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PREFACE

These notes contain the lectures given by A. Borisenko in a Seminar on
the Perelman’s work on conjectures of Poincaré and Thurston held in the
Department of Geometry and Topology of the University of Valencia along
the months of May, June, July and August 2004, .

The written lectures correspond to the “spoken” ones only in a broad
sense. Sometimes, the order of the lectures has been changed following the
convenience of the writers.

The lectures were first written by A. Borisenko when preparing his talks.
Based on these notes and the lectures, and with the references at hand, E.
Cabezas-Rivas and V. Miquel wrote a first version. This was corrected by
the speaker, then the second and third author modified the first version,
and, then, new corrections and writings until the authors arrived to an
agreement.

We think it is impossible to give a complete account of the topics of
these notes in only 150 pages. The paper is directed to lay people in the
main subject of it (Ricci flow) and also in the topological background of the
problem. Then, the general philosophy of these lectures is to begin with
the more elementary facts, give some details on them (sometimes many
details), and introduce to the more advanced topics, with a decreasing
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exposition of details. However, this is not being done in a linear way, the
difference between elementary and advanced depends on the background
of the three writers which is clearly not uniform. However, we hope that
these notes can serve as an introduction to the Geometrization Conjecture
and its solution as it has been useful to us.
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INTRODUCTION

This work pretends to be a quick introduction to the Ricci flow theory
(created by Richard Hamilton) and its relation with the Geometrization
Conjecture (stated by William P. Thurston), with the purpose of providing
to the reader the tools necessary to understand the works [67], [68] and [69]
by Grisha Perelman.

In general, the present survey is organized as we described next. We de-
dicate the three first sections to the Geometrization Conjecture, whereas in
§4 and §5 we give some prerequirements and basic concepts from the Ricci
flow theory. On the other hand, section 6 summarizes the fundamental
steps of the Hamilton-Perelman’s proof of the Geometrization Conjecture.
After this overview, from §7 to §11, we detail the main techniques needed
for the Hamilton-Ricci flow. In order to be able to understand the most
difficult part of the aforementioned proof, it is necessary to introduce a no-
tion of convergence in metric spaces and the concept of Alexandrov space;
to these definitions along with the prerequirements for their understanding,
we dedicate §12 and §13. Section 14 gathers the methods introduced by
Hamilton for the analysis of the singularities developed by the Ricci flow.
It is precisely in this step of his proof where Hamilton found technical prob-
lems for whose overcoming it will be necessary to wait for the appearance
of the famous works by Perelman, whose fundamental results take shelter
in the three last sections.

We will detach with some more detail the sections of the present work,
with the goal to facilitate its reading.
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Sections 1-3. In the first section we give the topological prerrequire-
ments to understand the statement of the Geometrization Conjecture and
the way it includes the Poincaré Conjecture as a particular case. Roughly
speaking, the Thurston’s Geometrization conjecture claims that each closed
3-manifold can be decomposed into geometric pieces (see definition 1.7).
The pieces are classified in 8 possible model geometries and their quotients,
and therefore the problem of the classification of closed 3-manifolds would
be essentially solved with the proof of the aforementioned conjecture. We
dedicate §2 to the description of the eight model geometries, and in §3 we
give details about Thurston’s proof of such classification.

Sections 4-5. These two are devoted to some prerrequisites and el-
ementary definitions for the Ricci flow, which constitutes both the most
successful tool developed to make an attempt of proof for the Geometriza-
tion Conjecture, and a rich theory of independent interest.

As the Ricci flow can be seen as a heat type equation for a Riemannian
metric on a given manifold, in §4 we review some fundamental facts on the
heat equation (with a compilation philosophy, this is, without including
proofs) both on the Euclidean space and on a Riemannian manifold.

On the other hand, in §5 we introduce the notion of harmonic map in
order to clarify the statement of a result by Eells and Sampson which says
that any map between Riemannian manifolds (with some conditions on
the target manifold) can be deformed into an harmonic map. We state this
result because it was the inspiration for Hamilton to develop his Ricci flow.

Moreover, section 5 gathers the definition of Ricci flow (which is roughly
a method of deforming a Riemannian metric on a given manifold), its
relation with the heat equation, a first example and the introduction of a
remarkable equivalent equation: the normalized Ricci flow.

Section 6. This section pretends to summarize both the rest of the
contents in the present work, and the Hamilton-Perelman’s proof of the
Geometrization Conjecture. We begin gathering the most outstanding of
the ample task made by Hamilton in his Ricci flow theory: short time
existence theorem, long time existence and asymptotic behaviour of the
2-dimensional Ricci flow, a first achievement in dimension 3 (which implies
the proof of the Geometrization Conjecture for 3-manifolds with Ric ≥ 0)
and a theorem referring to the 4-dimensional Ricci flow. Here it is also
introduced an important classification of the Ricci flow solutions in two big
groups and remarkable results by Hamilton for each group. The section
is finished with a list of the main steps done by Perelman in order to
overcome the technical difficulties and complete the Hamilton’s proof of
the Geometrization Conjecture. We also show how to combine such steps
in order to perform the aforementioned proof.

Section 7. We dedicate this section to the maximum principles, which
are the fundamental tool used by Hamilton to find out how the geometric
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quantities associated to the manifold will evolve under the Ricci flow if the
initial condition is given.

Section 8. Here we sketch the main steps of the proof of the long time
existence theorem for solutions of the Ricci flow. This result claims that
the solution of the Ricci flow exists on a time interval [0,∞) unless the
curvature explodes in magnitude. If this is the case, we say that the flow
encounters a singularity. In this section it is also introduced the fundamen-
tal key which makes possible the proof of the long time existence (and it
is of independent interest within this theory): the Shi’s estimates for the
derivatives of the curvature.

Section 9. In this part, we undertook the study of the existence of
solutions for the 2-dimensional Ricci flow and its asymptotic behavior. For
it, we have to distinguish three cases: scalar curvature (R) positive, null and
negative. Consequently, a great part of §9 is dedicated to the analysis of the
evolution of the scalar curvature. Here it is also introduced the concept of
Ricci soliton, which will be of enormous importance and constant presence
as much in the works of Hamilton like in those of Perelman.

Sections 10-11. The cases R > 0 and R = 0 for the 2-dimensional
Ricci flow appear in Section 9, but its proof is postponed until §10, where
it is introduced a fundamental tool: the Harnarck inequalities. They are
estimates that control the oscillation of the positive solutions of certain
equations. As they are similar to the original estimate by Li-Yau for posi-
tive solutions of the heat equation, §10 shall begin introducing this one.

Hamilton extensively developed this type of inequalities for several equa-
tions of geometric evolution. In particular, in 1988 he adapts the Li-Yau
inequality to a 2-dimensional Ricci flow (this one is indeed the result which
appears in §10.2). In 1993, he obtains an estimation in arbitrary dimension,
to which we dedicate the full section 11.

Sections 12-13. These two sections try to constitute a survey of results
(without detailing their proofs) coming from the theory of length spaces
and whose knowledge is essential for anyone who tries to understand in
depth the works by Perelman. We have divided the survey in two parts
clearly differentiated: the first one (in section 12) focuses on the notion
of Alexandrov space, and the second one (last part of §12 and full section
13) gathers different possible definitions of convergence in a metric space
(uniform, Lipschitz and Gromov-Hausdorff convergence).

Section 14. In this section we deal with the first stage of Hamilton’s
program to prove the Geometrization Conjecture: the understanding of the
geometry in the proximities of the points where the curvature is going to
become infinite in a singular time. The technique to study that regions is
called dilation about singularities and consists on rescaling the flow more
and more as we approach to the singularity and hope that, if the rescale-
ment is enough to keep the curvature under some control, then we can pass
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to a limit which is a Ricci flow and gives us any information about what
happens near the singularity.

To do so, we first have to specify the meaning of convergence for a se-
quence of flows (or even manifolds). Then we need a compactness theorem
which allows us to take limits. To these issues related with the convergence
we dedicate the two last subsections of §14. It is important to emphasize
that a point of obstruction of Hamilton’s program is the existence of these
limits (he was not able to prove it in general), but this is a question com-
pletely solved by Perelman.

Section 15. In the last part of the present work (§15-17), we give a
brief and quick survey of Perelman’s papers [67] and [68]. In §15, we ex-
pose the main techniques and tools introduced by Perelman to study the
Ricci flow. Such techniques suppose a great advance in the understanding
of the Ricci flow’s nature and the resolution of several conceptual open
questions about the Ricci flow, for instance, the way to see it as a gradi-
ent flow or the complete proof of the non-existence of periodic solutions
(module diffeomorphisms and homotheties) not trivial (that is, which are
not Ricci solitons). We end §15 with the result which is considered as the
first great contribution by Perelman to Hamilton’s program to solve the
Geometrization Conjecture: the No Local Collapsing Theorem.

Section 16. This section begins with the development of the most
relevant technique introduced by Perelman which leads to a complete clas-
sification of the 3-dimensional singularity models (that is, the solutions of
the Ricci flow obtained as limit of solutions by dilation about singulari-
ties). Such method is known as reduced volume technique and an essential
requirement to understand it is the theory of L-geometry which consists of
remaking all the theory about geodesics and Jacobi fields in Riemannian
geometry, but applied to certain families of metrics depending on time. We
summarize this in the first subsection of §16.

The reduced volume technique also allows to prove a weak version (but it
is enough for the proof of the Geometrization Conjecture) of the No Local
Collapsing Theorem. Here this version is reported in §16.3. As last sub-
section, we study the properties and the classification of the κ-solutions,
which are a special type of Ricci flow solutions having the same character-
istics as the 3-dimensional singularity models. This section is finished with
the statement of the so-called Canonical Neighbothood Theorem, result
considered as the main achievement of [67].

Section 17. This part is a very quick overview of [68] which (in agree-
ment with its own author) is technically complex but contains no new idea
with respect to [67]. Here we give a description of the manifold evolving
under the Ricci flow at the first singular time. This information will be the
key which allows the performance of the metric surgery procedure (here
it is only described qualitatively since, because of its complexity, to give
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more details would move away of the objective of our overview). Finally,
we mention the Perelman’s result about the asymptotic behaviour of the
flow together with an auxiliary result by Shioya and Yamaguchi which (if
correct) would allow to finish the proof of the Geometrization Conjecture.

1. THE TOPOLOGY SETTING

1.1. The Poincaré conjecture
For simplicity, unless otherwise stated, all the manifolds we shall consider

here will be oriented and closed (compact without boundary).
In the XIX Century, the topology of manifolds of dimension 2 was very

well known, mainly due to the works of Poincaré and Koebe. Their classi-
fication is given in the following version of uniformization theorem.

Theorem 1.1 (of uniformization) Every oriented and closed surface S
has a Riemannian metric with Gauss curvature +1, 0, or −1. That is,
it is possible giving to S a geometric structure modeled on H2, E2 or S2

respectively (called the standard space forms).

As a consequence of this theorem and the classification of Riemannian
surfaces of constant sectional curvature, it follows that every surface S is
the quotient of the hyperbolic plane H2, the euclidean plane E2 or the
2-sphere S2 by a discrete subgroup of isometries acting freely on it.

Moreover, the geometry and the topology of the surface are related by

the Gauss-Bonnet formula 2 π χ(M) =
∫

M

K dV , where χ(M) is the Euler

characteristic of M , which is related with the genus g of M by χ(M) =
2−2g, and every oriented closed surface has a genus g and can be described
as a sphere with g handles glued to it, where a handle is a cylinder I ×S1.
It is remarkable that it follows from these results that we have only one
topology for curvature 1 (genus 1), one for curvature 0 (genus 0), and
infinite topologies (genus ≤ −1) for curvature −1, i. e., negative curvature
is infinitely richer in topology than nonnegative.

Then, we have a topological classification of surfaces by their genus, and
also a description of them using geometry.

To find a similar classification and description of 3-manifolds is much
harder. In fact, it is impossible for dimension ≥ 4. But the classification
of 3-manifolds has been largely pursued along last century, and the first
problem related with it is the Poincaré conjecture.

In 1900, Henri Poincaré (1854-1912) made the following claim. If a
closed 3-dimensional manifold has the homology of the sphere S3, then it
is necessarily homeomorphic to S3.

However, within four years, he had developed the concept of “fundamen-
tal group”, and hence the machinery needed to disprove this statement.
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In 1904, he presented a counterexample, the Poincaré icosaedral manifold,
which can be described as the quotient SO(3)/I60. Here SO(3) is the group
of rotations of the Euclidean 3-space, and I60 is the subgroup consisting of
those rotations which carry a regular icosahedron onto itself. This manifold
has the homology of the 3-sphere, but its fundamental group is of order
120. He concluded the discussion by asking:

If a closed 3-dimensional manifold has trivial fundamental group,
must it be homeomorphic to the 3-sphere?

The the Poincaré’s Conjecture says that the answer is “yes”. It has
turned out to be an extraordinarily difficult question, much harder than
the corresponding question in dimension five or more (answered by Smale
in 1966) and in dimension 4, answered by Freedman in 1982. Moreover,
Poincaré’s conjecture become one of the key stumbling blocks in the effort
to classify 3-dimensional manifolds.

1.2. Some examples of 3-dimensional manifolds
Usually, to solve a question, like Poincaré’s conjecture, where some con-

crete space is characterized by a special property, it is helpful to know
other spaces which, although they do not satisfy this property, are simi-
lar to the desired space from other viewpoints. Moreover, the knowdlege
of these spaces is also useful to go on a more ambitious program: the
problem of classification of this kind of spaces. The knowdlege of many
examples of closed 3-manifolds has also been useful in the way to the solu-
tion of Poincaré conjecture and the statement of the Thurston conjecture
on the classification of 3-manifolds. Here we shall give a few examples of
3-manifolds, conducted more by the beauty of them than by the way they
can give some insight on the classification problem, which is far beyond of
our scope.

Example 1 (Gieseking, 1912) We shall begin by other construction which
help us to understand the example.

We start with a regular tetrahedron without its vertices. First, we take
an axis through one of the vertices an cutting orthogonally the opposite
face C0. Let C1, C2 and C3 be the other faces of the tetrahedron; let
us identify them by a rotation of angle 2

π

3
around the axis we have just

defined.
Now, let us repeat the process taking an axes through other side and its

opposite vertex. After this, the 4 sides of the original tetrahedron will be
identified. Then we obtain a manifold without boundary which is closed
except for a finite number of points missing (those coming from the ver-
tices).
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Then we ask if this topological construction is differentiable, in the sense
that at each point there is a well defined tangent space. To answer, we pay
attention at the points where problems could arise: the edges.

Let us observe that the 6 edges of the original tetrahedron are now iden-
tified. Then, after gluing, there are 6 pieces of faces with a common edge.
Since they fill a 3-space, the angle formed at this edge must be of 2π radians
if the tangent vector space is well defined. But each dihedral angle of the
tetrahedron is of π/3, then, the total angle after gluing will be of 6× π

3 = 2π.
Then the quotient manifold we have just constructed is differentiable.

In the Gieseking example the construction is similar, but now the starting
manifold is a regular 3-simplex with vertices in the points of infinity of the
Poincaré’s hyperbolic ball. In this case the resulting space is a hyperbolic 3-
manifold non-compact, but it is complete and with finite volume. Moreover,
it is not orientable.

Example 2 (Poincaré dodecahedral space, 1904) In a dodecahedron
every face has an opposite one. Then we make the construction of this space
following the steps:

(1) Let us take two opposite faces. Let us do a translation of one parallel
to the other until they are in the same plane. We do this for every two
opposite faces and, in each case we obtain the same configuration.

(2) Then, for every couple of faces in the same plane, do a rotation of
an angle of 2π/10 radians around the center of these faces (both have the
center at the same point). Then, after translation and rotation, let us
identify every face with its opposite one.

In the resulting quotient space, the old edges become glued from 3 to 3
and the old vertices from 4 to 4.

Since the dodecahedron has 30 edges, 20 vertices and 12 faces, after the
identifications we obtain:

• 10 groups of 3 edges identified,
• 6 groups of 2 faces identified ,
• 5 groups of 4 vertices identified.

