

a Gaussian white noise process depending on whether the system is in an epidemic or a non-

epidemic phase. The transition between phases of the disease is modelled as a Markovian

process. Bayesian inference is carried out on the former model to detect influenza epidemics

at the very moment of their onset. Moreover, the proposal provides the probability of being

in an epidemic state at any given moment. The methodology is evaluated on influenza illness

data obtained from the Sanitary Sentinel Network of the Comunitat Valenciana, one of the 17

autonomous regions in Spain.

Keywords: Autoregressive modelling; Bayesian inference; Influenza; Hidden Markov mod-

els; Outbreak detection; Public health; Temporal surveillance.

1 Introduction

Influenza is an acute respiratory illness that affects the upper and/or lower parts of the respiratory

tract and is caused by the influenza virus. Influenza epidemics occur virtually every year during the

winter in temperate areas of the Northern and the Southern Hemispheres and result in substantial

disease, death and expense. Although the extent and severity of such epidemics vary greatly, it is

worth noting that approximately 10-15% of people get influenza around the world each year and

that the disease is responsible for up to 50 million illnesses and up to 47,200 deaths in the United

States each year, with a similar situation in Europe (Simonsen et al., 1997; Fleming et al., 1999;

Monto, 1999) [20, 3, 15]. All these figures clearly turn influenza surveillance into a challenging
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issue in public health practice.

In general, public health surveillance can be defined as “the ongoing, systematic collection,

analysis, and interpretation of health data essential to the planning, implementation, and evalua-

tion of public health practice, closely integrated with the timely dissemination of these data to those

who need to know” (Thacker, 1994) [25]. Le Straat (2005) [11] comprehensively reviews to that

date the statistical methods that have been applied for detecting or monitoring outbreaks and mon-

itoring trends of diseases. Some of them have been implemented in the R-package surveillance,

in particular, those by Stroup et al. (1989) [24], Farrington et al. (1996) [2] and Höhle and Riebler

(2005) [10]. The list of contributions in surveillance is still growing (see, for instance, recent papers

by Held et al. (2005, 2006) [8, 9]).

An important matter of concern when dealing with the surveillance of infectious diseases such

as influenza is that of detecting the onset of an epidemic as soon as possible. This would imply

prompt intervention which could have a great impact on the number of lives saved. Surveillance

systems have also recently gained increasing importance due to the threat of emerging infections

(like the outbreaks of the H5N1 bird-flu strain) and the increased potential for bioterrorist attacks.

The influenza surveillance system in Europe is run by the European Influenza Surveillance

Scheme (EISS), while in the United States it is managed by the Centers for Disease Control and

Prevention (CDC) Influenza Branch. In both cases weekly information on influenza activity is

collected and reported from September to May. The current approach to influenza surveillance

used by the EISS is based on historical limits methods. In particular, each national network

depending on the EISS assesses the intensity of activity based on the historical data at its disposal

and establishes numerical thresholds that define the intensity of influenza activity. In the United

States, the approach to influenza surveillance is based on Serfling’s method (Serfling, 1963) [19],

which monitors the normal pattern of susceptibility to death from pneumonia and influenza when

there is no epidemic, with the final objective of determining a national baseline defined by a fixed

threshold.

These approaches have some drawbacks: the need for a predefinition of epidemic and non-

epidemic periods to model the baseline distribution, the fact that observations are treated as

independent and identically distributed, and that a national baseline does not provide a useful

threshold if we are interested in local influenza surveillance (Rath et al., 2003) [17]. Moreover, as

Goddard et al. (2003) [6] state, the use of fixed threshold values to describe the levels of influenza

activity can be misleading due to the decline in consultations for influenza in recent years.

