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3.1 Motivación Gráfica del Método Simplex

Región de soluciones posibles acotada

Existe al menos una solución óptima, que es un vértice



Región de soluciones posibles no acotada

Problema no acotado z = + ∞

c, dirección de mejora



Problema Acotado

Existe una solución óptima única



Problema acotado Infinitas soluciones óptimas (Segmento)

c, dirección de mejora



Problema acotado Infinitas soluciones óptimas (Semirrecta)

c, dirección de mejora



3.1 Motivación Gráfica del Método Simplex

1. Si el PPL tiene una única solución óptima, será necesariamente un vérti-

ce de S.

2. Si el PPL tiene más de una solución óptima y S es acotado, al menos dos

de ellas son vértices adyacentes de S. Si S es no acotada, solo podemos

garantizar que al menos una de las soluciones óptimas es un vértice.

3. Existe un número finito de vértices en S.

4. Si un vértice proporciona un valor objetivo mejor o igual que el resto de

vértices adyacentes entonces proporciona un valor objetivo mejor o igual

que cualquier otra solución posible del problema, luego es una solución

óptima para el problema.
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E + D + H1 = 10

−E + D + H2 = 1

D + H3 = 4

Si hacemos H1 = H2 = 0, nos queda:

E + D = 10

−E + D = 1

D + H3 = 4

cuya solución es:

E = 9/2, D = 11/2, H3 = −3/2

No puede ser solución del PPL incumple la restricción de no negatividad.
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( E, D, H1, H2, H3 )

0 0 10 1 4 (0,0) Solución posible

0 10 0 -9 -6 (0,10) no es solución posible

0 1 9 0 3 (0,1) Solución posible

0 4 6 -3 0 (0,4) no es solución posible

10 0 0 11 4 (10,0) Solución posible

? 0 ? ? 0 Sistema Incompatible

-1 0 11 0 4 (-1,0) no es solución posible

9/2 11/2 0 0 -3/2 (9/2,11/2) no es solución posible

6 4 0 3 0 (6,4) Solución posible

3 4 3 0 0 (3,4) Solución posible
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Cómo obtener los vértices

del

conjunto de soluciones de un PPL

Para un problema cuya forma estándar incluya un sistema de m ecua-
ciones linealmente independientes y n incógnitas, los vértices del po-
liedro se obtienen resolviendo los sistemas de m ecuaciones con m

incógnitas que resultan al igualar a cero subconjuntos de n−m varia-
bles.

Solo serán soluciones posibles (vértices) aquéllos puntos cuyas varia-
bles, tanto de holgura como originales sean no negativas.
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3.2 El Método Simplex
Desarrollado por George Dantzig en 1947.

Primera aplicación importante: J. Laderman resolvió un problema de elabo-

ración de una dieta en la que hab́ıa 9 restricciones de igualdad y 27 variables.

Necesitó él trabajo de 120 d́ıas-hombre.

Dado un PPL expresado en forma estándar con m ecuaciones y n

incógnitas, m ≤ n, podemos dividir las variables en dos grupos:

1. n−m variables a las cuáles les damos el valor 0, y que denomi-

naremos variables no básicas.

2. m variables cuyo valor se determinará resolviendo el sistema de

m ecuaciones y m incógnitas resultante de igualar a cero el resto

de variables. Si dicho sistema tiene una única solución, diremos

que las m variables son variables básicas.

Solución del sistema −→ solución básica

Si además las variables ≥ 0 −→ solución posible básica
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Formalización algebráica

PPL Min z = ctx

s.a.: Ax = b

x ≥ 0n

B := {columnas de A de coeficientes de las variables básicas}
N := A \B := { columnas de A coeficientes de las variables no básicas}

A = (B, N), x =


xB

xN


 , c =


cB

cN




Min z

s.a.: z− ct
BxB − ct

NxN = 0

BxB + NxN = b

xB ≥ 0, xN ≥ 0
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B−1(BxB + NxN ) = B−1b