The quotient space is locally euclidean, then it is a topological 3-manifold,
that we shall call V T1. But it is not a differentiable manifold. In fact,
the dihedral angles of the dodecahedron are of approximately 116 de-
grees and the sum of the three dihedral angles which met an edge is
≈ 116 × 3 = 348 < 360, then, we have singularities in all points of the
edges.

We are going to avoid the singularity by enlarging the measure of the
dihedral angles. For it, the trick will be to consider the dodecahedron inside
S3. Now, the edges of the dodecahedron will be geodesics of S3, and the
faces totally geodesic surfaces.
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We begin with a small dodecahedron with the center in the North Pole.
Since, for small distances, Euclidean geometry is a good approximation of
any other Riemannian geometry, the measure of the angles of this small
dodecahedron will be near to 116 degrees. Now, we grow the dodecahedron
in S3 by increasing uniformly the distance of the vertices to the center of
the dodecahedron, keeping the dodecahedron regular. As the dodecahe-
dron increases, also the dihedral angles increase. When the distance of the
vertices to the North Pole approaches π/2, the dodecahedron approaches
the equator of S3, itself becomes similar to the equator, and the dihedral
angles approach 180 degrees.

Since, in the above process, the measure of the dihedral angles is con-
tinuous as a function of the distance from the vertices to the North Pole,
and this measure varies between 116 and 180 degrees as the distance varies
between 0 and π/2, there will be a dodecahedron with dihedral angles of
120 degrees. The manifod obtained from this spherical dodecahedron by
the above gluing process will be differentiable, and topologically equivalent
to V T1.

Example 3 (Seifert-Weber dodecahedral space, 1933) We start with
a dodecahedron as in the previous example, and we made the same pro-
cess of gluing, with one difference, this time the rotation before identifying
opposite faces will be of 3 × 2π/10 radians. Now, after identification we
obtain

• 6 groups of 5 edges identified.
• All the 20 vertices are identified.

Since we have 5 edges identified, we need dihedral angles of 360/5 = 72
degrees to avoid singularities at the edges. But we recall that we have
mentioned before that the dihedral angles of a dodecahedron is around 116.
Then, to obtain a differentiable quotient, we need the opposite operation
that we did before: to decrease the angles. For it, we shall consider now
a dodecahedron in the hyperbolic space H3. Using the Poincaré ball as a
model for H3, we shall put the dodecahedron with its center at the center
of the ball O. As above, if we begin with a very small dodecahedron, the
dihedral angles will be approximately of 116 degrees.

The dihedral angle is a continuous function of the hyperbolic distance
of the vertices to O. Then, if we enlarge the dodecahedron by increasing
uniformly the distance of its vertices to O, the dihedral angle will change
continuously and, when distance goes to ∞, the faces of the dodecahedron
have their vertices at the sphere of the infinity, and the dihedral angle
between two such faces is 60 degrees. Then the dihedral angle varies con-
tinuously from ≈ 116 to 60, then, at some distance from the vertices to O,



12 A. BORISENKO, E.CABEZAS-RIVAS, V. MIQUEL-MOLINA

it has the needed value 72. If we do the indicated identifications on the hy-
perbolic dodecahedron with this dihedral angle, we obtain a differentiable
manifold which is the dodecahedrical space of Seifert and Weber.

Remark 1 There are many difficult points that we have hidden in the above
examples, they have more complications than those we have described here.
However, there are two simple things which we have learned here, although
the examples are not completely described. The first one is that, if we
match faces of a polyhedron, we will produce differentiable singularities (no
tangent plane) along the axes if the sum of dihedral angles between the
faces matched is different from 2π. The second is that we can smooth these
singularities by considering the corresponding polyhedron in the sphere or
in the hyperbolic space.

Example 4 (Seifert fibrations) This is not, in fact, an example, but a
family of examples, which play an important role in subsequent develop-
ments. These fibrations where introduced by Herbert Seifert in 1933.

A Seifert fibration is a 3-manifold fibered by circles which are the orbits
of a circle action which is free except on at most finitely many fibers, which
are called “short” fibers

We recall that an action of a circle on a manifold M is a map (x, t) 7→ xt

from M × R/Z to M satisfying the usual conditions that x0 = x and
xs+t = (xs)t . In a Seifert fibration we require that each fiber xR/Z should
be a circle, and that the action of R/Z should be free except on at most
finitely many of these fibers.

We recall also that an action of a group G on a set X is called free if
xg 6= x for all x ∈ X and g ∈ G− {e}.

Each “short fiber” of a Seifert fibration has a neigbourhood which is a
model Seifert fibering. A model Seifert fibering of S1 ×D2 is a decompo-
sition of S1 ×D2 into disjoint circles, called fibers, constructed as follows.
Starting with [0, 1]×D2 decomposed into the segments [0, 1]×{x}, identify
the disks {0} ×D2 and {1} ×D2 via the rotation of angle 2πp/q, where p
and q are relatively prime integral numbers. The segment [0, 1]×{0} then
becomes a fiber S1 × {0} (the short fiber), while every other fiber in the
quotient S1 ×D2/ ∼ is a S1 made from q segments [0, 1]× {x}.

rotation of angle 
π/2

1
2

34

1

23

4

short
fiber

identification

Model Seifert fibering before the identification. At the center the short fiber
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Then, a Seifert fibering of a 3-manifold M can also be defined as a de-
composition of M into disjoint circles, the fibers, such that each fiber has a
neighborhood diffeomorphic, preserving fibers, to a neighborhood of a fiber
in some model Seifert fibering of S1×D2. A Seifert manifold is one which
possesses a Seifert fibering.

Seifert manifolds where classified along the thirties.

Example 5 (graph manifolds) In 1967, Friedhelm Waldhausen intro-
duced and analyzed the class of graph manifolds. By definition, these are
manifolds which can be split by disjoint embedded tori into pieces (see the
torus decomposition Theorem 1.4 for more precise explanation of the mean-
ing of this splitting), each of which is a circle bundle over a surface. Seifert
manifolds are a particular case of graph manifolds.

1.3. The Sphere (or Prime) Decomposition
The first two main steps in the way to classification of 3-manifolds are the

Sphere Decomposition Theorem and the Torus Decomposition Theorem.
Helmut Kneser (1898-1973) carried out the first step. Although he stated

his definitions and theorems in the category of PL-manifolds, we shall de-
clare it in the category of topological manifolds, because, in dimension 3,
TOP=PL=DIFF, that is, each topological 3-manifold admits a unique PL
and a unique smooth structure.

In order to state this result, first we need some definitions

Definition 1.1 (connected sum) If a closed 3-manifold M contains an
embedded sphere S2 separating M into two components, we can split M
along this S2 into manifolds M1 and M2 with boundary S2. We can then
fill in these boundary spheres with 3-balls to produce two closed manifolds
N1 and N2. One says that M is the connected sum of N1 and N2, and one
writes M = N1]N2.

This splitting operation is commutative and associative.

One rather trivial possibility for the decomposition of M as a connected
sum is M = M]S3. If this is the only way to decompose M as a connected
sum, M is called irreducible or prime. This property is equivalent to the
following

Definition 1.2 (prime manifolds) A closed 3-manifold is called prime
if every separating embedded 2-sphere bounds a 3-ball.

A related definition is the following:

Definition 1.3 (irreducible manifolds) A closed 3-manifold is called ir-
reducible if every embedded 2-sphere bounds a 3-ball.
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There are three main classes of prime manifolds:

Type I With finite fundamental group. All the known examples are the
spherical 3-manifolds, of the form M = S3/Γ, where Γ is a finite subgroup
of SO(4) acting freely on S3 by rotations. Thus Γ = π1(M). The spherical
manifolds with Γ cyclic are called lens spaces. It is an old conjecture that
spherical 3-manifolds are the only closed 3-manifolds with finite fundamen-
tal group (It is, in fact, Poincaré conjecture).

Type II With infinite cyclic fundamental group. There is only one prime
3-manifold satisfying this condition: S1 × S2. This is also the only ori-
entable 3-manifold that is prime but not irreducible. It is also the only
prime orientable 3-manifold with non-trivial π2.

Type III With infinite noncyclic fundamental group. These are K(π, 1)
manifolds (also called aspherical), i.e., manifolds with contractible universal
cover. Any irreducible 3-manifold M , with π1 infinite is a K(π, 1).

Suppose that we start with a 3-manifold M which is connected and not
prime. Then we can decompose M = N1]N2, where no Ni is a sphere.
Now, either each Ni is irreducible, or we can iterate this procedure. The
theorem of Kneser (1929) states that this procedure always stops after a
finite number of steps, yielding a manifold M such that each connected
component of M is irreducible. In fact, if we keep careful track of orienta-
tions and the number n of non-separating cuts, then the original connected
manifold M can be recovered as the connected sum of the components of
M , together with n copies of the “handle” S1 × S2. With more precision

Theorem 1.2 (Sphere (or Prime) Decomposition - cf. [57], [63]-)
Let M be a orientable closed 3-manifold. Then M admits a finite connected
sum decomposition

M = (K1]...]Kp)](L1]...]Lq)](]r1S
2 × S1). (1.1)

The K and L factors here are closed and irreducible 3-manifolds. The
K factors have infinite fundamental group and are aspherical 3-manifolds
(are of type III), while the L factors have finite fundamental group and
have universal cover a homotopy 3-sphere (are of Type I).

Since M]S3 = M , we assume no L factor is S3 unless M = L = S3. The
factors in (1.1) are unique up to permutation and are obtained from M by
performing surgery on a collection of essential, i.e. topologically nontrivial,
2-spheres in M (replacing regions S2×S1 by two copies of B3); see Figure
1 for a schematic representation.
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Figure 1

It is worth emphasizing that the sphere decomposition is perhaps the sim-
plest topological procedure that is performed in understanding the topology
of 3-manifolds. In contrast, in dealing with the geometry and analysis of
metrics on 3-manifolds, this procedure is the most difficult to perform or
understand1. It is more convenient the following

1.4. The Torus Decomposition
Before stating the torus decomposition theorem, we introduce several

definitions. Let N be an irreducible manifold (possibly with border) and
let S be a compact, oriented (which is the same that two-sided) surface
embedded in N (and thus having trivial normal bundle).

Definition 1.4 The above surface S is incompressible if, for every closed
disc D embedded in N with D ∩ S ⊂ ∂D, the curve ∂D is contractible in
S. If S is not incompressible, it is compressible.

Proposition 1.3 The surface S is incompressible if and only if the inclu-
sion map induces an injection π1(S) −→ π1(N) of fundamental groups.

Definition 1.5 A 3-manifold N is called sufficiently large if it contains an
incompressible surface.

A 3-manifold N is called a Haken manifold if it contains an incompress-
ible surface of genus g ≥ 1.

Incompressible tori play the central role in the torus decomposition of a
3- manifold, just as spheres do in the prime decomposition. Note, however,
that when one cuts a 3-manifold along an incompressible torus, there is

1In fact, this is like an Uniformization Theorem, that says that every orientable closed
2-manifold can be written as the connected sum of one sphere and a finite number of
tori. Prime decomposition Theorem states that every 3-manifold can be written as a
connected sum of one sphere and a finite number of prime 3-manifolds, and reduces the
problem to classify the prime 3-manifolds
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no canonical way to cap off the boundary components thus created, as is
the case for spheres. For any toral boundary component, there are many
ways to glue in a solid torus, corresponding to the automorphisms of T 2;
typically, the topological type of the resulting manifold depends on the
choice. Thus, when a 3-manifold is split along incompressible tori, one
leaves the compact manifolds with toral boundary fixed. This leads to
another definition:

Definition 1.6 A closed 3-manifold N is torus-irreducible if it has no in-
compressible tori.

Theorem 1.4 (Torus Decomposition - cf. [53], [54]-) Let M be a closed,
oriented, irreducible 3-manifold. Then there is a finite collection (possibly
empty) of disjoint incompressible tori T 2

i ⊂ M that separate M into a fi-
nite collection of compact 3-manifolds with toral boundary, each of which is
either torus-irreducible or Seifert fibered. A minimal such collection (with
respect to cardinality) is unique up to isotopy.

Of course, it is possible that the collection of incompressible tori is empty.
In this case, M is itself a closed irreducible 3-manifold that is either Seifert
fibered or torus-irreducible.

Joining The Sphere and the torus decomposition theorems, we see that
we can obtain any closed orientable 3-manifold by gluing torus-irreducible
and Seifert fibered manifolds. Then, the main question for the classification
of orientable closed 3-manifolds is to understand the structure of torus-
irreducible and Seifert fibered manifolds.

The Geometrization Conjecture (GC) of Thurston asserts that the torus
irreducible and Seifert fibered components of a closed, oriented, irreducible
3- manifold admit canonical geometric structures. We shall be back on GC
at the end of this lecture. Now, we are going to explain what do we mean
by “geometric structure”

1.5. Geometric structures and the Geometrization Conjecture

Definition 1.7 A simply connected geometric structure or a model geom-
etry is a pair (G,X) where X is a manifold and G is a Lie group of dif-
feomorphisms of X satisfying

1. X is connected and simply connected,
2. G acts transitively on X2, with compact identity component H0 of the

isotropy group,
3. G is not contained in any larger group of diffeomorphisms of X with

compact isotropy group, and

2G acts transitively on X if for every x, y ∈ X there is a g ∈ G satisfying xg = y
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4. there is at least one compact manifold modelled on (G,X). That is,
there is a compact manifold M and a discrete subgroup Γ of G satisfying
M = X/Γ (this is equivalent to say that G is unimodular).

Each M = X/Γ of condition 4 is also called a model geometry. In other
words, a compact manifold Mn has a geometric structure or is a model
geometry if the universal covering X of M has a simply connected geometric
structure.

Condition 2 means that the space X admits a homogeneous Riemannian
metric invariant by G, X = G/H0, and it is complete. Condition 3 says
that no Riemannian metric invariant by G is also invariant by any larger
group. The point of conditions 3 and the second part of 2 is to avoid
redundancy.

In dimension 2 the classification is easy and well known:

Theorem 1.5 There are precisely three two-dimensional model geometries:
Spherical, Euclidean and Hyperbolic

Proof. Since G acts transitively on X, it follows that any G-invariant
Riemannian metric on X has constant Gaussian curvature. When a metric
is multiplied by k, the Gaussian curvature is multiplied by k2, so we can
find a metric whose curvature is either 0, 1 or −1. It is a standard fact
from Riemannian Geometry that the only simply connected Riemannian
2-manifolds with constant sectional curvature 0, 1 or −1 are E2, S2, H2. tu

Conjecture 1.1 The Thurston Geometrization Conjecture. Let M
be a closed, oriented 3-manifold. Then each component of the sphere and
torus decomposition admits a geometric structure. In other words, any
prime closed 3-manifold is either geometric or its simple pieces are geo-
metric.

From the point of view of Riemannian geometry, the Thurston conjecture
essentially asserts the existence of a “best possible” metric on an arbitrary
closed 3-manifold.

The geometrization conjecture gives a complete and effective classifi-
cation of all closed 3-manifolds, closely resembling in many respects the
classification of surfaces. More precisely, it reduces the classification to
that of geometric 3-manifolds.

Thurston showed that there are 8 simply connected geometries G/H in
dimension 3 which admit compact quotients.3: We shall give the details

3The Thurston classification is essentially a (non completely proved) special case of
the much older (rigurously proved) Bianchi classification of homogeneous space-time
metrics arising in general relativity; cf. [4] for further remarks on the dictionary relating
these classifications. Another complete and modern proof of the classification can be
found in Sekigawa’s [77] and [78]
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of these geometries in the next chapter. The classification of the compact
quotients of these 8 models is well known, except for the case of hyperbolic
3-manifolds, which remains an active area of research.

The Geometrization Conjecture includes the following important special
cases:

Hyperbolization Conjecture. If M is prime, π1(M) is infinite and M
is atoroidal (that is, π1(M) has no subgroup isomorphic to Z⊕Z = π1(T 2)),
then M is hyperbolic, that is, admits a hyperbolic metric.