LeStrat and Carrat (1999) [12] pioneered the use of hidden Markov Models (MacDonald and

Zucchini, 1997) [13] to segment the time series of influenza indicators into epidemic and non-

epidemic phases. This approach has two advantages, the first being that the method can be

applied to historical data without the need to distinguish between epidemic and non-epidemic

periods in the data. The second one deals with the fact that the observations are supposed to be
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independent given our knowledge about the epidemic, whereas Serfling’s method assumes marginal

independence of the data (Rath et al., 2003) [17]. In subsequent papers, Rath et al. (2003) [17]

and Madigan (2005) [14] presented further exploration of this modelling, incorporating the latter

the Bayesian perspective. Current efforts on influenza surveillance include papers by Muglin et

al. (2002) [16] and by Sebastiani et al. (2006) [18]. In the first one, disease counts are treated

as a realization from an underlying multivariate autoregressive process where the relative risk of

infection incorporates a space-time dynamic, while in the second one dynamic Bayesian networks

are used to integrate four different data streams into a multivariate model for influenza surveillance.

This latter paper is in line with what has recently been called syndromic surveillance, in which

a large number of symptoms and data regarding nontraditional sources of information are used

to detect diseases even before diagnoses can be confirmed through unmistakable signs (see, for

instance, Goldenberg et al. (2002) [7]).

Our main goal in this paper is to introduce an alternative approach to influenza surveillance

that avoids some of the above-mentioned disadvantages. Our proposal is to use a Markov switching

model in order to determine the epidemic and non-epidemic periods from influenza surveillance

data. This approach differs from those previously mentioned in the sense that we work with the

series of differenced incidence rates rather than with the series of incidence rates. The advantage

of this new approach lies in the fact that the differenced series is stationary and thus it allows us

to take advantage of autoregressive modelling to analyze the data. In particular, depending on

whether the system is in an epidemic or a non-epidemic phase, we model the differenced series either

with a first-order autoregressive process or with a Gaussian white noise process. The transition

between the phases of the disease is also introduced via a Markovian process. Bayesian paradigm

is used in order to provide the probability of being in an epidemic phase at any given moment,

which is the key to detecting influenza epidemics at their onset.

The remainder of this paper is organized as follows. Section 2 presents the data we have used

in order to illustrate our findings. Section 3 summarizes our modelling of the influenza incidence

rates. Section 4 describes the results obtained when applying our methodology in our particular

setting, while incorporating a validation of the predictive performance of our model and finally

Section 5 is devoted to concluding remarks.

2 Influenza surveillance data

In what follows, we introduce the data set we have used to illustrate the behaviour of our model

in a real setting. In particular, we present the Valencian Sentinel Network (VSN) for influenza

surveillance, a system which collects information about influenza-like illness (ILI) in the Comunitat

Valenciana, one of the 17 autonomous regions in Spain. VSN has been reporting information

on ILI cases since 1996. It collects data in seasons that enlarge on two consecutive years, as
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the epidemic activity usually extends across both of them. Each season lasts at least 30 weeks

(from the 42nd week of one year to the 19th week of the following). The Network is formed

by volunteer practitioners that report weekly the number of ILI cases jointly with personalized,

clinical, epidemiological and microbiological information about the cases. Although the number of

participating physicians in the network varies from season to season, it has always been around 30

practitioners (covering 1% of the population of the Comunitat Valenciana).

As a result, our data consist of nine time series formed by the weekly ILI incidence rates (per

100000 inhabitants) provided by the VSN during the seasons from 1996-1997 to 2004-2005. It is

worth mentioning that each weekly rate has been standardized by only considering the population

from those sentinels that have reported information. The series are displayed in Figure 1. Note

that they show a mixture of two dynamics: a non-epidemic dynamic in which the incidence rate

does not present big changes and varies randomly around small values, and an epidemic dynamic

in which the incidence rate increases and decreases sharply at irregular intervals. This behaviour is

very characteristic of influenza and certain other infectious diseases (i.e. chicken pox) in which the

shape of the epidemic wave depends greatly on whether we are or are not in an epidemic phase of

the disease. It is also worth noting that the behaviour of the incidence rates cannot be considered

as seasonal because of the low rates observed throughout the 2000-2001 season.
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Figure 1: Influenza incidence rates (per 100000 inhabitants) during the nine seasons analyzed.