↓
(B−1B)xB + (B−1N)xN = B−1b

↓
xB + (B−1N)xN = B−1b

b̄ := B−1b =




b̄1

...

b̄i

...

b̄m




, yj := B−1aj

b̄i := valor de la variable básica asociada a la ecuación i-ésima

yij := coeficiente de la variable no básica j-ésima en la ecuación i-ésima
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z = ct
BxB + ct

NxN

↓
xB = B−1b− (B−1N)xN

↓
z = ct

B(B−1b− (B−1N)xN ) + ct
NxN

↓
z = ct

B(B−1b)︸ ︷︷ ︸
valor objetivo

− (ct
BB−1N − cN )︸ ︷︷ ︸

costes reducidos

xN
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En cualquier iteración del Simplex el problema está expresado como:

Min z = ct
B(B−1b)− (ct

BB−1N − cN )xN

xB + B−1NxN = B−1b

xB ≥ 0

xN ≥ 0

Y tiene asociada la siguiente Solución Posible Básica:

x =


xB

xN


 =


B−1b

0




Cuyo valor objetivo es:
z = ct

B(B−1b)
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Costes Reducidos: coeficientes de las variables en la expresión de
la función objetivo dada en una iteración del Simplex.

Variable Básica: 0

Variable No Básica: zj − cj := ct
BB−1aj − cj

Importancia:

Criterio de Optimalidad: una solución es óptima sii zj − cj ≤ 0 ∀j.
Criterio para Elegir la Nueva Variable Básica: aquélla que

tiene el mayor coste reducido.

znuevo := zactual − (zj − cj)xj

Si xj > 0 y zj − cj > 0 → znuevo < zactual

Si xj > 0 y zj − cj < 0 → znuevo > zactual
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Algoritmo del Simplex
Consideremos el Problema de Programación Lineal:

PL Min z = ctx

s.a.: x ∈ S

en donde, S 6= ∅.
Inicialización

Escŕıbase el Problema de Programación Lineal en forma estándar. Sea

PL Min z = ctx

s.a.: Ax = b

x ≥ 0n

el problema resultante. En donde, A es una matriz m× n, b ∈ IRm,

c ∈ IRn, rango(A, b) = rango(A) = m (es decir, sistema compatible, tiene

solución).
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Obtener una Solución Posible Básica Inicial (SPB)

Si en S todas las restricciones eran del tipo “≤” y el “rhs ≥ 0”,
al añadir las variables de holgura se obtiene automáticamente
una SPB tomando las variables originales como no básicas y las
variables de holgura como básicas.

en otro caso aplicaremos el algoritmo de las dos fases.

Sea B la submatriz de A formada por las columnas asociadas a las
variables básicas y N el conjunto de ı́ndices de las variables no
básicas.

xB := B−1b ≥ 0m

xN := 0n−m
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Iteración

Paso 1: Sea, xB = B−1b, y xN = 0n−m, la SPB actual. Hacer,
b̄ = B−1b, y z = ct

BxB . Ir al Paso 2.

Paso 2: Calcular los costes reducidos de las variables no básicas.

zj − cj = ct
BB−1aj − cj , ∀j ∈ N

siendo aj la columna asociada a la variable xj en A.

a) Si zj − cj ≤ 0, ∀j ∈ N , Stop.

x∗B := B−1b y x∗N := 0n−m z∗ = ct
BB−1b.

b) En otro caso, elegir xk como nueva variable básica entrante,
siendo k el ı́ndice para el que se alcanza el máximo de los
costes reducidos,

zk − ck = máx
j∈N

{zj − cj}.

Ir al Paso 3.
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Paso 3: Obtener la columna asociada a la variable que se hace
básica en el sistema actual. Sea yk := B−1ak

a) Si yk ≤ 0m, Stop.
Podemos incrementar el valor de xk tanto como queramos sin
que se haga cero ninguna variable básica i.e., sin alcanzar
ningún otro vértice del poliedro adyacente al actual. El
problema es No Acotado y el valor óptimo es z∗ = −∞.

b) En otro caso. Ir al Paso 4.