Elliptization or spherical Poincaré Conjecture. If π1(M) is finite,
then M is spherical , that is, admits a metric of constant positive curva-
ture. In particular, any closed 3-manifold with trivial fundamental group
must be homeomorphic to S3 (Poincaré conjecture).

In fact, these are the only remaining open cases of the Geometrization
Conjecture:
• If M has a nontrivial torus decomposition (equivalently, if M contains

an incompressible torus), then in particular M is Haken. Thurston ([82],
[83], [84]) has proved the conjecture for Haken manifolds.
• If M has no incompressible tori, recent work on the Seifert fibered

space conjecture (cf.cf. [33], [10]) implies that M is either Seifert fibered or
atoroidal. It is known that Seifert fibered spaces have geometric structures.

In the remaining cases, M is atoroidal, and so satisfies the hypotheses of
either the elliptization or the hyperbolization conjectures.

As an illustration of the power of the Thurston Conjecture, let us see
how it implies the Poincaré Conjecture. If M is a simply connected 3-
manifold, then the sphere decomposition (1.1) implies that M must be an
L factor. The geometrization conjecture implies that L is geometric, and
so L = S3/Γ. Hence, M = L = S3.

More remarks
It is well known (cf. [75]) that the same 3-manifold cannot have geometric

structures modeled on two distinct geometries.
Of course, it is not true that the geometric structure itself, that is, the

homogeneous metric, is unique in general. In this respect, we recall:

Theorem 1.6 (Mostow Rigidity, cf. [65], [71]) Let N be a 3-manifold
carrying a complete hyperbolic metric of finite volume. Then the hyperbolic
metric is unique, up to isometry. Further, if N and N ′ are 3-manifolds with
isomorphic fundamental groups, and if N and N ′ carry complete hyperbolic
metrics of finite volume, then N and N ′ are dffeomorphic.

In particular, invariants of the hyperbolic metric such as the volume and
the spectrum are topological invariants of the 3-manifold.
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There is a similar rigidity for spherical 3-manifolds, in the sense that any
metric of curvature +1 on the manifold is unique, up to isometry (cf.[89]).
The fundamental group in this case does not determine the topological
type of the manifold. There are further topological invariants, such as the
Reidemeister torsion. The other six geometries are typically not rigid, but
have moduli closely related to the moduli of constant curvature metrics on
surfaces.

2. THE EIGHT 3-DIMENSIONAL MODEL GEOMETRIES

2.1. Generalities and classes
In terms of Riemannian Geometry, a closed manifold M of dimension

n has a geometric structure if it admits a complete locally homogeneous
metric. This means the universal covering space X of M has a complete
homogeneous metric. That is, M has a complete metric such that there
is a group of isometries of X which acts transitively on X with compact
isotropy group H, and X = G/H. We recall also that, in order to avoid
redundancy, we added the following restriction: “G is a maximal group of
isometries of X”.

On the other hand, since M is closed and X is the universal covering of
M , M = X/Γ, where Γ is the deck transformation group of the covering
X −→M , which will be a discrete subgroup of G.

Then to look for simply connected geometric structures we have to look
for simply connected complete homogeneous spaces X with compact iden-
tity component of the isotropy group and having a compact quotient by a
discrete subgroup of the group of isometries of X.

Thurston proved that there are eight simply connected geometries in
dimension 3 which admit compact quotients. It is a remarkable fact that
in each of the eight 3-dimensional model geometries (X,G), X is isometric
to a Lie group with a left invariant metric4. In this lecture we shall describe
the eight simply connected model geometries. In the next one we shall give
an outline (with some details) of the classification theorem.

First we have the three constant curvature geometries, all of them with
isotropy group (≡ H0) SO(3). The remaining five geometries are products
or twisted products with the two dimensional geometries. Concretely, it is
possible to divide the geometric structures into three categories.

• Constant (sectional) curvature geometries (H0 = SO(3))

– Spherical(≡ geometry of curvature 1)
{
X = S3

G = SO(4)

4Let G be a Lie group. A Riemannian metric on G is said to be left-invariant if it is
invariant under all left translations: L∗pg = g for every p ∈ G.
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– Hyperbolic(≡ geometry of curvature −1)
{
X = H3

G = PSL(2,C)

– Euclidean (≡ geometry of curvature 0)
{
X = E3

G = R3 × SO(3)

• Product geometries (H0 = SO(2))

– Geometry of H2 × R

 X = H2 × R
G = orientation preserving subgroup of

IsomH2 × IsomE1

– Geometry of S2 × R

 X = S2 × R
G = orientation preserving subgroup of

SO(3)× IsomE1

• Twisted product geometries

– Geometry of ˜SL(2,R)


X = the universal cover of the

unit sphere bundle of H2

G = S̃L(2,R)× R
H0 = SO(2)

– Nil geometry


X = 3-dimensional Heisenberg group
G = semidirect product of X with S1,

acting by rotations on the quotient of X
by its center

H0 = SO(2)

– Sol geometry


X = 3-dimensional solvable Lie group
G = extension of X by an automorphism group

of order eight
H0 = {e}

Here we enumerate some properties of the above geometries.
- The first five geometries are symmetric spaces5

- Only the spherical geometry is compact.
- The constant curvature geometries are isotropic, that is, they look the

same in every direction. In particular, the isometry groups of these spaces
act transitively on their orthonormal frame bundles.

- The twisted product geometries are the least isotropic ones and are
modelled on unimodular Lie groups.

2.2. Contact structures

5A Riemannian manifold (M, g) is called symmetric (or a Riemannian symmetric
space) if for each x ∈ M there exists an isometry fx of (M, g) such that fx(x) = x and
(fx)∗x = −IdTxM . The isometry fx is called the symmetry around x.
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As we shall see in the proof of the Thurston theorem, twisted product
geometries (X,G) have the following characteristic property: X admits a
foliation F by lines such that X/F has constant Gaussian curvature and
(TF)⊥ is not involutive. The last condition is equivalent to say that X
admits a contact structure. We try to understand in this section what is
the meaning of this.

First, let us revisit some fundamental concepts.
• Let Mn be a differentiable manifold. A c-dimensional (tangent) distri-

bution (or c-plane field) is an application D such that

m ∈M 7−→ Dm ⊂ TmM,

where Dm is a vector subspace of dimension c. Moreover, D acts in
a differentiable way, that is, ∀x ∈ M there exist a neighborhood U of
m and differentiable vector fields X1, . . . , Xc ∈ X(U) satisfying Dm =
〈X1m, . . . , Xcm〉 ≡ span(X1m, . . . , Xcm) ∀m ∈ U .
• A distribution is said to be involutive if, given any pair of local sections

of D6, their Lie bracket 7 is also a section of D. Briefly,

D is involutive if X,Y ∈ D implies [X,Y ] ∈ D.

• From the Frobenius theorem, an involutive distribution is equivalent to
a integrable one8.

Definition 2.1 Let M be a differentiable 3-manifold. A codimension 1
distribution on M is called a contact structure on M if it is not involutive
on M .

We can also define the concept of contact structure in a dual way. Indeed,
let ω be a one-form on a 3-dimensional manifold M ; if there exist X ∈
X(M) such that ω(X) = 0 everywhere, then ∀p ∈ M Kerωp := {X ∈
TpM/ωp(X) = 0} is a non-empty vectorial subspace of TpM . Therefore
the map

p ∈M 7−→ Dp := Kerωp ⊂ TpM

defines a 2-distribution on M , which we shall denote by D ≡ Kerω. So we
have defined a distribution as the kernel of a one-form.

6A vector field X defined on an open subset of M is said to be a local section of a
distribution D (and this is denoted by X ∈ D) if Xp ∈ Dp for each p.

7Given X, Y ∈ X(M), their Lie bracket (denoted as [X, Y ]) is another vector field on
M with coordinates

[X, Y ]i =
∂Xi

∂uj
Y j −

∂Y i

∂uk
Xk.

8Recall that an n-distribution D over M is called integrable if there exists a foliation
F of dimension n over M such that D = TF (i.e. D is tangent to a foliation).
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Now we can rewrite the previous definitions in this new language of one-
forms.
• A local section of D is a vector field X on an open subset of M such

that ωp(X) = 0 ∀p ∈M .
• D is involutive if ∀X,Y ∈ D (i.e. such that ω(X) = 0, ω(Y ) = 0), we

have ω([X,Y ]) = 0 at every point.
Finally, we can rephrase the Definition 2.1 in terms of ω.

Definition 2.2 Given a linear form ω on a 3-manifold M . the 2-plane
field τ = Kerω is called a contact structure if there exist X,Y ∈ τ such
that ω([X,Y ]) 6= 0 at any point.

We have another equivalent definition provided by the Frobenius theo-
rem: D is involutive if and only if dω ∧ ω ≡ 0 and τ is a contact structure
iff dω ∧ ω 6= 0 at any point.

Examples 2.2.1 Consider E3 and ω = dz − xdy, then

ω ∧ dω = (dz − xdy) ∧ (−dx ∧ dy) = −dx ∧ dy ∧ dz 6= 0

Thus Kerω is a contact structure on E3.

Examples 2.2.2 Consider a Riemannian manifold Mn with metric ds2 =
gijdx

i dxj. Let now TMn be the tangent bundle with the Sasaki metric,
which is expressed in local coordinates as

dσ2
(x,ξ) = gijdx

i dxj + gij(∇ξ)i (∇ξ)j , (2.1)

where

(∇ξ)i = dξi + Γi
jkξ

jdxk. (2.2)

We shall denote by Gij the components of the Sasaki metric.
In particular, we take M = H2 with metric ds2 = dx2

1 + cosh2 x1dx
2
2.

let us compute the expression for the covariant derivative associated to this
metric.

First we calculate the Christoffel symbols for the Levi-Civita connection:

Γk
ij =

1
2
gkl(∂igjl + ∂jgil − ∂lgij)

Considering that the matrix of the metric and its inverse have the fol-

lowing form: g =
(

1 0
0 cosh2 x1

)
and g−1 =

(
1 0
0 1

cosh2 x1

)
, the result

obtained for the Chistoffel symbols is

Γ1
22 = − coshx1 sinhx1, Γ2

12 = Γ2
21 = tanhx1
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and the remaining symbols are equal to zero.
Substituting these in (2.2), we reach

(∇ξ)1 = (dξ)1+Γ1
jkξ

jdxk = (dξ)1+Γ1
22ξ

2dx2 = (dξ)1−coshx1 sinhx1ξ
2dx2

(2.3)

(∇ξ)2 = (dξ)2 + Γ2
jkξ

jdxk = (dξ)2 + Γ2
12(ξ

1dx2 + ξ2dx1)

= (dξ)2 + tanhx1(ξ1dx2 + ξ2dx1) (2.4)

Consider ξ ∈ T1H
2, then |ξ| = 1 or, equivalently, gijξ

iξj = 1 and, in
our particular case,

(ξ1)2 + cosh2 x1(ξ2)2 = 1 −→ (ξ2)2 =
1− (ξ1)2

cosh2 x1

(2.5)

Taking derivatives in the equality 〈ξ, ξ〉 = 1, we get 〈∇ξ, ξ〉 = 0 or, in
local coordiantes, gij(∇ξ)iξj = 0. Thus, substituting the concrete values of
the H2-metric, we get

(∇ξ)1ξ1 + cosh2 x1(∇ξ)2ξ2 = 0 −→ (∇ξ)2 = − ξ1(∇ξ)1

ξ2 cosh2 x1

(2.6)

On the other hand, we have

gij(∇ξ)i(∇ξ)j = ((dξ)1 − coshx1 sinhx1ξ
2dx2)2

+ cosh2 x1
(ξ1)2((dξ)1 − sinhx1 coshx1ξ

2dx2)2

(ξ2)2 cosh4 x1

= ((dξ)1 − coshx1 sinhx1ξ
2dx2)2

(
1 +

(ξ1)2

(ξ2)2 cosh2 x1

)

= ((dξ)1 − coshx1 sinhx1

√
1− (ξ1)2

coshx1
dx2)2

1 +
(ξ1)2(

1−(ξ1)2

cosh2 x1

)
cosh2 x1


= ((dξ)1 − sinhx1

√
1− (ξ1)2dx2)2

(
1 +

(ξ1)2

1− (ξ1)2

)
= ((dξ)1 − sinhx1

√
1− (ξ1)2dx2)2

(
1

1− (ξ1)2

)
And so, substituting the above equality in (2.1), we obtain

dσ2 = (dx1)2+cosh2 x1(dx2)2+((dξ)1−sinhx1

√
1− (ξ1)2dx2)2

(
1

1− (ξ1)2

)
(2.7)
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Consider a 2-distribution orthogonal to V , that is, this distribution is
defined by the vectors which satisfy the equation

GijV
idyj = 0, where y = (y1, y2, y3) = (x1, x2, ξ1)

Then, for V = (0, 0, 1), we have

G13dx
1 +G23dx

2 +G33dξ
1 = 0 (2.8)

From (2.7), we have

G13 = 0, G23 =
−2 sinhx1√

1− (ξ1)2
, G33 =

1
1− (ξ1)2

Substituting this in (2.8), yields

− 2 sinhx1√
1− (ξ1)2

dx2+
1

1− (ξ1)2
dξ1 = 0 −→ −2 sinhx1

√
1− (ξ1)2dx2+dξ1 = 0

So, the distribution can be defined as the kernel of the linear form

ω = −2 sinhx1

√
1− (ξ1)2dx2 + dξ1

If we compute

dω = −2
√

1− (ξ1)2 coshx1dx
1 ∧ dx2 +

ξ1√
1− (ξ1)2

sinhx1dξ
1 ∧ dx2,

ω ∧ dω = −2
√

1− (ξ1)2 coshx1dx
1 ∧ dx2 ∧ dξ1

and notice that ω∧dω 6= 0, we can conclude that on T1H
2 with the induced

Sasaki metric, ω is a contact structure.

Theorem 2.1 Locally any contact structure on a 3-manifold has the form
ω = dz − xdy.
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2.3. Twisted product geometries
In this section we shall explain the less known geometries which have

appeared in the classification.

2.3.1. The geometry of S̃L(2, R)

Algebraically, the special linear group X ≡ SL(2,R) is the 3-dimensional
Lie group of all 2×2 real matrices with determinant 1. S̃L(2,R) denotes its
universal covering and is also a Lie group; so it admits a metric invariant
under left multiplication.

Topologically, S̃L(2,R) is homeomorphic to H2 × R. However, they are
not isometric.

To study the metric structure of S̃L(2,R) we use the model. Let T1H
2

be the unit tangent bundle of H2, consisting of all tangent vectors of length
1 of H2. Consider in T1H

2 the induced Sasaki metric. This metric makes
T1H

2 a homogeneous Riemannian manifold and, moreover, the space T1H
2

has the homotopy type of a circle. Its universal covering is the model for
S̃L(2,R). Since the Riemannian manifold T1H

2 is homogeneous, so is its
universal covering.

As T1H
2 is a circle bundle over H2, we see that S̃L(2,R) is naturally a

line bundle over H2. We call the fibres of this bundle vertical. The horizon-
tal plane field(≡ distribution of 2-planes orthogonal to the vertical fibers)
on T1H

2 gives a plane field on S̃L(2,R) which we call again horizontal.
As the projection map is an isometry, this plane field is non-integrable.
This shows that S̃L(2,R) is not isometric to H2 × R by any isomorphism
preserving fibers.

The isometry group of S̃L(2,R) preserves this bundle structure and is
4-dimensional. However, IsomS̃L(2,R) has only two components, both
orientation preserving. In particular, S̃L(2,R) admits no orientation re-
versing isometry. In other words, for S̃L(2,R) (and also for Nil), the
contact structure determines an orientation of the geometry which cannot
be reversed.

2.3.2. Nil geometry

Algebraically, X is the 3-dimensional Heisenberg group, which consists

of all 3×3 real upper triangular matrices of the form

 1 x z
0 1 y
0 0 1

, endowed
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with the usual matrix multiplication. This group is nilpotent 9. In fact, it
is the only 3-dimensional nilpotent but non abelian connected and simply
connected Lie group; this explains the term Nil geometry. For now on, we
shall use the notation X ≡ Nil.