The former series are not stationary, which could lead to some difficulties in the data analysis.

This suggests working with the first order differenced series (formed by the differences of rates

between weeks) displayed in Figure 2. Note that the two above-mentioned dynamics can also

be appreciated in these stationary series. The non-epidemic dynamic is characterized by small

random changes around zero, while in the epidemic dynamic changes are greater and inter-related

(positive and negative values are usually followed by positive and negative values respectively).

But more importantly, the fact that this new series has a zero mean allows us to restrict our study

to its variability at each moment, while in the former series we had differences not only in the
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variability but also in the means, thus making its analysis more difficult. This comment is in line

with that of Barón (2002) [1], who also used differenced series to distinguish between epidemic and

non-epidemic phases.
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Figure 2: Increments of incidence rates between weeks during the nine seasons analyzed.

Based on all these considerations about our data, in the following section we present our

modelling for the series of differences based on a two-stage Markov switching model and the way

it can be used to detect changes between the two dynamics.

3 The model

Basically, our modelling is based on a segmentation of the series of differences into an epidemic and

a non-epidemic phase using a two-stage Markov switching model (see Frühwirth-Schnatter (2006)

[4], for a broad monograph of this kind of models). Let Y = {Yi,j , i = 1, . . . , 29; j = 1, . . . , 9}
denote the difference between the rates of weeks i + 1 and i in year j. The underlying idea of

Markov switching models is to associate each Yi,j with a random variable Zi,j that determines

the conditional distribution of Yi,j given Zi,j . In our case, each Zi,j is an unobserved random

variable that indicates which phase the system is in (1, epidemic; 0, non-epidemic). Moreover, the

unobserved sequence of Zi,j (note that we do not know which phase the system is in at any given

moment) follows a two-state Markov chain of order 1 with transition probabilities:

Pk,l = P(Zi+1,j = l|Zi,j = k) where k, l ∈ {0, 1} , i ∈ {1, . . . , 29} and j ∈ {1, . . . , 9} .

This kind of Markov switching models in which the variables that determine the conditional dis-

tribution are unobserved are usually known as hidden Markov models (MacDonald and Zucchini,

1997) [13].

Then, taking into account that the non-epidemic dynamic is characterized by small random

changes around zero, while in the epidemic dynamic changes are greater and inter-related, we model
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the conditional distribution of Yi,j either as an autoregressive process of order 1 or as a Gaussian

white noise process depending on whether the system is in an epidemic or in a non-epidemic phase:

Y1,j |(Z1,j = 0) ∼ N(0, σ2
0,j)

Y1,j |(Z1,j = 1) ∼ N(0, σ2
1,j)

Yi,j |(Zi,j = 0) ∼ N(0, σ2
0,j) i = 2, . . . , 29 , j = 1, . . . , 9 , (3.1)

Yi,j |(Zi,j = 1) ∼ N(ρYi−1,j , σ
2
1,j) i = 2, . . . , 29 , j = 1, . . . , 9 ,

where the first subindex of the variance σ2
k,j represents whether the system is in the epidemic phase

(k = 1) or not (k = 0). Note that we assume a different variance for each season. This has been

done in order to reflect the behaviour observed in Figure 2, in which it can be appreciated that

the length of the variations is not the same in the different years. It is also worth noting that

the conditional distribution of the first difference of rates cannot be modelled as an autoregressive

process as there is no previous value to condition to.