Paso 4: Elegir la variable que deja de ser básica (Criterio de la
razón mı́nima).

b̄r

yrk
= mı́n

1≤i≤m
{ b̄i

yik
: yik > 0}

B := B \ {ar}
⋃{ak}, N := N \ {k}⋃{r}. Ir al Paso 1.
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3.3 El Método Simplex en Formato Tabla

Dado el PPL,

Min z = ctx Min z

s.a.: s.a.: z − ctx = 0

Ax = b −→ Ax = b

x ≥ 0n x ≥ 0n

Si lo escribimos en términos de una SPB asociada a una base B:

Min z

s.a.: z − ct
BxB − ct

NxN = 0

BxB + NxN = b

xB ≥ 0m, xN ≥ 0n−m
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xB = B−1b−B−1NxN ,

z+ 0xB + (ct
BB−1N − ct

N )xN = ct
BB−1b

xB + B−1NxN = B−1b

xB xN RHS

z 1 0
ct

BB−1N − ct
N

(zj − cj = ct
BB−1aj − cj)

ct
BB−1b

Fila 0

z = ct
BB−1b

xB 0 Im B−1N, (yk = B−1ak) B−1b, (b̄i)
Fila 1-m

xB = B−1b
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Tabla antes de pivotar

xB1 . . . xBr . . . xBm . . . xj . . . xk . . . RHS

z 0 . . . 0 . . . 0 . . . zj − cj . . . zk − ck . . . cB b̄

xB1 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . b̄1
.
..

.

..
.
..

.

..
.
..

.

..
.
..

xBr 0 . . . 1 . . . 0 . . . yrj . . . yrk . . . b̄r

.

..
.
..

.

..
.
..

.

..
.
..

.

..

xBm 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . b̄m

Variable de entrada, zk − ck = máx
j∈N

{zj − cj} −→ xk

Variable de salida,
b̄r

yrk
= mı́n

1≤i≤m
{ b̄i

yik
: yik > 0} −→ xBr
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Tabla después de pivotar

xB1 . . . xBr . . . xBm . . . xj . . . xk . . . RHS

z 0 . . . ck−zk
yrk

. . . 0 . . . (zj − cj) -
yrj

yrk
(zk − ck) . . . 0 . . . cB b̄− (zk − ck) b̄r

yrk

xB1 1 . . .− y1k
yrk

. . . 0 . . . y1j − yrj

yrk
y1k . . . 0 . . . b̄1 − y1k

yrk
b̄r

..

.
..
.

..

.
..
.

..

.
..
.

..

.

xk 0 . . . 1
yrk

. . . 0 . . .
yrj

yrk
. . . 1 . . . b̄r

yrk

...
...

...
...

...
...

...

xBm 0 . . .− ymk
yrk

. . . 1 . . . ymj − yrj

yrk
ymk . . . 0 . . . b̄m − ymk

yrk
b̄r

Nueva Base B = B \ {ar}
⋃{ak}
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3.4 Casos especiales en la aplicación del algoritmo.
Ejemplo: Óptimo Único

Min −3x1 + x2

sa: x1 + 2x2 + x3 = 4

−x1 + x2 + x4 = 1

xi ≥ 0,∀i = 1, 2, 3, 4

Dada,

B = {a1, a4} =


 1 0

−1 1


 −→ B−1b =


 4

5


 −→ xt = (4, 0, 0, 5)

ct
B = (−3, 0) zj − cj = ct

BB−1aj − cj =





z2 − c2 = (−3, 0)


 1 0

1 1





 2

1


− 1 = −7

z3 − c3 = (−3, 0)


 1 0

1 1





 1

0


− 0 = −3
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Ejemplo: Óptimos Alternativos

Min −2x1 − 4x2

sa: x1 + 2x2 + x3 = 4

−x1 + x2 + x4 = 1

xi ≥ 0,∀i = 1, 2, 3, 4

Dada,

B = {a1, a4} =


 1 0

−1 1


 −→ B−1b =


 4

5


 −→ xt = (4, 0, 0, 5)

ct
B = (−2, 0) zj − cj = ct

BB−1aj − cj =





z2 − c2 = (−2, 0)