Topologically, Nil is diffeomorphic to R3 under the map

Nil 3 γ =

 1 a c
0 1 b
0 0 1

 7−→ (a, b, c) ∈ R3

Under this identification, left multiplication by γ corresponds to the map

Lγ(x, y, z) = (x+ a, y + b, z + ay + c) (2.9)

In other words, from this point of view, R3 now has the multiplication

(x0, y0, z0)(x, y, z) = (x+ x0, y + y0, z + z0 + x0y)

It is possible to check this formula doing the matrix multiplication.
It is easy to prove that Nil is a Lie group, so it admits a metric invariant

under left multiplication; it is defined in the following way: we shall take
ds2 = dx2 + dy2 + dz2 at (0, 0, 0) -the unit of the Heisenberg group- and
then extend ds2 at all other points of X as a left invariant metric. The
result is

ds2 = dx2 + dy2 + (dz − xdy)2.

Next we check that ds2 is invariant under left multiplication.

L∗γ(ds2) = d(L∗γx)
2 + d(L∗γy)

2 + (d(L∗γz)− L∗γy d(L
∗
γy))

2

= d(x ◦ Lγ)2 + d(y ◦ Lγ)2 + (d(z ◦ Lγ)− (x ◦ Lγ)d(y ◦ Lγ))2

= d(x+ a)2 + d(y + b)2 + (d(z + ay + c)− (x+ a)d(y + b))2

= dx2 + dy2 + (dz + ady − xdy − ady)2 = ds2

Moreover, as a Riemannian manifold, X is homogeneous. With this
metric, Nil is a line bundle over the Euclidean plane E2. The fibres of Nil

9Let Z(G) the center of a group G. The upper central series

Z0 ⊂ Z1 ⊂ . . . ⊂ Zi ⊂ . . .

of G is defined inductively by Z0 = {e} (where e is the identity of G) and Zi/Zi−1 =
Z(G/Zi−1). G is said to be nilpotent (of class c) if Zc = G. Thus a group is abelian if
and only if it is nilpotent of class 1.
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are called vertical, and the orthogonal plane field is called horizontal. Nil
can’t be thought of as the universal covering T1E

2, which is isometric to
E2 × S1 and so its universal covering is isometric to E3. In addition, it is
possible to prove that Nil is not isometric to E3.

If we identify S1 with the interval [0, 2π] with the ends identified then a
point θ ∈ S1 acts on Nil by A : S1 ×Nil→ Nil such that

(θ, (x, y, z)) A7−→ (θx, θy, θz), where θx = x cos θ − y sin θ
θy = x sin θ + y cos θ
θz = z + 1

2 sin θ
(
cos θ(x2 − y2)− 2 sin θxy

)
A is an action of S1 on Nil which is a group of automorphisms of Nil

preserving the above metric. In fact,

A∗θ(ds2) = d(θx)2 + d(θy)2 + (d(θx)− (θx)d(θy))2 = d(x cos θ − y sin θ)2

+ d(x sin θ + y cos θ)2 +
(
d

(
z +

1
2

sin θ(cos θ(x2 − y2)− 2 sin θxy
)

− (x cos θ − y sin θ)d(x sin θ + y cos θ))2

= dx2 + dy2 +
(
dz − sin θ cos θ y dy + sin θ cos θ x dx− sin2 θ x dy

− sin2 θ y dx+ sin θ cos θ y dy − cos2 θ x dy + sin2 θ y dx− sin θ cos θ
)2

= dx2 + dy2 + (dz − xdy)2

The action A also preserves the bundle structure of Nil and induces a
rotation on E2 fixing the origin. Moreover, the isometry group of Nil is
generated by Nil and this circle action and is 4-dimensional.

A nice example of a manifold with a geometric structure modelled on
Nil is obtained by taking the quotient of Nil by the subgroup Γ of Nil
consisting of all matrices in Nil with integer entries. This manifold is a
circle bundle over the torus with orientable total space.

On the other hand, closed 3-manifolds M modelled on Nil admit a con-
tact structure. Indeed, in this case M has a natural Seifert fibration and
it is possible to prove that the orthogonal plane field to this foliation of M
by circles is not integrable.

2.3.3. Sol geometry

It is the only maximal geometry with trivial isotropy group; because of
that, this is the geometry with the least symmetry. Algebraically, X ≡ Sol
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may be regarded as the solvable10 Poincar-Lorentz group E(1, 1), which
consists of rigid motions of the Minkowski 2-space 11. This Lie group is a
semidirect product12 of subgroups isomorphic to R ⊕ R and to R, where

each t ∈ R acts on R⊕R by (t, (x, y)) 7→
(
et 0
0 e−t

)
·
(
x
y

)
= (etx, e−ty).

Topologically, we can identify Sol with R3 so that the multiplication is
given by

(x0, y0, z0) · (x, y, z) = (x+ e−z0x0, y + ezy0, z + z0)

Clearly (0, 0, 0) is the identity and the xy-plane is a normal subgroup iso-
morphic to R2. In fact,

(x, y, z)−1 · (a, b, 0) · (x, y, z) = (−xe−z,−yez,−z) · (a, b, 0) · (x, y, z)
= (a− xe−z, b− yez,−z) · (x, y, z) = (∗, ∗, 0)

Metrically, Sol is just R3 but endowed with the left invariant Riemannian
metric which at (x, y, z) is

ds2 = e2zdx2 + e−2zdy2 + dz2. (2.10)

Another equivalent approach to the algebraic definition of Sol will be
given along the proof of Thurston theorem. In this way, we can say that
Sol is the unimodular Lie group completely determined by

[e1, e2] = 0, [e2, e3] = e1, [e3, e1] = −e2;

where {e1, e2, e3} is an orthonormal basis of eigenvectors of the Lie algebra
of X. As the generators e1, e2 commute, Sol contains a copy of R2 which

10A Lie group G is said to be solvable if it is connected and its Lie algebra is solvable.
A Lie algebra g is solvable when its Lie algebra commutator series, or derived series,
gk vanishes for some k. The commutator series of a Lie algebra g is the sequence of
subalgebras recursively defined by

gk+1 := [gk, gk],

with g0 = g. The notation [a, b] means the linear span of elements of the form [A, B],
when A ∈ a and B ∈ b. Since nilpotent Lie algebras are also solvable, any nilpotent Lie
group is a solvable Lie group.

11It is a 1 + 1 dimensional spacetime provided with the flat metric dt2 − dx2.
12Let G and H two Lie groups and consider a homomorphism from G to the abstract

group of automorphisms of H, that is, ρ : G −→ Aut(H). The semidirect product
H ×ρ G of H and G with respect to ρ is the product manifold H ×G endowed with the
Lie group estructure given by

(h, g)·(h′, g′) = (hρ(g)h′, gg′) (h, g)−1 = (ρ(g−1)h−1, g−1) ∀h, h′ ∈ M and g, g′ ∈ G.
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is a normal subgroup and the quotient group is R. The group is therefore
a semidirect product of R2 with R and determined by the action of the
one-parameter group generated by e3 on R2. The derivative of this action

at the identity is
(

0 1
1 0

)
. By rotating e1, e2 45o

¯ we can make this action

diagonal, with derivative at t = 0 equal to
(

1 0
0 −1

)
. Therefore, the

transformations in this basis are of the form

t 7−→
(
et 0
0 e−t

)
The metric (2.10) is preserved by the group G of transformations of X

of the form

(x, y, z) 7→ (εe−cx+ a, ε′ecy + b, z + c) or (εe−cy + a, ε′ecx+ b, z + c),

where a, b, c ∈ R and ε, ε′ = ±1.
The full isometry group of Sol has eight components and the identity

component is Sol acting on itself by left multiplication. The stabilizer of
the origin is isomorphic to the diedral group of order eight and consists
of the linear maps of R3 given by (x, y, z) 7→ (±x,±y, z) and (x, y, z) 7→
(±y,±x,−z).

The surfaces z = constant form a 2-dimensional foliation of Sol which
is preserved by Isom(Sol). The induced metric on the plane z = constant
of R3 makes this plane isometric to E2. Thus any 3-manifold M with
a geometric structure modelled on Sol inherits a natural 2-dimensional
foliation and the leaves must be planes, annuli, Moebius bands, tori or
Klein bottles.

3. THE THURSTON THEOREM ON THE 8 GEOMETRIC
STRUCTURES

3.1. Preliminares

We want to obtain all simply connected 3-dimensional homogeneous Rie-
mannian manifolds having compact quotient by a discrete subgroup of
isometries. This property leads to the following definitions and proper-
ties:

Definition 3.1 A Lie group G is called unimodular if it has a bi-invariant
volume form (with more precision, if the left invariant Haar measure is
also right invariant).
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Proposition 3.1 If a Lie group G has a compact quotient by a discrete
subgroup Γ, then it is unimodular.

Idea of the proof. . Let D be a fundamental domain of G under the ac-
tion of Γ, that is, a compact set D ⊂ G satisfying that ∪γ∈ΓγD = G

and µ(γD ∩ γ′D) = 0 if γ 6= γ′, where µ is the left invariant Haar mea-
sure. If E is another fundamental domain and µ is left invariant, then
µ(E) =

∑
γ∈Γ µ(γD ∩ E) =

∑
γ∈Γ µ(D ∩ γ−1E) = µ(D). But, if D is

a fundamental domain and g ∈ G, then Dg is also a fundamental do-
main. From the above equality we have that µ(D) = µ(Dg), then µ is also
right invariant. From this, by a “standard” argument it follows the right
invariance of the volume form ω associated to the measure µ. tu

Proposition 3.2 A connected n-dimensional Lie group G is unimodular
if and only if the linear transformation adX of its associated Lie algebra g

has trace zero for every X ∈ g.

Proof. Each g ∈ G determines a G-automorphism αg : h 7→ ghg−1. The
differential of this map at e ∈ G determines an automorphism Adg := αg∗e
of its Lie algebra g, that is, a representation Ad : G −→ GL(g); g 7→ Adg.

The group G is unimodular if and only if the volume form ω is bi-
invariant, α∗gωghg−1 = ωh. If e1, ..., en is a basis of g, we have
(α∗gωe)(e1, ..., en) = ωe(Adg e1, ...,Adg en) = det(Adg)ωe(e1, ..., en), then,
for every g ∈ G, ωe = α∗gωe if and only if detAdg = 1. But, since ω is
left-invariant (even when G is not unimodular), Lh commutes with Rg and
αg = Lg ◦Rg−1 , ωh = α∗gωghg−1 iff ωh = R∗g−1L∗gωghg−1 iff ωh = R∗g−1ωhg−1

iff L∗hωe = R∗g−1L∗hωg−1 iff ωe = R∗g−1ωg−1 iff ωe = R∗g−1L∗gωe = α∗gωe.
Then G is unimodular if and only if detAdg = 1 for every g ∈ G.

The morphism ad : g −→ gl(g) is defined by adv = Ad exp v∗0 and
it satisfies adv(u) = [v, u]. Moreover, the following commutation rule
holds: Ad exp v = eadv , where the second is the classical exponential of
an element of gl(g) defined by e` =

∑
`n

n! which has the property that
det(e`) = etr`. From this property we have that, for every v ∈ g, the prop-
erty 1 = detAd exp v = det eadv = etr (adv) is equivalent to tr (adv) = 0,
and this finishes the proof of the proposition. tu

If G is 3-dimensional with the canonical left invariant metric 〈, 〉 and left
invariant volume form, we have on its Lie algebra g a cross vector product
“×” defined by the orientation ω and the scalar product 〈, 〉. Then we
define a linear map L : g −→ g by the equation L(u× v) = [u, v]. Then
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Proposition 3.3 G is unimodular if and only if L is selfadjoint.

Proof. Let e1, e2, e3 be an oriented orthonormal basis of g. We have

tr (adei
) = 〈[ei, e1], e1〉+ 〈[ei, e2], e2〉+ 〈[ei, e3], e3〉

= 〈L(ei × e1), e1〉+ 〈L(ei × e2), e2〉+ 〈L(ei × e3), e3〉

=


〈Le3, e2〉 − 〈Le2, e3〉 if i = 1
−〈Le3, e1〉+ 〈Le1, e3〉 if i = 2
〈Le2, e1〉 − 〈Le1, e2〉 if i = 3

, then,

tr (adei) = 0 for every i if and only if L is self-adjoint. (3.1)

But, since adv is R-linear respect to v (as follows from advu = [v, u]), from
(3.1) we have the proposition. tu

In the proof of the classification Theorem, we shall use the following
lemmas:

Lemma 3.3.1 Let ϕ : V −→ V be an isomorphism of a 3-dimensional
euclidean vector space, and v ∈ V such that ϕ(v) = v. If ϕ satisfies
that, for every orientation preserving isometry (also called rotation) R of
V having v as a fixed point there is another rotation R′ with v as a fixed
point satisfying ϕ ◦R = R′ ◦ϕ, then ϕ is the identity over span{v} and the
composition of an isometry and a homothecy on v⊥.

Proof. The first statement is obvious, we have only to show that ϕ|v⊥ is
an isometry composed with a homothecy. In fact:

1) ϕ(v⊥) = v⊥, because if 〈u, v〉 = 0, then, for every rotation R of V
satisfying Rv = v, we have 〈ϕu, v〉 = 〈R′ϕu, v〉 = 〈ϕRu, v〉. Taking R as
a rotation of axis v and angle π, Ru = −u, then 〈ϕu, v〉 = −〈ϕu, v〉, then
〈ϕu, v〉 = 0, as claimed.

2) Let u ∈ v⊥ with |u| = 1. For any other vector w ∈ v⊥ with |w| = 1,
there is a rotation R fixing v such that w = Ru. Then

〈ϕw,ϕw〉 = 〈ϕRu,ϕRu〉 = 〈R′ϕu,R′ϕu〉 = 〈ϕu, ϕu〉 .

Then, if λ2 = 〈ϕu, ϕu〉, the map
1
λ
ϕ|v⊥ is an isomorphism preserving the

norm, then it is an isometry, and ϕ|v⊥ is λ times an isometry. tu

Lemma 3.3.2 The flow of a G-invariant vector field in a homogeneous
space G/H admitting a compact quotient preserves the volume.
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Lemma 3.3.3 The integral curves of a G-invariant unit Killing vector
field13 on a G-homogeneous Riemannian manifold define a 1-dimensional
regular14 foliation.

3.2. The theorem and its proof

In this lecture we shall describe and prove the classification Theorem of
the simply connected geometric structures of dimension 3. We shall follow
more or less the ideas of Thurston, and, like his proof15, the following one
will be intuitive but not completely rigurous.

Theorem 3.4 (Thurston) Any maximal simply connected 3-dimensional
geometry which admits a compact quotient is equivalent to one of the ge-
ometries (X, Isom(X)), where X is one of the eight spaces described in the
previous lecture: S3, H3, R3, X = H2×R, S2×R, S̃L(2,R), Nil, or Sol.

Proof. Since G is the isometries group of X, for every g ∈ G and every
x ∈ X, g∗x is an isometry from TxX to TgxX, then, if h is in the isotropy
subgroup of G at x ∈ X, h∗x must be an isometry of TxX ≡ R3, then the
map ix : Hx −→ O(3) / h 7→ h∗x is an homomorphism whose image is a
subgroup of O(3), and the image of the connected component Hxe of Hx

containing the identity is a subgroup of SO(3). Then, for every x ∈ X,
there are only three possibilities for ix(Hxe). It must be equal to SO(3),
SO(2) or the trivial group.

The group ix(Hx) does not depend (up to an isomorphism) on the x ∈ X,
because the isotropy groups at points x and gx (for g ∈ G) are related by
Hgx = gHxg

−1, then, all the elements in Hgx are of the form ghg−1 for
h ∈ Hx, then igx(ghg−1) = (ghg−1)∗gx

a) If ix(Hxe) = SO(3), then for every x ∈ X and every two planes
π, σ ⊂ TxM there is an element h ∈ Hxe such that h∗xπ = σ. Since h is
an isometry of X and an isometry preserves the sectional curvature, both
planes have the same sectional curvature, then the sectional curvature is
pointwise constant and, by Schur Lemma, it is constant, but it is well known
that the unique simply connected spaces of constant sectional curvature are
E3, S3 and H3, whose isometry groups are also well known.