Once the model is determined, the following step is to estimate its parameters. Taking into

account that Pk,0 + Pk,1 = 1 for k ∈ {0, 1}, then we only need to estimate ρ, P0,0, P1,1 and

{σ2
0,j , σ

2
1,j ; j = 1, . . . , 9}. To do so, we take advantage of the Bayesian paradigm, which requires

specification of the prior distributions of each parameter involved in the model. In this case, with

the aim of expressing our initial vague knowledge about them, we consider the usual noninformative

prior distributions for ρ, P0,0 and P1,1:

ρ ∼ Unif(−1, 1)

P1,1 ∼ Beta(0.5, 0.5) (3.2)

P0,0 ∼ Beta(0.5, 0.5)

Moreover, taking into account that σ2
0,j should be lower than σ2

1,j as it only responds to ran-

dom variations instead of the effect of the epidemic, we then express our prior knowledge about

{σ2
0,j , σ

2
1,j ; j = 1, . . . , 9} via the following hierarchical structure:

σ0,j ∼ Unif(θlow, θmid1)

σ1,j ∼ Unif(θmid2, θsup)

θlow ∼ Unif(a, b) (3.3)

θmid1 ∼ Unif(θlow, b)

θmid2 ∼ Unif(θmid1, b)

θsup ∼ Unif(θmid2, b)

where a and b are hyperparameters to be fixed (based on the knowledge of the problem) in a

way that they do not interfere with the results. We choose uniform distributions as priors for the
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standard deviations of the random effects, as suggested for example in Gelman (2006) [5]. These

priors, unlike the usual non-informative Gamma prior distributions on the precision parameters,

allow us to make inference on the limits of the uniform distributions and hence learn about the

appropriate range of variation for the epidemic and non-epidemic periods. Moreover, the suggested

uniform priors avoid the identifiability problem (Stephens, 2000) [23] between both periods in the

MCMC process, as the prior distribution for the standard deviation in the epidemic period has

been restricted to be greater than in the non-epidemic one.

Expressions (3.1), (3.2) and (3.3) contain all our knowledge of the system but they do not yield

to analytical estimates. Therefore, we have to resort to Markov Chain Monte Carlo (MCMC)

methods. In particular, we have used WinBUGS (Spiegelhalter et al., 1999) [22] to carry out

the inference. Note that, in order to avoid some traps in WinBUGS, the sampling method for

log-concave variables has been changed to slice sampling (see user’s manual for more details about

how to change the sampling methods for certain classes of distributions in order to avoid possible

traps). We have reported the WinBUGS code of our modelling in the Appendix.

4 Results

Figure 3 and Table 1 show the results of our analysis (based on the formulation described in the

previous section) of the weekly ILI incidence rates observed in the Comunitat Valenciana. The

results have all been obtained by using 3 independent chains of simulations with 30000 iterations,

discarding the first 15000 and selecting 1 of each 45 (3000 simulated values in total). Values for

a and b in (3.3) were set to be 10 and 300. The selection of this latter value was based on the

fact that the biggest difference between weekly rates was 212, while we selected a = 10 in order to

avoid the posterior distribution of σ2
0,j converging to 0.

In particular, at the top of Figure 3, we present the posterior probability of being in an epidemic

phase for each week in the analysis. These values correspond to the posterior mean of the state

variable Zi,j . Note that these probabilities can be very useful for decision makers (in our case, the

Valencian Regional Health Authorities), as they allow them to quantify the possibility of being

in either phase each week. In particular, values exceeding 0.5 indicate that, in that week, we are

observing a higher probability of being in an epidemic phase than of being in a non-epidemic one,

and so an alarm could be trigged if it is considered necessary. This information can be appreciated

in more detail in the graph of the influenza incidence rates that we present at the bottom of Figure

3, in which we have plotted with black spots those weeks with a posterior probability of being in

an epidemic phase higher than 0.5.