 1 0

1 1





 2

1


− (−4) = 0

z3 − c3 = (−2, 0)


 1 0

1 1





 1

0


− 0 = −2

Óptimos:
[
(4, 0, 0, 5),

(
2
3
, 5
3
, 0, 0

)]
, z∗ = −8
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Ejemplo: No Acotación

Min −x1 − 3x2

sa: x1 − 2x2 ≤ 4

−x1 + x2 ≤ 3

x1 ≥ 0, x2 ≥ 0

Dada,

B = (a2, a3), B−1 =


 0 1

1 2


 −→ B−1b =


 3

10


 −→ xt = (0, 3, 10, 0)

zj − cj ==





z1 − c1 = (−3, 0)


 0 1

1 2





 1

−1


− (−1) = 4> 0

z4 − c4 = (−3, 0)


 0 1

1 2





 0

1


− 0 = −3
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“x1 podŕıa entrar en la base”

Sin embargo, como

y1 = B−1a1 =


 −1

−1


 ≤ 02

“Ninguna variable cumple el criterio de salida”

ct


 −y1

e1


 = (−1,−3, 0, 0)




1

1

1

0




< 0 −→ Criterio de No Acotación

El problema es No acotado a lo largo de la semirrecta:







0

3

10

0




+




1

1

1

0




x1, x1 ≥ 0





, ĺım
x1−→−∞

z = 9− 4x1 = −∞
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3.5 El Algoritmo de las Dos Fases
Escŕıbase el PPL en forma estándar:

Min z = ctx

s.a.: x ∈ S
−→

Min z = ctx

s.a.: Ax = b

x ≥ 0n

En donde A es una matriz m× n de rango completo por filas.

Si A contiene una submatriz identidad m×m y b ≥ 0m

B = Im y N = A \B

permiten definir una SPB inicial para aplicar el algoritmo del Simplex:

xB = B−1b y xN = 0n−m

En otro caso, A se completa con tantas columnas (variables artificiales) como

sea necesario para conseguir dicha situación, y se aplica el algoritmo de las

2 fases.
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Fase 1: Construir el problema auxiliar resultante de añadir las varia-
bles artificiales:

Min z = ctx → Min z = 1txa

s.a.: Ax = b s.a.: Ax + xa = b

x ≥ 0 x, xa ≥ 0

Resolver el problema auxiliar con el algoritmo del Simplex. Sea
(x∗, x∗a) la solución óptima.

Si x∗a = 0 −→ Ir a la Fase 2.

Si x∗a 6= 0 −→ Problema original Imposible
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Fase 2: Utilizar la SPB obtenida al final de la Fase 1 para resolver el
problema inicial. Sean xB las variables básicas en dicha solución.

Consideremos la tabla óptima al final de la Fase 1.

Si en xB no hay variables artificiales: eliminando las columnas
asociadas a las variables artificiales y actualizando conveniente-
mente la fila asociada a la función objetivo obtenemos la tabla
inicial para resolver el problema original con el algoritmo Sim-
plex.

Si en xB hay variables artificiales: tratamos de obtener una
SPB sin variables artificiales.
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¿Cómo?
1. Eliminar de la tabla las columnas asociadas a las variables artifi-

ciales no básicas.

2. Actualizar la fila asociada a la función objetivo considerando que
los coeficientes en la función objetivo de las variables artificiales
en el problema original son 0.

3. Eliminar secuencialmente variables artificiales básicas pivotando
sobre elementos de la tabla yij 6= 0, en donde:

i := fila asociada a la variable básica artificial
j := columna asociada a la variable no artificial

Si yij = 0, ∀j 6= i la ecuación i-ésima es redundante. Eliminar la
ecuación y la variable artificial.
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3x1 + x2 = 3

4x1 + 3x2 ≥ 6

x1 + 2x2 ≤ 4
Fase1

Óptimo