13A Killing field is a vector field X on a Riemannian manifold (M, g) such that LXg =
0 (where L denotes the Lie derivative). Its associated flow φt is a family of isometries.

14Roughly speaking, a foliation on a manifold is a partition of this manifold into
submanifolds, called leaves. Here, a foliation is called regular if its leaves are regular
submanifolds. In a regular foliation, the space of its leaves has a natural structure of
differentiable manifold, called the quotient manifold of the foliation.

15Recall the remark above about who really proved this theorem.
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b) If ix(Hxe) = SO(2), at each point x ∈ X, Hxe acts as the group of
oriented rotations around an axis, and the orientation of the rotations (all
are the same because ix(Hxe) = SO(2)) allows us to select a direction of
the axis, that is, a unit vector vx. This defines a unit vector field v on M .
This vector field can also be defined by x 7→ vx, where vx is the unique unit
vector at TxX such that, for every h ∈ Hx, h∗xvx = vx and {u, h∗xu, vx}
is a positively oriented basis, for every u in TxX.

This vector field v is G-invariant. In fact, we know that the isotropy
groups at points x and gx (for g ∈ G) are related by Hgx = gHxg

−1, then,
all the elements in Hgx are of the form ghg−1 for h ∈ Hx. Hence, in order
to check that g∗xvx = vgx we have only to compute (ghg−1)∗gxg∗xvx =
g∗hxh∗xvx = g∗xvx. Then the flow φt of v commutes with the action of G,
then, for every h ∈ Hx, hφt(x) = φt(h(x)) = φt(x), that is, Hφt(x) = Hx.

Moreover, for every t, let gt ∈ G such that gt(φt(x)) = x. Since v is G-
invariant, (gt◦φt)∗xvx = vx. Moreover, if h ∈ Hx, (gt◦φt)∗x◦h∗x = gt∗φt(x)◦
h∗φt(x)◦φt∗x = gt∗φt(x)◦h∗φt(x)◦g−1

t ∗x◦gt∗x◦φt∗x = (gthg
−1
t )∗x◦(gt◦φt)∗x,

and gthg
−1
t ∈ gtHφt(x)g

−1
t = Hx. Then

(gt ◦ φt)∗x is an isomorphism from TxX onto TxX satisfying that (3.2)

(gt ◦ φt)∗xvx = vx and (gthg
−1
t )∗x ◦ (gt ◦ φt)∗x = (gt ◦ φt)∗xh∗x

for every h ∈ Hx

From (3.2) and Lemma 3.3.1, it follows that gt∗φt(x) ◦φt∗x is the identity
on vx and a homothecy on v⊥x for every x ∈ X. Since gt is an isometry,
it follows that φt has also this behaviour. But, from Lemma 3.3.2, φt

must preserve the volume, then it must be an isometry. Then the vector
field v is a Killing vector field, and it follows from Lemma 3.3.3 that, if
F is the foliation defined by its integral curves, the quotient X/F is a
manifold, and, since φt are isometries, we can define a metric on X/F
such that the quotient map π : X −→ X/F be a Riemannian submersion.
Moreover, since the action of G commutes with φt and the leafs of F are
{φt(x), t ∈ R}, the image of a leaf of F by G is a leaf, then the transitive
action of G on X by isometries induces a transitive action of G on X/F
by isometries, then X/F has constant sectional curvature, and it is simply
connected because X is, then X/F must be E2, S2 or H2, and X is a
bundle on these spaces with fiber R or S1. Now, we have two possibilities:

b1) The distribution orthogonal to F is integrable (or equivalently, by
Frobenius Theorem, ω ∧ dω = 0, where ω = v[16. The inverse of [ will be

16Here [ denotes the vector bundle isomorphism [ : TX −→ T ∗X; TxX 3 v 7→ v[ :
TxM → R; v[(u) = 〈v, u〉
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denoted by ]). Then the Riemannian submersion is locally a Riemannian
product, and, since X/F is simply connected, it is a product. In this case,
since X is simply connected, the fiber can be only R. Then X = S2 × R,
or X = H2 × R or X = E2 × R = E3. The last case (which repeats a
space obtained in case a)) is ruled out because in this case ix(Hx) is not
the largest group of isometries, then also G is not. (We understand now
why the hypothesis 3 in Definition 1.7 is to avoid redundancy).

b2) The distribution orthogonal to F is not integrable (or equivalently,
ω ∧ dω 6= 0). This is what we called a contact structure on X in lecture 2.
It is known that contact structures having left invariant dual on a simply
connected 3-manifold fibering by lines R or circles S1 on S2, H2 or E2, and
with the 1-form ω the dual of the unit vector tangent to the fibers are:

- If the basis is S2, the only possibility is the Hopf fibration π : S3 −→ S2,
which again is ruled out because in this case the group G of isometries of
S3 is not maximal.

-If the basis is E2, the only possibility is the Nil geometry, and ω =
dz − x dy is the 1-form v[.

-If the basis is H2, then X = S̃L(2,R)
c) If ix(Hxe) is the trivial group, then X = G′/{e}, where G′ is the

identity component of G, and G′ acts on G′ as a group of isometries, then
X is a 3-dimensional group G′ with left invariant metric, and having a
compact quotient by a discrete subgroup. Then G′ is unimodular, and the
map L defined in the preliminares of this lecture is selfadjoint. Let λ1, λ2,
λ3 be the eigenvalues of L, according to the computations of Proposition
3.3 we have

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3,

and there is the following classification of Lie groups of dimension 3 asso-
ciated to the Lie algebras, with the above multiplication rule, according to
the signs of λ1, λ2 and λ3,

Signs of Associated Lie group type of group
λ1, λ2, λ3

+ + + SU(2) or O(1, 2) compact and simple
+ + − SL(2,R) or SO(3) non compact and simple
+ + 0 E(2) solvable
+ − 0 E(1, 1) = Sol solvable
+ 0 0 Nil nilpotent
0 0 0 R3 commutative
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The unique case where G is the maximal group of isometries is Sol.
Then, Sol, with a left invariant metric, is the unique geometric structure
in this case. tu

3.3. On the uniqueness of the geometric structure of a
topological three-manifold

Note that in six of the eight three dimensional geometries, all but S3 and
S2×R, the total space X is homeomorphic to R3. So it is not obvious that
such geometries are all different. Moreover, in the case of H2×R, S̃L(2,R)
and Nil it is not trivial that they are maximal. As a consequence of this,
the following result implies at once that none of the eight geometries is a
subgeometry of any other. Hence all eight are maximal and no two are
equivalent.

Theorem 3.5 If M is a closed 3-manifold which admits a geometric struc-
ture modelled on one of the eight geometries, then the geometry involved is
unique.

Next we state two theorems which classify those closed 3-manifolds ad-
mitting a non-hyperbolic geometric structure.

Theorem 3.6 Let M be a closed 3-manifold. M admits a geometric struc-
ture modelled on one of S3, E3, S2 × R, H2 × R, S̃L(2,R) or Nil if and
only if M is a Seifert fibre space.

Remark 3.6.1 It is possible to classify the 3-manifolds which admit one
of the six geometries above in two groups, corresponding to whether the S1

bundle is trivial or not.
• 3-manifolds with product geometries H2 ×R, E3 or S2 ×R are, up to

finite covers, trivial circle bundles over oriented surfaces of genus g, where
g ≥ 2, g = 1, and g = 0, respectively.
• 3-manifolds with the twisted product geometries S̃L(2,R), Nil, and S3

are, up to finite covers, nontrivial circle bundles over surfaces of genus
g ≥ 2, g = 1, and g = 0, respectively.

Theorem 3.7 Let M be a closed 3-manifold. M is a geometric manifold
modelled on Sol if and only if M is finitely covered by a torus bundle over
S1 with holonomy17 given by a hyperbolic automorphism of T 2, that is, an
element of SL(2,Z) with distinct real eigenvalues.

17Let (M, g) be a Riemannian manifold and fix a base point p ∈ M . Let us denote
by P (c) the parallel translation along a C∞ loop c based at p. The holonomy group of
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On the other hand, note that manifolds modelled on Sol are graph man-
ifolds, that is, they may be split by incompresssible tori into a union of
Seifert fibered spaces. Thus, seven of the eight geometric 3-manifolds are
topologically S1-fibered over surfaces or T 2-fibered over S1. Since most
3-manifolds do not admit such fibrations, the hyperbolic geometry is by far
the most interesting one.

4. SOME ELEMENTARY FACTS ABOUT HEAT EQUATION

In this chapter we shall review, very quickly, the essential facts of heat
equation on Rn and on Riemannian manifolds18. The motivation for this
review is that heat eqution is the model of diffusion equations, and the
Ricci flow is a diffusion equation. There are two main facts which seem
to be in the mind of R. Hamilton when he invented Ricci flow to prove
Poincaré Conjecture. The first one is that heat flow smoothes functions,
you may begin with a non smooth temperature distribution and, after heat
flows, the temperature function becomes smooth. The second is that heat
flow tends to the homogenization of the temperature: as time goes on, the
temperature goes more similar in all the points of the space where heat
flows. Technically this is given by the last theorem that we recall in this
lecture: when time goes to infinity, then the solution of heat equation tends
to be harmonic.

4.1. The heat equation in the euclidean space

The heat equation in the euclidean space Rn is

∆u+
∂u

∂t
= 0, where ∆ := −

n∑
i=1

∂2

∂(xi)2
(4.1)

It is a parabolic equation. It is not preserved under the change t 7→ −t
(it is not time reversible), and it is preserved under the transformation

x 7→ a x, t 7→ a2 t, which leaves
|x|2

t
invariant. Then, it is not surprising

that
|x|2

t
appears frequently in connection with the heat equation.

(M, g) at p is defined as the following subgroup of the orthogonal transformation group
O(TpM):

H(p) := {P (c) : c is a piecewise C∞ loop based at p}.

For more details, see [76] p.121.
18[12] is a good reference for more details on the heat equation.
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Now, let us give some ideas about the solution of (4.1). For ξ ∈ Rn,
λ ∈ R, let us try a solution of (4.1) of the form

u(x, t) = ei(λt+〈x,ξ〉). (4.2)

By substitution in (4.1), we obtain that (4.2) is a solution of heat equation
when iλ = −|ξ|2, i.e., ei〈x,ξ〉−|ξ|2t is a solution of (4.1).

All the solutions of the heat equation can be obtained from the so-called
fundamental solution or the heat kernel, which is a function K : Rn×Rn×
R+ −→ R defined by

K(x, y, t) =
1

(4πt)
n
2
e−|x−y|2/4t (4.3)

and satisfies the properties:

i)
(

∆ +
∂

∂t

)
K(x, y, t) = 0 for t > 0,

ii) K(x, y, t) > 0 for t > 0

iii)
∫

Rn

K(x, y, t)dy = 1 for x ∈ Rn, t > 0,

iv) For any δ > 0, we have lim
t→0+

∫
|y−x|>δ

K(x, y, t) dy = 0 uniformly for

x ∈ Rn.

v) For any C∞ function f on Rn, we have lim
t→0+

∫
Rn

K(x, y, t)f(y) dy =

f(x).

Properties ii), iv) and v) are expressed saying that limt→0+ K(x, y, t) = δx,
the delta of Dirac at x.

The “pure initial value problem” for the heat equation consists on finding
a solution u(x, t) of (4.1) for x ∈ Rn, t > 0 and satisfying u(x, 0) = f(x),
where we require u to be C∞ on Rn×]0,∞[ and C0 on Rn × [0,∞[. For
this problem, we have the following existence and uniqueness theorem

Theorem 4.1 Let f be a function on Rn continuous and bounded. If

u(x, t) is a real function continuous on Rn × [0, T [,
∂u

∂t
and

∂u

∂xi∂xj
ex-

ist and are continuous on Rn×]0, T [, and u(x, t) ≥ 0 on Rn×]0, T [, then
the function

u(x, t) =
∫

Rn

K(x, y, t)f(y)dy (4.4)

is the unique solution of (4.1) satisfying the condition u(x, 0) = f(x).
Moreover it is analytic on Rn×]0, T [.
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The proof of the theorem follows from the basic properties of K(x, y, t)
stated above.

The following maximum principle is extremely useful to prove uniqueness
and regularity theorems.

Theorem 4.2 Let ω be an open bounded set of Rn, T ∈ R+. Let Ω be the
cylinder Ω = {(x, t); x ∈ ω, 0 < t < T}. Its boundary is the union of the
next two disjoint portions: ∂′Ω = ∂ω× [0, T ]∪ω×{0} and ∂′′Ω = ω×{T}.

If u(x, t) is a real function continuous on Ω,
∂u

∂t
and

∂u

∂xi∂xj
exist and are

continuous on Ω, and they satisfy

∂u

∂t
+ ∆u ≤ 0, (4.5)

then

max{u(x, t); (x, t) ∈ Ω} = max{u(x, t); (x, t) ∈ ∂′Ω} (4.6)

Proof. First, let us suppose that
∂u

∂t
+ ∆u < 0. For 0 < ε < T , let us

denote Ωε = {(x, t); x ∈ ω, 0 < t < T − ε}. Since u ∈ C0(Ωε), there is a
point (x′, t′) ∈ Ωε where u(x′, t′) = max{u(x, t); (x, t) ∈ Ωε}.

If (x′, t′) ∈ Ωε, then
∂u

∂t
(x′, t′) = 0 and ∆u(x′, t′) ≥ 0, which is a contra-

diction with the hypothesis
∂u

∂t
+ ∆u < 0.

If (x′, t′) ∈ ∂′′Ωε, then
∂u

∂t
(x′, t′) ≥ 0 and ∆u(x′, t′) ≥ 0, which again is

a contradiction with the hypothesis
∂u

∂t
+ ∆u < 0.

Then

max{u(x, t); (x, t) ∈ Ωε} = max{u(x, t); (x, t) ∈ ∂′Ωε} ≤ max{u(x, t); (x, t) ∈ ∂′Ω}.

Since every point of Ω with t < T belongs to some Ωε, and u is continuous
on Ω, (4.6) follows.

Now, let us consider the general case
∂u

∂t
+ ∆u ≤ 0, let us introduce

the function v(x, t) = u(x, t) − kt, where k is a positive constant. Then
∂v

∂t
+ ∆v =

∂u

∂t
+ ∆u − k < 0, and we can apply the above proved max-

imum principle to the function v and we obtain max{u(x, t); (x, t) ∈
Ω} = max{v(x, t) + kt; (x, t) ∈ Ω} ≤ max{v(x, t); (x, t) ∈ Ω} + kT ≤
max{v(x, t); (x, t) ∈ ∂′Ω}+ kT ≤ max{u(x, t); (x, t) ∈ ∂′Ω}+ kT, and we
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obtain (4.6) by letting k → 0. tu

This maximum principle immediately yields an uniqueness theorem:

Theorem 4.3 If u(x, t) is a real function continuous on Ω,
∂u

∂t
and

∂u

∂xi∂xj

exist and are continuous on Ω, then u(x, t) is determined uniquely in Ω by

the values of
∂u

∂t
+ ∆u in Ω and of u on ∂′Ω.

Proof. Let u, v two functions with the same value on ∂′Ω and the same

value of
∂u

∂t
+∆u and

∂v

∂t
+∆v on Ω. The uniqueness theorem follows from

applying Theorem 4.2 to u− v. tu

For the heat equation on a domain of Rn, we have the following analogous
of Theorem 4.1:

Theorem 4.4 The solution of the heat equation in a domain ω of Rn is

u(ξ, T ) =
∫

ω

K(x, ξ, T )u(x, 0) dx

+
∫ T

0

∫
∂ω

(
K(x, ξ, T − t)

∂u

∂~n
(x, t)− u(x, t)

∂K

∂~n
(x, ξ, T − t)

)
dx dt.