Table 1 shows the posterior mean and the 95% posterior credible interval of the parameters

involving the model obtained when using WinBUGS. As can be seen, jumps from an epidemic to a

non-epidemic phase are very robust: there is no more than one epidemic period per season although
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Figure 3: Posterior probability of being in the epidemic phase (at the top) and a representation of the

influenza incidence rates per 100000 inhabitants in which the spots indicate those weeks where the posterior

probability of being in an epidemic phase exceeds 0.5 (at the bottom).

the model allows for any number of changes. This is a consequence of the Markovian behaviour

defined in the model. Indeed, as stated in Table 1, the model estimates that it is very likely to

be in the epidemic phase if we were in it during the previous week (mean posterior probability

equals 0.906) and it is also very likely to be in a non-epidemic state if we were in it in during the

previous week (0.964 being its mean posterior probability). Of particular interest is the strictly

positive value of the correlation ρ, which seems to justify the autoregressive process used for the

epidemic period. It is also important to note that the posterior distributions of θmid1 and θmid2

seem to justify the selection of disjoint intervals for representing the variances in the epidemic and

non-epidemic phases.

One of the main aims of the present study is to help managers to raise an alarm at those

precise moments in which there is a high probability of being in an epidemic phase. Clearly, at

each moment, available information only comes from those weeks preceding the particular moment

we are analyzing, but there is no known information about what it is going to happen in the

following weeks. In order to validate the predictive performance of our methodology, we have

carried out the following procedure. For each week of the study we have predicted the probability
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Parameter Posterior Mean 95% Credible Interval

θlow 12.716 [10.130, 16.410]

θmid1 19.196 [15.270, 24.952]

θmid2 49.093 [20.614, 87.295]

θsup 134.711 [92.883, 212.582]

ρ 0.344 [0.140, 0.560]

P0,0 0.964 [0.925, 0.989]

P0,1 0.036 [0.011, 0.075]

P1,0 0.094 [0.040, 0.164]

P1,1 0.906 [0.836, 0.960]

Table 1: Posterior mean and the 95% credible interval of the parameters involving the model.

of being in an epidemic phase by only taking into account information from the previous weeks of

the season in which the analyzed week is included, and that from the other eight seasons in the

study.

For each week, Figure 4 shows the posterior probability of being in an epidemic phase when

using the complete information (9 seasons) and when only using information from the previous

weeks in the season of the week analyzed and information from the remaining 8 seasons. As can

be seen, although probabilities are not as close to 0 (indication of non-epidemic) or 1 (epidemic)

as they are when we use the complete information, they are close enough to those values in order

to properly indicate the phase the system is in. Moreover, if we use the horizontal dotted line

representing the 0.5 probability to classify weeks into both dynamics, the results indicate that 93%

of the weeks (234 out of 252) were classified in the same way when using all the information and

when only using information from the previous weeks jointly with information from the remaining

seasons.

It is worth noting that this on-line methodology has already been incorporated into the weekly

bulletin published by the Valencian Sentinel Network. In particular, the probability of being in

the epidemic phase is included in their report, which is distributed to all the Primary Health Care

Centers in the Comunitat Valenciana.

Finally, with the aim of checking that all the components of our model expressed through (3.1),

(3.2) and (3.3) improve model performance, we have carried out a comparison between the model

in Section 3 and three other proposals in which some parts of our modelling have been removed.

In particular, in the first alternative, we model the system using the same standard deviation for

all seasons, while in the second one we do not incorporate the auto-regressive part of the epidemic

phase into the model. Finally, in the last competitive proposal, we use a non-Markovian model.

In order to compare competing models, we use the deviance information criterion (DIC) in-

troduced by Spiegelhalter et al. (2002) [21]. Table 2 summarizes the obtained results. As can be
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Figure 4: Posterior probability of being in an epidemic phase when using all the information (solid line)

and when only using information from the previous weeks jointly with information from the remaining 8

seasons (dashed line).

appreciated, our proposal outperforms (by providing a better fit, which can be seen by a lower DIC)

the other three models. In fact, the Markovian hypothesis emerges as the most important feature

of our modelling in terms of DIC, as its elimination provokes the highest increase in this criterion.

The auto-regressive structure of the epidemic phase also shows a marked effect on the modelling.