Many regularity properties of a solution of the heat equation in a bounded
region follow from this formula.

In general, initial data alone do not determine the solution of the heat
equation uniquely. Some additional information on u is required. In the
above theorems we needed to know u on ∂ω × [0, T ]. In the Theorem 4.1
less conditions are needed.

4.2. The heat equation in a Riemannian manifold
4.2.1. Some previous definitions

For a Ck real function f on a Riemannian manifold M (k ≥ 1), the
gradient of f is defined by 〈gradf, ξ〉 = ξ(f) for every ξ ∈ TM . In other
words, gradf = (df)].

For every vector field X on M , its divergence divX is defined by

divX = −tr(ξ 7→ ∇ξX) :

The laplacian of a Ck-function f : M −→ R (k ≥ 2) is defined by

∆f = divgradf.
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Another usual definition for the laplacian is ∆f = −tr∇2f , where ∇2f

is a symmetric tensor field of type (0, 2), called Hessian of f or second
covariant derivative of f , defined by

∇2f(X,Y ) := 〈∇X(gradf), Y 〉 = XY f − (∇XY )f

In other words, ∇2f = ∇(df). In fact,

∇(df)(X,Y ) = Xdf(Y )− df(∇XY ) = XY f − (∇XY )f = ∇2f(X,Y )

Locally, we have ∇2
ijf(∂i, ∂j) = ∂i∂jf − (∇∂i

∂j)f = ∇i∂jf .
Next we show that the two definitions given for the laplacian are equiv-

alent. By definition of divergence, we have ∆f = divgradf = −tr(X 7→
∇Xgradf). Then it is sufficient to prove that

tr(X 7→ ∇Xgradf)︸ ︷︷ ︸
(1)

= tr∇2f = tr∇df︸ ︷︷ ︸
(2)

.

Taking an orthonormal basis and doing computations, we get

(1) =
∑

i

〈∇eigradf, ei〉 =
∑

i

(ei 〈gradf, ei〉 − 〈gradf,∇eiei〉)

(2) = (∇ei
df)(ei) = eidf(ei)− df(∇ei

ei)

And the equality holds using gradf = (df)].
In local coordinates, we have the following expressions:

gradf = gkj∂jf ∂k,

divX = − 1
√
g
(Xj√g),

∆f = − 1
√
g
∂j(
√
g gjk∂kf),

and, in geodesic normal coordinates around p ∈M ,

∆f(p) = −
∑

i

∂2f

∂(xi)2
(p).

In fact, gradf = (df)] = gjk(df)j∂k = gjk∂jf∂k. On the other hand,

divX = −gij 〈∇∂i
X, ∂j〉 = −gij

〈
∇∂i

(Xk∂k), ∂j

〉
= −gij

〈
(∇∂i

Xk)∂k, ∂j

〉
− gij

〈
Xk(∇∂i

∂k), ∂j

〉
=

= −gijgkj∂iX
k − gijXkΓl

ikglj = −∂kX
k − Γi

ikX
k = (∇∂k

X)k
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This is also an often used local expression for the divergence. We continue
doing computations19

divX = −∂kX
k − Γi

ikX
k = −∂kX

k − 1
2
gil (∂igkl + ∂kgil − ∂lgik)Xk

= −∂kX
k − 1

2
gil∂kgilX

k = −∂kX
k −

∂k(
√
g)

√
g

Xk = − 1
√
g
∂k(Xk√g)

In fact,

∂k(
√
g)

√
g

=
∂k(
√

det(gij)√
det(gij)

=
1√

det(gij)
1
2
gij∂kgij

√
det(gij =

1
2
gij∂kgjk

Using the obtained expression for the divergence, it is straightforward to
compute an expression in local coordinates for the laplacian.

∆f = div(gradf) = − 1
√
g
∂j

(
(gradf)j√g

)
= − 1

√
g
∂j

(√
g gjk ∂kf

)
(4.7)

4.2.2. The heat equation

The heat equation on a riemannian manifold is defined by the same
expression (4.1) that in the euclidean case. Here is also a heat kernel or
fundamental solution of the heat equation. It plays the same role that
in the euclidean case, but has not an expression so simple than with zero
curvature. However, we have the following nice relations with the spectrum
of δ (which, of course, also hold in the similar cases -when there exist- in
the euclidean space).

If M is a closed (compact with no boundary) Riemannian manifold,
the eigenvalue problem ∆F = λf has solution given by a sequence of
eigenvalues

0 < λ1 < λ2 < .... ↑ +∞

such that the eigenspace corresponding to each eigenvalue is finite dimen-
sional. If we write the sequence of eigenvalues with repetition (each one as
many times as the dimension of its eigenspace) 0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤
... ↑ +∞, and φj denotes an eigenfunction with eigenvalue λj satisfying

19Note that, in the calculations, we use the general formula
∂

∂t
detg = gij ∂gij

∂t
detg.
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∫
M

φ2
j (x)dx = 1, then

p(x, y, t) =
∑

j

e−λjtφj(x)φj(y)

is a fundamental solution of the heat equation on M , and a solution of it
satisfying u(x, 0) = f(x) is given by

u(x, t) =
∫

M

p(x, y, t)f(y)dy.

Analogous facts are true for compact manifolds with boundary if we add
Neumann or Dirichlet conditions on the boundary.

The following result is also interesting:

Proposition 4.5 Let u(x, t) be a solution of the heat equation on M . Then∫
M

u(x, t)dx is a constant function of t, and
∫

M

u2(x, t)dx is a decreasing

function of t.

In general (even when M is non compact), a fundamental solution of the
heat equation is a function p(x, y, t) : M ×M×]0,∞[−→ R which is C2

with respect to x, y, C1 with respect to t and which satisfies

i)
(

∆x +
∂

∂t

)
p(x, y, t) = 0 for t > 0, (where ∆x means the Laplacian

respect to the variable x),
ii) lim

t→0+
p( , y, t) = δy, whre δy is the Dirac delta function.

For all bounded continuous function f on M , the solution of the heat
equation on M satisfying u(x, 0) = f(x) is given by

u(x, t) =
∫

M

p(x, y, t)f(y)dy.

For the inhomogeneous heat equation ∆u+
∂u

∂t
= F , the corresponding

solution is given by

u(x, t) =
∫

M

p(x, y, t) f(y)dy +
∫ t

0

∫
M

p(x, y, t− τ)F (y, τ) dy dt.

The following result is specially interesting in relation with the ideas that
Heat flow can give about Ricci flow.
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Theorem 4.6 For any f ∈ L2(M), the function Wt(x) defined by

Wt(x) =
∫

M

p(x, y, t)f(y)dy

converges uniformly, as t→ +∞, to a harmonic function on M .

When M is compact, this limit is constant, because in a closed manifold,
all the harmonic functions are constant.

5. INTRODUCTION TO HARMONIC MAPS AND RICCI
FLOW

5.1. Harmonic maps

Definition 5.1 Given a map f : (M, g) −→ (M ′, g′) between two Rie-
mannian manifolds, the energy density of f is defined by e(f) = 〈g, f∗g′〉,
where 〈, 〉 is the product in the bundle T (0,2)M of 2-covariant tensors on
M induced by g.

If M is compact, the energy E(f) of f is defined by the integral E(f) :=∫
M

e(f)(x) dx, where dx is the volume element of M .

An harmonic map f : M −→M ′ is a map f which is a critical point for
the functional E defined on C∞(M,M ′).

If {ei}n
i=1 is a local orthonormal frame of (M, g), the energy density has

the expression

e(f) =
n∑

i,j=1

δijg
′(f∗ei, f∗ej) =

∑
i

g′(f∗ei, f∗ei), (5.1)

and, in a coordinate system (x1, ..., xn) for M and (y1, ..., ym) for M ′,

e(f) =
n∑

i,j=1

m∑
a,b=1

gijg′ab

∂fa

∂xi

∂f b

∂xj
. (5.2)

Remark 5.1.1 From the above definition it follows that also e(f) = ||df ||2,
where || || is the norm in TM ⊗ f∗TM ′ induced by the metrics g and g′.

When M = R2 and M ′ = R, then e(f) =
(
∂f

∂x1

)2

+
(
∂f

∂x2

)2

and

E(f) =
∫

R2

(
∂f

∂x1

)2

+
(
∂f

∂x2

)2

dx1 dx2, which is the well known Dirichlet
energy.
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We can obtain a more practical definition of harmonic map by writing
the Euler Lagrange equations corresponding to the functional E(f), that
is, by obtaining the differential equations which characterize the critical
points f of the functional E. In order to do it, we consider a curve F (t, x)
in C∞(M,M ′) satisfying F (0, x) = f(x) for every x ∈ M . Now, let us
compute. We use the notation Ft(x) = F (t, x)

dE(F (t, x))
dt

(0) =
∫

M

∂e(F (t, x))
∂t

(0) dx =
∫

M

∑
i

∂

∂t
|t=0g

′(Ft∗ei, Ft∗ei) dx

= 2
∫

M

∑
i

g′(∇′
f∗(ei)

X, f∗(ei)) dx = 2
∫

M

g′(X, τ(f)) dx,

where X is the vector field on M ′ along f defined by Xf(x) =
∂F(t, x)
∂t

|t=0

and τ(f) is the tension of f , which is defined as the vector field on M ′

along f satisfying

τ(f) = −
∑

i

∇′
f∗(ei)

f∗(ei) + f∗∇eiei,

that is, τ(f) is the trace of the tensor −∇ f∗ ∈ T ∗M ⊗ TM ′, where ∇ is
the covariant derivative operator on T ∗M ⊗ TM induced by the covariant
derivatives ∇ and ∇′ (that is (∇ZL)(Y ) = ∇′

LZ(LY )− L∇ZY ).
From this formula and the definition of harmonic map, it follows that a

map f : M −→ M ′, where M is compact, is harmonic iff e(f) = 0. We
extend this property as the definition of harmonic maps when M is not
compact.

One has the following nice property of regularity of harmonic maps:

Theorem 5.1 Every C2 map f : M −→ M ′ satisfying e(f) = 0 is C∞.
Moreover, if M and M ′ are both analytic, then f is also analytic.

Harmonic maps include a big range of interesting maps that we all know.
For instance,

i) If dim(M) = 1 (that is, M = R or M = S1, f is harmonic if it is a
well parametrized geodesic.

ii) If M ′ = R, f is harmonic if it is an harmonic map.
iii) If f : M −→M ′ is an isometric immersion and f is harmonic, then

it is minimal.
iv) If f : M −→ M ′ is a riemannian submersion and f is harmonic,

then the fibers f−1(y) are minimal.
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As usual, when we have a definition, there arise an immediate problem:
the existence of the defined object. Eells and Sampson proved that, with
some hypotheses on M ′, it is possible to deform any map into a harmonic
map. With more precision,

Theorem 5.2 ([32]) Suppose that M is a closed Riemannian manifold,
and that M ′ is a Riemannian manifold with non-positive sectional curva-
ture. Then, for any u0 ∈ C∞(M,M ′) there is a unique, global and smooth
solution u : M × [0,∞] −→M ′ of the equation

∂f

∂t
+ τ(f) = 0; u(x, 0) = u0(x),

such that, when t → ∞ suitably, converges smoothly to a harmonic map
u∞ ∈ C∞(M,M ′) homotopic to u0.

The idea of writing a diffusion equation related to the tension and obtaining
harmonic maps as the limits when t→∞ of the solutions of the diffusion
equation, and proving the existence and uniqueness of the solutions by using
maximum principles, all like in heat equation and harmonic functions, was
taken by R. Hamilton for different purposes, as we shall explain below.

5.2. Ricci flow

Let (M, g) be a Riemannian manifold. We shall denote by Rij its Ricci
curvature, by R =

∑
i,j g

ijRij its scalar curvature and by dµ the Rie-
mannian volume element of (M, g). By Λ we shall denote a constant.
We consider, on the family of metrics on M , the functional SH(g) =∫

M
(R − 2Λ) dx, called the Hilbert functional. The Euler Lagrange equa-

tions for this functional are

−2Rij +
2
n
Rgij = 0,

i.e., the critical points of SH(g) are Einstein metrics.
Then, following Eells and Sampson method on harmonic maps, the natu-

ral way to obtain a deformation of a metric to an Einstein one is to consider
the diffusion equation

∂gij

∂t
= −2Rij +

2
n
Rgij ,

but this equation has no solution, even for a short time, because it implies
a backward equation in R. Then R. Hamilton had the idea of introducing
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the equations system

∂gij

∂t
= −2Rij (5.3)

which is called the Ricci flow. It is easier to understand that (5.3) is similar
to the heat equation if we write the Taylor expansion of the metric tensor
in normal coordinates around p ∈M , it is given (cf. [35] p. 193) by

gij(x) = δij −
1
3
Riajb(p)xaxb +O(|x|3),

then, at the point p, (that is, up to higher order terms)

∆gij = −gab ∂2gij

∂xa∂xb
=

1
3
Rij ,

and (5.3) can be approximated by
∂gij

∂t
= −6∆gij , which looks like the

heat equation.
Let us look at the solution of (5.3) in some simple cases:

If the initial metric g is a flat metric, the unnormalized Ricci flow be-

comes
∂gij

∂t
= 0, whose solution is g = constant, the metric is stationary,

does not change.

If, at t = 0, the curvature of g is constant=
1
r2

, at this time we have

Rij =
n− 1
r2

gij and
∂gij

∂t
= −2

n− 1
r2

gij at t = 0. Let us try with a solution

such that the sectional curvature at time t is K(t) =
1

r(t)2
. A metric with

this curvature has the form g(t) = r(t)2gSn−1 , where gSn−1 is the metric of
the sphere of sectional curvature 1. Then the Ricci flow has the expression

∂r2

∂t
gSn−1ij = −2

n− 1
r(t)2

r(t)2gSn−1ij , i.e. 2r(t)r′(t) = −2(n− 1),

whose solution, with initial condition g(0) = r2 gSn−1 , is

r2(t) = r2 − 2(n− 1)t,

which shrinks to a point when t→ T =
r2

2(n− 1)
.

Any Einstein metric of positive scalar curvature behaves in the same way:
the manifold shrinks to a point homothetically as t approaches some finite

time T while the curvature becames infinite like
1

T − t
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If, at t = 0, the curvature of g is constant= − 1
r2

, similar arguments

to the previous case give r2(t) = r2 + 2(n − 1)t, then there is no collapse,

but the curvature tends to zero: K(t) = − 1
r2(t)

= − 1
r2 + 2(n− 1)t

→ 0

as t ↑ ∞. With more generality, if we start with an Einstein metric with
negative scalar curvature, the metric will expand homothetically for all

time, and the curvature will fall back to zero like −1
t
.

Product metric If we take a product metric on a product manifold M×N
to start, the metric will remain a product metric under Ricci flow, and the
metric of each factor will evolve independently of the other factor. Thus,
on S2 × S1, S2 will collapse to a point and S1 will remain fix (because it
is flat), then the entire manifold will collapse to a circle S1. On a product
S2 × S2 with different radii, the sphere of smaller radius collapses faster,
and shrinks to a point, whereas the other is still a sphere, then the product
collapses to a S2. If the radius of both spheres are the same, then they
remain equal along all the flow, and the whole product will shrink to a
point in a finite time.

Quotient metric If M/Γ is a quotient of a Riemannian manifold M by
a group of isometries at the starting time t = 0, it will remain so under
the Ricci flow. This is because the Ricci flow preserves the isometry group.
Since the Ricci flow is invariant under the full diffeomorphism group, any
isometry in the initial metric will persist as an isometry in each subsequent
metric.

5.3. The normalized Ricci flow

It seems natural that one way to avoid collapse is to add the condition
that volume be preserved along the evolution. To preserve the volume
we need to change a little bit the equation for the Ricci flow. In order
to see how we have to change it, let us consider the riemannian volume
form dµ =

√
det(gij)dx1...dxn. Let us define the average scalar curvature

(constant respect to M , but a function of t)

r =

∫
M
R dµ∫

M
dµ

, (5.4)
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To see which equation we need to preserve the volume of M , let us compute
the derivative of the volume element

∂

∂t
dµ =

∂

∂t

√
det(gij) dx1...dxn =

1
2
gij ∂gij

∂t

√
det(gij) dx1...dxn

=
1
2
gij ∂gij

∂t
dµ = (r −R) dµ, (5.5)

which gives, for the volume,

∂

∂t

∫
M

dµ =
∫

M

∂

∂t
dµ =

∫
M

(r −R) dµ = 0 if
∂gij

∂t
=

2
n
r gij − 2 Rij .

Then, the (curve of metrics) solution of the evolution equation

∂gij

∂t
=

2
n
r gij − 2 Rij , (5.6)

called normalized Ricci flow, preserves the volume of the manifold.
The equations (5.3) and (5.6) differ only by a change of scale in space and

a change of parametrization in time, as the following proposition shows:

Proposition 5.3 Let gt be a family of metrics on M depending smoothly
on t. Let ψ : R −→ R+ be a real function defined by the condition

ψ
n
2 (t)

∫
M

dµt = 1, (5.7)

where dµt is the volume element defined by gt. Then gt is a solution of
(5.3) respect to t if and only if

g̃t = ψ(t)gt

is a solution of (5.6) with respect to

t̃ =
∫ t

0

ψ(s) ds.

Proof. The volume element dµ̃t associated to g̃t is related to dµt by

dµ̃t = [ψ(t)]n/2
dµt.

Then, from the definition of ψ(t) we obtain

V olumeg̃t
(M) = 1.
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Moreover, the scalar and Ricci curvatures Rgt
, Ricgt

and Rg̃t
, Ricg̃t

of the
homothetic metrics gt and g̃t are related by

Rg̃t
=

1
ψ(t)

Rgt
, Ricg̃t

= Ricgt
(5.8)

Then we have, for the average scalar curvature r̃ of g̃t,

r̃ = (V olumeg̃t(M))−1
∫

M

Rg̃t dµ̃t = [ψ(t)]
n
2−1

∫
M

Rgt dµ̃t (5.9)

From (5.7) we obtain
∫

M
dVgt

= [ψ(t)]−n/2, and, taking the derivative
respect to t, and using (5.9),

−n
2
ψ′(t)
ψ(t)2

= [ψ(t)]
n
2−1 1

2

∫
M

trgt

∂gt

∂t
dµt = − [ψ(t)]

n
2−1

∫
M

Rgt dµt = −r̃.

(5.10)
Now, taking the derivative of g̃t respect to t̃, we have that, if gt satisfies
(5.3), then

∂g̃t

∂t̃
=

1
ψ(t)

∂g̃

∂t
=

1
ψ(t)

(
ψ′(t)gt + ψ(t)

∂gt

∂t

)
=

1
ψ(t)

(
ψ′(t)gt + ψ(t)

∂gt

∂t

)
=

2
n
r̃ g̃t − 2 Ricg̃t ,

i.e., g̃t̃ satisfies (5.6). The reciprocal is proved in the same way. tu

For the sphere, the normalized equation gives g constant, whereas the
unnormalized equation shrinks to a point

6. AN OVERVIEW OF THE FUNDAMENTAL STEPS IN
THE HAMILTON-PERELMAN PROOF OF

GEOMETRIZATION CONJECTURE

6.1. The existence of solutions

In the last lecture we introduced the Ricci flow equation (5.3) and the
normalized Ricci flow (5.6) which appears when we take some dilatation in
order to have constant volume.

The first question for such an equation is the short time existence solu-
tion. The corresponding theorem was obtained by Hamilton in 1982 ([38]),
using the Nash-Moser theorem, because the Ricci flow is only a weakly
parabolic (and not parabolic) equation. In 1983, De Turck ([25]) found
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a more elementary proof by reducing to a parabolic system and applying
standard theory.

Theorem 6.1 Given a compact Riemannian manifold (M, g0), there is an

ε > 0 such that the equation
∂gij

∂t
= −2Rij has a unique smooth solution

g(t) in [0, ε[ satisfying g(0) = g0.

For the 2-dimensional case the equation was completely solved by R.
Hamilton in 1988 (cf. [47]) for M compact and the Euler characteristic
χ < 0, or χ > 0 and the Gaussian curvature K > 0. The general case
χ > 0 was solved by B. Chow in 1991 (cf. [18]).

Theorem 6.2 ([47]) If M is a closed surface, then for any initial metric
g0 on M, the solution to the normalized Ricci flow

∂gij

∂t
= (r −R)g (6.1)

with g(0) = g0 exists for all time and has constant area. Moreover

i) If the Euler characteristic χ of M is negative, then the solution metric
g(t) converges to a smooth constant negative curvature metric as t→∞.

ii) If χ = 0 then g∞ = lim
t→∞

g(t) is a smooth metric of curvature zero.

iii) If χ > 0 and R = 2K > 0 (being R the scalar curvature of the initial
metric g0), then g∞ = lim

t→∞
g(t) is a smooth constant positive curvature

metric.

Remark 6.2.1 1. In Theorem 6.2 we stated iii) with the condition R > 0
for the initial metric. The general case was proved by B. Chow in 1991.
Later J. Bartz, M. Struwe and B. Ye (cf. [5]) gave a new proof of this
result using the Alexandrov reflection method. Nevertheless, we shall prove
only Hamilton result because in this case appear the ideas useful in higher
dimensions.

2. It seems that, as consequences of this theorem we obtain new proofs
of many classical results, such as the uniformization theorem for Riemann
surfaces and the topological classification of surfaces. However, this is not
yet the case, because in the proofs of the above theorem for χ > 0 and no
hypothesis on R, the uniformization theorem is used at some point of the
proof. It is still an open problem to find a proof of Theorem 6.2 independent
of the uniformization theorem.

In dimension 3, Hamilton proved in 1982 that
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Theorem 6.3 ([38]) If M is a closed Riemannian 3-manifold with Ric >
0, the solution of the normalized Ricci flow exists for all the time, and
g(t) converges exponencially , as t → ∞, to a metric of constant positive
sectional curvature.

An obvious corollary of this theorem is

Corollary 6.4 If M is compact with Ric > 0, then M is homeomorphic
to S3/Γ, where Γ is a discrete group of isometries of S3

Theorem 6.5 If M is orientable, compact and Ric ≥ 0, the solution g(t)
of the normalized Ricci flow exists for all the time, and g(t) converges, as
t → ∞, to the metric of the quotient by a discrete group of isometries of
one of the following Riemannian manifolds with its standard metric: S3,
S2 × S1 or R3.

Dimension 3 is very special for the connections between Ricci flow and
sectional curvature because in this dimension the Ricci curvature tensor
determines all the curvature tensor. In this dimension, the positivity of
the Ricci curvature is preserved under the Ricci flow. This is not longer
true in higher dimensions. Even the positivity of sectional curvature is
not preserved under Ricci flow in dimension > 3. However, the stronger
condition of positive curvature operator is preserved under Ricci flow.

In general, the curvature tensor Rm defines, for every x ∈ M , a selfad-
joint map

Rmx : ∧2TxM −→ ∧2TxM defined by 〈RmxX ∧ Y,Z ∧W 〉 = RXY ZW .

As usual, we say that this operator is positive if all its eigenvalues are
positive.

In 1986, R. Hamilton proved that

Theorem 6.6 If M is a compact 4-dimensional manifold with positive cur-
vature operator, the solution g(t) of the normalized Ricci flow exists for all
the time, and g(t) converges, as t→∞, in C∞ to the metric of the standard
S4, or RP 4.

If the curvature operator of M is non-negative, the solution g(t) of the
normalized Ricci flow exists for all the time, and g(t) converges, as t→∞,
to the metric of the quotient by a discrete group of fixed point free isometries
of one of the following Riemannian manifolds with its standard metric: S4,
CP 2, S3 × R, S2 × S2, S2 × R2 or R4.

There are also many results on Kähler manifolds.
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As we have seen, in dimension 2 the solution exists for all time. In
dimension 3 the difficulties arise: for certain initial metrics, even normal-
ized Ricci flow develops singularities in finite time. A typical example is
something like a dumbbell

In the central part of the picture we may have positive sectional curvature in

some directions and negative in others, in such a way that, the positive curvature

is bigger in modulus and the metric collapses, whereas left and right parts of the

pictures become non collapsed and at a distance which is increasing when we

approach the collapsing time.

Before going on, we need to give a precise definition of singularity.

Definition 6.1 A solution (M, g) of Ricci flow on an interval [0, T ] is maximal

if it cannot be extended for time t > T .

i) If T = ∞ and sup
M×[0,T ]

|Rm| < ∞, the maximal solution is called a non-

singular solution.

ii) If T ≤ ∞ and sup
M×[0,T ]

|Rm| = ∞, the maximal solution is called a singular

solution and that a singularity occurs at time T .

Many times (as we have seen for spheres in the previous lecture), there are

singular solutions of the unnormalized Ricci flow which can be removed going to

the normalized Ricci flow, where we obtain nonsingular solutions. An example is

given by the following table:
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normalized Ricci flow unnormalized Ricci flow

non-singular solution singular solution

(N1) dimM = 2, any initial metric (U1) dimM = 2, χ > 0,

desingularizes with (N1)

(N2) dimM = 3, Ric > 0
(U2) dimM = n, R > 0,

desingularizes

with (N2), (N3), (N4)

(N3) dimM = 4, Rm > 0

(N4) dimM = n, sufficiently point-

wise pinched sectional curvature

(U4) Mn, Kähler metric with

Chern class c1(M) > 0.

(N5) dimM = 3, with locally

homogeneous metric

(U5) Locally homogeneous metrics

on M3 of class SU(2) or S2 × R:

desingularizes with (N5)

In all these cases we have convergence

to an Einstein metric as t →∞

6.2. The possible solutions and singularities
The next biggest steps in the work of Hamilton to the solution of geometriza-

tion conjecture are (1999 -with corrections added later- and 1995 respectively):

Theorem 6.7 Let M be a compact Riemannian 3-manifold which admits (some-

thing stronger than) a non-singular solution of the normalized Ricci flow. Then it

can be decomposed into the geometric pieces of Thurston conjecture. With more

precision:

If g(t) is a solution in M of the normalized Ricci flow which exists for all time

and satisfies that the normalized curvature t ·Rm(x, t) is bounded as t →∞, then

M is one of the following manifolds:

a Seifert fibered manifold,

a quotient S3/Γ,

a flat manifold,

a hyperbolic manifold

the union along incompressible tori of finite volume hyperbolic manifolds and

Seifert fibered spaces.

Theorem 6.8 Let M be a compact Riemannian 3-manifold which admits a so-

lution of the Ricci flow which develops a singularity at time T . Then there is a

sequence of dilations20 of the solution which converges to a quotient by isometries

of one of the following manifolds:

i) S3, (a topological space form)

20we shall explain later the precise dilation which are used
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ii) S2 × R, (a neck)

iii) Σ× R, where Σ is a cigar solution, with metric ds2 =
dx2 + dy2

1 + x2 + y2

We would like to show that, after a finite number of surgeries on the singularities,

the solution becomes a non-singular solution.

6.3. The Perelman’s work
Let us suppose that M is an oriented closed 3-manifold. We can distinguish 5

steps in the Perelman’s work of the claimed proof on Geometrization conjecture:

(1) Only cases i) and ii) are possible in the above Theorem 6.8 of “classifica-

tion” of singularities by Hamilton (the cigars solutions are not possible)

(2) Surgery. Cut the above singularities appearing in each blow ups at finite

times Ti and glue a spherical cap with bounded curvature at each cutting. In

the resulting manifold, throw away the components of positive Ricci curvature.

Then we have a new manifold Msur, and continue the Ricci flow on it.

(3) There are only locally finitely many blow ups times Ti.

(4) For t big enough, there are no singularities, and, at such big time, Msur

splits (along incompressible tori) in two parts Msur = Mthick ∪ Mthin, where

Mthick is the union of points with injectivity radius ≥ ε and21 Mthin is the union

of points with injectivity radius < ε for some appropriate ε, such that Mthick has

a finite volume complete hyperbolic metric.

(5) Mthin is a graph manifold (recall its definition in Example 5).

Step 1 is carried out in the first preprint of Perelman, and has been completely

checked by Kleiner and Lott. Steps 2 to 4 are the contents of the second preprint,

and step 5 is proved in a paper by Shioya and Yamaguchi, except for one case

which is contained in the third preprint of Perelman, which also contains an

independent proof of the Poincaré’s conjecture.

Notice that the above steps would imply the proof of the Geometrization Con-

jecture. In fact, in an instant t′ large enough, the surgery procedure (which is

efectively performable because the possible singularities have a simple and well

known topological form -as is claimed in (1)-, and also because by (2) we have a

sufficient control of the surgery times) allows to decompose the original manifold

in primes as

M ∼= P1] . . . ]Pr](S
3/Γ1)] . . . ](S3/Γk)]S1 × S2] . . . ]S1 × S2. (6.2)

21Let M be a complete Riemannian manifold. For p ∈ M , we define the injectivity
radius at p as

inj(p) := sup{r > 0 : expp

˛̨
Br(p)

is a diffeomorphism}.
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Moreover, (4) assures that each irreducible factor Pi admits a torus decompo-

sition of the following form:

Pi
∼= Hi ∪Gi, (6.3)

where Hi is a hyperbolic piece and Gi a graph manifold (both possibly discon-

nected). Observe that the last claim corresponds to the step 5 above.

It is important to remark that Perelman’s results do not prove that there will

be no more singularities in times greater than t′. Instead of this, it is shown that

if this is the case, such singularities would appear in the Gi-part (or in Mthin

following the notation of (4)), and therefore there is no problem since it is well

known that every graph manifold admits a geometric decomposition.

In conclusion, from (6.2), (6.3) and the above remarks, it follows that M can be

topologically decomposed in geometric pieces, and this is exactly the statement

of the Geometrization Conjecture.

7. THE MAXIMUM PRINCIPLE

7.1. Prerequisites about Lipschitz functions
In order to give an idea of the proof of the strong maximum principle, we need

to make some remarks on functions which are not quite differentiable.

Definition 7.1 A function f : [a, b] → R is said to be a Lipschitz function (or

to satisfy a Lipschitz condition) on [a, b] if there is a constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y| for all x and y in [a, b]. (7.1)

The smallest number C for which (7.1) holds is called the Lipschitz constant.

Remark 7.1.1 As an immediate consequence of the Mean Value theorem, if a

real valued function has a bounded derivative on an interval, then it satisfies a

Lipschitz condition there.

On the other hand, a function may satisfy a Lipschitz condition on an interval

and not be differentiable at certain points. A function whose graph consists of

several connected straight line segments (like, for example, f(x) = |x|) illustrates

this.

Definition 7.2 (Superior and inferior limit of a real function). Let f be a real

(or extended real) valued function defined for all x in an interval containing y,

we define

limx→yf(x) ≡ lim sup
x→y

f(x) = inf
δ>0

sup
|x−y|<δ

f(x) = lim
δ→0

sup
|x−y|<δ

f(x)

limx→y+f(x) ≡ lim sup
x→y+

f(x) = inf
δ>0

sup
0<x−y<δ

f(x) = lim
δ→0

sup
0<x−y<δ

f(x)

limx→yf(x) ≡ lim inf
x→y

f(x) = sup
δ>0

inf
|x−y|<δ

f(x) = lim
δ→0

inf
|x−y|<δ

f(x)
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limx→y+f(x) ≡ lim inf
x→y

f(x) = sup
δ>0

inf
0<x−y<δ

f(x) = lim
δ→0

inf
0<x−y<δ

f(x)

Next we shall consider some generalizations of the usual derivative which have

the advantage of applying to functions that are not necessarily differentiable in

the usual sense (such as Lipschitz functions).

Definition 7.3 Let f : R → R. The upper right and lower right Dini deriva-

tives22 of f at t ∈ R are, respectively, defined by

D+f(t) = lim sup
h→0+

f(t + h)− f(t)

h

D+f(t) = lim inf
h→0+

f(t + h)− f(t)

h

Remark 7.3.1 1. The Dini derivatives always exist (finite or infinite) for any

function f, and D+f(x) ≥ D+f(x).23

2. If f is a differentiable function the two derivatives defined above are identical,

finite numbers and coincide with the usual derivative.