Finally, the variability on the variances between seasons seems to be the least important factor in

our modelling, although the DIC criterion prefers to include such variability in the model.

MODEL DIC

Model in Section 3 2542.3

Same standard deviations for all seasons 2545.7

Avoiding the auto-regressive part of the epidemic phase 2551.6

Using a non-Markovian model 2628

Table 2: Comparison of the DIC value obtained when using our model without its principal

components.

5 Concluding remarks

Our interest in this paper has been to describe a methodology to detect influenza epidemics at the

very moment of their onset, implemented in a local setting. An important novelty with respect to

previous studies in epidemiological surveillance is that our proposal tackles this question from the

perspective of the changes in the differences of the rates. This makes our proposal complementary

to existing ones which are based on the analysis of the value of the weekly rates instead of their
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variability. As far as we know, Barón (2002) [1] was the first approximation to influenza surveillance

in which the interest was to analyze changes in the detrended mortality rates. Nevertheless, his

modelling did not include an auto-regressive term and it was not based on a Markovian structure,

which can be very helpful to model influenza surveillance as we have just shown in the previous

section. As in other models based on Markov switching models (LeStraat and Carrat, 1999; Rath

et al., 2003; Madigan, 2005) [12, 17, 14], another characteristic of this kind of proposal is that of

providing the probability of being in an epidemic phase at any given moment. But, as happens

with any modelling based on past data, it is so important to have a large amount of data from

previous seasons in order to have correct results.

We now comment on possible extensions to this study. A first possibility could be to explore

whether the probability of being in an epidemic phase could depend not only on the rate of the

previous week but also on the particular moment in the season (maybe at its early stages or at

its final ones). Another potential extension of our model would include a multivariate or a spatial

component that could help us to explore any geographical disaggregation of the rates (in this case,

we would have to consider as many series as practitioners). Moreover, as Goldenberg et al. (2002)

[7] state “the next generation of biosurveillance systems will incorporate information from multiple

sources, including public-health and nontraditional data”. This makes it important to develop and

refine methodologies that could incorporate these characteristics, which would help in identifying

outbreaks and thus facilitate timely actions to decrease unnecessary morbidity and mortality.

Finally, we would like to stress that the coherence of the results obtained using our method

on the data from the Valencian Sentinel Network, jointly with its good on-line behaviour, seem to

make feasible its more general application for monitoring epidemiologic surveillance data based on

Sentinel Networks.

Appendix

model{

for (j in 1:nyear)

{

dif.rates[1, j] ~ dnorm(0,tau[1, j])

tau[1, j] <- pow(lambda[comp[1, j], j],-2)

}

for (j in 1:nyear)

{

for (i in 2:nweek[j]) {

dif.rates[i, j] ~ dnorm(mu[i, j],tau[i, j])

tau[i, j] <- pow(lambda[comp[i, j], j],-2)
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mu[i, j] <- ro*dif.rates[i-1, j]*equals(comp[i, j],2)

}

}

ro ~ dunif(-1,1)

for (j in 1:nanyo)

{

comp[1, j] ~ dcat(P0[])

lambda[1, j] ~ dunif(linf,lmed1)

lambda[2, j] ~ dunif(lmed2,lsup)

}

linf ~ dunif(a,b)

lmed1 ~ dunif(linf,b)

lmed2 ~ dunif(lmed1,b)

lsup ~ dunif(lmed2,b)

for (j in 1:nyear)

{

for (i in 2:nweek[j])

{

comp[i, j] ~ dcat(P.mat[comp[i-1, j], ])

}

}

P0[1]<-0.5

P0[2]<-0.5

P.mat[1,1] ~ dbeta(0.5,0.5)

P.mat[2,2] ~ dbeta(0.5,0.5)

P.mat[1,2]<- 1-P.mat[1,1]

P.mat[2,1]<- 1-P.mat[2,2]

}
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