Lemma 7.1 Let f : [a, b] → R be a Lipschitz function such that f(a) ≤ 0 and

D+f(t) ≤ 0 when f ≥ 0 for a ≤ t ≤ b, then f(b) ≤ 0.

Proof. Without loss of generality, we can suppose a = 0. We shall show

f(t) ≤ εt for any ε > 0 so, taking limits when ε → 0, this will mean that the

function is always non positive.

If f(0) < 0, by continuity, there exists a neighbourhood of 0 in R (that is, an

interval containing 0) where εt ≥ f(t).

If f(0) = 0 since, by hypothesis, lim sup
h→0+

f(h)− f(0)

h
≤ 0, there must be some

interval 0 ≤ t < δ on which εt ≥ f(t).

In both cases, let 0 ≤ t < c be the largest such interval with c ≤ b. Then by

continuity f(t) ≤ εt on the closed interval 0 ≤ t ≤ c.

Assume c < b (if c = b we have finished), then there are two possibilities:

22For our purposes, we only need these definitions. However, it is possible to define,
analogously, the upper left and lower left Dini derivatives of f at t ∈ R, by the following
formulas

D−f(t) = lim sup
h→0−

f(t + h)− f(t)

h

D−f(t) = lim inf
h→0−

f(t + h)− f(t)

h

These are the four Dini derivatives, introduced by Ulisse Dini (1845-1918) in Fondamenti
per la teorica della funzioni di variabili reali (1878).

23A proof of this fact can be seen in [11] p. 160. Moreover, the analogous property
for lower Dini derivatives is D−f(x) ≥ D−f(x).
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i) f(c) < 0: by continuity, f(t) ≤ εt for some t > c, against the hypothesis

that [0,c] is the largest interval on which f(t) ≤ εt.

ii) f(c) = 0: since lim sup
h→0+

f(c + h)− f(c)

h
≤ 0, we can find δ̃ > 0 with f(t) ≤ εt

on 0 ≤ t ≤ c + δ̃, which is, again, a contradiction.

Therefore, c = b.

Thus we have proved f(t) ≤ εt on 0 ≤ t ≤ b for any ε > 0, so when ε → 0 we

obtain, in particular, f(b) ≤ 0. tu

Remark 7.1.1 Without the hypothesis f(a) ≤ 0, we can repeat the above proof,

with the obvious modifications, to show that f(t) ≤ f(a) for t ∈ [a, b].

Corollary 7.2 If f(a) ≥ 0 and D+f(t) ≥ 0 for a ≤ t ≤ b, then f(b) ≥ 0.

Corollary 7.3 If f(a) ≤ 0 and D+f(t) ≤ cf for some c ∈ R and for a ≤ t ≤ b,

then f(b) ≤ 0.

Proof. Take g = e−ctf , then

D+g(t) = lim sup
s→t+

e−csf(s)− e−ctf(t)

s− t

= lim sup
s→t+

„
e−csf(s)− e−ctf(s) + e−ctf(s)− e−ctf(t)

s− t

«
= lim

δ→0
sup

0<s−t<δ

„
f(s)

e−cs − e−ct

s− t
+ e−ct f(s)− f(t)

s− t

«
≤ lim

δ→0

»
sup

0<s−t<δ

„
f(s)

e−cs − e−ct

s− t

«
+ sup

0<s−t<δ

„
e−ct f(s)− f(t)

s− t

«–
= lim sup

s→t+

„
f(s)

e−cs − e−ct

s− t

«
+ e−ct lim sup

s→t+

„
f(s)− f(t)

s− t

«
= lim sup

s→t+

„
f(s)

e−cs − e−ct

s− t

«
+ e−ctD+f(t)

It is well known that the product of continuous functions is also a continuous

function. So the upper limit in the first addend above is actually a limit, and

the limit of a product is the product of the limits. In the second addend, we can

apply the hypothesis of the corollary about D+f(t). Therefore, we have

D+g(t) ≤ f(t)(e−cs)′s=t + e−ctcf(t) = −f(t)ce−ct + e−ctcf(t) = 0

As a result of applying lemma 7.1 to g, we have g(b) ≤ 0; but g(b) = e−cbf(b),

so f(b) ≤ 0. tu

Corollary 7.4 If f(a) ≤ g(a) and D+(f)(t) ≤ D+g(t) for a ≤ t ≤ b, then

f(b) ≤ g(b).
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Proof. We choose h := f − g, then

D+h(t) = lim sup
s→t+

h(s)− h(t)

s− t
= lim sup

s→t+

(f − g)(s)− (f − g)(t)

s− t

= lim sup
s→t+

„
f(s)− f(t)

s− t
− g(s)− g(t)

s− t

«
= lim

δ→0

»
sup

0<s−t<δ

„
f(s)− f(t)

s− t
− g(s)− g(t)

s− t

«–
≤ lim

δ→0

»
sup

0<s−t<δ

„
f(s)− f(t)

s− t

«
− inf

0<s−t<δ

„
g(s)− g(t)

s− t

«–
= lim sup

s→t+

f(s)− f(t)

s− t
− lim inf

s→t+

g(s)− g(t)

s− t

= D+f(t)−D+g(t) ≤ 0

for a ≤ t ≤ b and h(a) = f(a)−g(a) ≤ 0; so, by Lemma 7.1, h(b) = f(b)−g(b) ≤ 0,

that is, f(b) ≤ g(b). tu

Lemma 7.5 Let g(t, y) be a smooth function of t ∈ R and y ∈ Rk. Let f(t) :=

supy∈Y g(t, y), where Y ⊂ Rk is a compact set. Then f is a Lipschitz function

and its upper right derivative satisfies

D+f(t) ≤ sup
y∈Y (t)

∂

∂t
g(t, y),

being Y (t) = {y ∈ Y : f(t) = g(t, y)}.

Proof. Choose an arbitrary t0 ∈ R and a sequence {tj}∞j=1 decreasing to t0 for

which limtj→t0
f(tj)−f(t0)

tj−t0
equals the lim sup.

Since Y is a compact set, the maximum is attained; so for each index j we

can take yj ∈ Y such that f(tj) = g(tj , yj). Therefore, {yj} is a sequence in Y

and, because of the compactness of Y , there is a subsequence convergent to some

y0 ∈ Y . We can assume (for simplicity of the notation) yj → y0.

Taking limits in f(tj) = g(tj , yj) and using the continuity of f and g, we have

f(t0) = g(t0, y0); so y0 ∈ Y (t0).

By definition of f , g(t0, y∗) ≤ g(t0, y0) ∀y∗ ∈ Y ; then

f(tj)− f(t0) = g(tj , yj)− g(t0, y0) ≤ g(tj , yj)− g(t0, yj)

Dividing by tj − t0 and using the Mean Value Theorem, we obtain

f(tj)− f(t0)

tj − t0
≤ g(tj , yj)− g(t0, yj)

tj − t0
=

∂

∂t
g(Tj , yj)

with t0 < Tj < tj . Taking limits when tj → t0, we have

lim
tj→t0

f(tj)− f(t0)

tj − t0
≤ ∂

∂t
g(t0, yj) ≤ sup

y∈Y (t)

∂

∂t
g(t, y)



AN INTRODUCTION TO HAMILTON AND PERELMAN’S WORK 59

Since t0 is arbitrary, we have proved the estimate on the upper right derivative

of f . Moreover, since Y (t) is a compact set, this supremum is attained and the

above inequality shows that f has bounded first derivative and so it is a Lipschitz

function (although, in general, it is not differentiable). tu

Next, we state the analog result for lower right derivatives.

Lemma 7.6 Let g(t, y) be a smooth function of t ∈ R and y ∈ Rk. Let h(t) :=

infy∈Y g(t, y), where Y ⊂ Rk is a compact set. Then h is a Lipschitz function

and its lower right derivative satisfies

D+h(t) ≥ sup
y∈Y (t)

∂

∂t
g(t, y),

being Y (t) = {y ∈ Y : h(t) = g(t, y)}.

7.2. The maximum principle for systems
Roughly speaking, the maximum principle says that if the solution of a parabolic

system of equations lies in a convex set at a starting time 0, it will remain in

it for every time t > 0. The basic idea of the maximum principle of R. Hamil-

ton which we shall discuss here was suggested by Moe Hirch. We note that this

idea is a generalization of Lyapunov functions, and the proof is analogous to the

Lyapunov proof of stability.

Let (M, g) be a compact Riemannian manifold and let f = (f1, . . . , fk) : M →
Rk be a system of k functions on M . Let U ⊂ Rk be an open subset and let

φ : U → Rk be a smooth vector field on U . We let f , g and φ depend on time

also.

Consider the non linear heat equation

∂f

∂t
= −∆gf + φ ◦ f (7.2)

with f(0) = f0, and suppose that it has a solution for some time interval 0 ≤ t ≤
T . We want to know the behaviour of the solution f of (7.2) when t changes; in

particular, consider X ⊂ U a closed convex subset containing f0 and ask when

the solution remains in X.

To answer this question we first study the system of ordinary differential equa-

tions (ODE)
df

dt
= φ ◦ f (7.3)

(which we shall call the ODE associated to the PDE (7.2)) and ask the same

question.

Before dealing with this, we need some previous definitions.

Definition 7.4 24 We define the tangent cone Tz(X) to a closed convex set X ⊂
Rk at a point z ∈ ∂X as the smallest closed convex cone with vertex at z which

24You can see a more general definition of tangent cone in [76] p. 171.
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contains X. It is the intersection of all the closed half spaces containing X with

z on the boundary of the half space.25

Definition 7.5 We say that a linear function l : Rk → R is a support function

for X ⊂ Rk at z ∈ ∂X (and write l ∈ SzX) if

1. |l| = 1

2. l(z) ≥ l(x) for all x ∈ X (i.e. l(z − x) ≥ 0).

Remark 7.5.1 If z ∈ ∂X and X ⊂ Rk is a convex set, always exists some plane

(not unique in general) at z that leaves the set aside (this is called a supporting

plane). Each of these planes has a well defined outward unit normal vector n at

z. For our purposes we can identify each supporting plane with its outward unit

normal vector.

The [ and ] operators give an 1 : 1 correspondence between support functions

and unit vectors normal to a supporting plane. In fact, we can check that n[

satisfies the conditions of the previous definition.

For any x ∈ X we have

n[(z − x) = 〈z − x, n〉 = |z − x||n| cos ∠(z − x, n) ≥ 0 ↔ cos ∠(z − x, n) ≥ 0

And this inequality is true because z − x makes an acute angle with the unit

normal as we can see in the next figure.
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On the other hand, |n!|2 =
D
n!, n!

E
=

D
(n!)", (n!)"

E
= 〈n, n〉 = |n|2 = 1.

Therefore we have shown that n! ∈ SzX.

Remark 7.5.2 The following equivalence is quite intuitive

x ∈ Tz(X) iff ∠(x− z, n) ≥ π
2

for all unit vector n normal

to a supporting plane at z

20You can see a more general definition of tangent cone in [71] p. 171.
21Some authors define the tangent cone as the boundary of our definition.
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Since the right side is equivalent to cos ∠(x−z, n) ≤ 0 for all n, from the viewpoint

of the support functions, we can write

x ∈ Tz(X) if and only if l(x− z) ≤ 0 for every l ∈ SzX

25Some authors define the tangent cone as the boundary of our definition.
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Lemma 7.7 The solutions of the ODE (7.3) which are in the closed convex set

X ⊂ Rk at t = 0 will remain in X if and only if φ(z) ∈ TzX for every z ∈ ∂X

Proof. Because of the last remark, it suffices to prove that the solution to (7.3)

remains in X if and only if l(φ(z)) ≤ 0 for every l ∈ SzX and z ∈ ∂X.

Suppose first that l(φ(z)) > 0 for some z ∈ ∂X, then taking images in the

equation (7.3)

d

dt
l(f)(0) = l

„
df

dt

«
(0) = l(φ(f(0))) > 0, if f(0) = z

so l(f) is increasing at 0, in particular, for some small t

l(f(t)) > l(f(0)) iff l(f(t)− f(0)) > 0 iff f(t) /∈ Tf(0)X

and, since f(0) ∈ ∂X, we conclude that f cannot remain in X.

To see the converse, let us suppose that l(φ(x)) ≤ 0 for every l ∈ SxX and

x ∈ ∂X. First note that we may assume X compact. If it is not we can modify

the vector field φ by multiplying by a bump function26. The paths of solution

are unchanged where the bump function is 1.

We set, for every z ∈ Rk,

s(z) := d(z, X) = sup{l(z − x) : x ∈ ∂X, l ∈ SxX}. (7.4)

l(z − x) = 〈n, z − x〉 = |z − x| cos ∠(z − x, n) gives the distance from z to the

supporting hyperplane Πl of X defined by l, X = ∩l∈SzX,z∈∂XHl, where Hl is the

half space defined by Πl, and d(z, X) = d(z,
T

Hl) = sup d(z, Hl) = sup l(z − x).

Moreover, from the convexity of X, given z ∈ Rk, there is a unique x0 ∈ ∂X

such that d(z, X) = l1(z − x0) (where l1 is a linear function of length 1 with

gradient in the direction of z − x0).

By definition of distance, s(z) = 0 if z ∈ X.

Note that Y = {(x, l) : x ∈ ∂X, l ∈ SxX} ⊂ Rk × Rk is a compact set.

We are now in position to use Lemma 7.5 and conclude

D+s(f(t)) ≤ sup
(x,l)∈Y (t)

∂

∂t
l(f(t)− x)

where Y (t) = {(x, l) ∈ Y : s(f(t)) = l(f(t)− x)}.
Note that, if x0 is the unique x0 ∈ ∂X such that d(f(t), X) = l1(f(t) − x0),

then

(x0, l1) ∈ Y (t) and l1(f(t)− x0) = |f(t)− x0|. (7.5)

On the other hand, since φ is smooth and X is a compact set, φ has bounded

first derivative and therefore it is a Lipschitz function. Using this fact, there

exists some constant C such that

|φ(z)− φ(y)| < C|z − y| ∀z, y ∈ X

26{ϕ : Rk → R/ϕ ≥ 0, ϕBρ(x0) = 1, ϕRk−BR(x0) = 0, R > ρ}, and we can take

X
T

BR(x0) instead of X.
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Then, since l(φ(x0)) ≤ 0 by hypothesis, using (7.5) and |l| = 1, we have

D+s(f(t)) ≤ sup
(x,l)∈Y (t)

∂

∂t
l(f(t)− x) = sup

(x,l)∈Y (t)

l(
df

dt
)(t) = sup

(x,l)∈Y (t)

l(φ(f(t)))

≤ sup
(x,l)∈Y (t)

l(φ(f(t))) − l(φ(x0))

≤ sup
(x,l)∈Y (t)

l(φ(f(t))− φ(x0)) ≤ C |f(t)− x0| = C s(f(t))

Finally, we have obtained D+s(f(t)) ≤ C s(f(t)) and s(f(0)) = 0 so, applying

corollary 7.3 ,we conclude s(f(t)) = 0, and this means f(t) ∈ X. tu

Theorem 7.8 If the solution of the ODE (7.3) with f(0) ∈ X stays in X, then

the solution of the PDE (7.2) with f(0) ∈ X stays in X

Proof. As before we may suppose that X is compact. Again, let s(z) = d(z, X),

z ∈ Rk. Given a solution f : M × R → Rk of (7.2), we define

s(t) := sup
x∈M

s(f(x, t)), (7.6)

so, by (7.4), we have

s(t) = sup
(x,q,l)∈Y

l(f(x, t)− q), (7.7)

being Y = {(x, q, l) : x ∈ M, q ∈ ∂X, l ∈ SqX} a compact set. So, Lemma 7.5

assures that

D+s(t) ≤ sup
(x,q,l)∈Y (t)

∂

∂t
l(f(x, t)− q)

where Y (t) = {(x, q, l) ∈ Y : l(f(x, t) − q) = s(t)} From this definition of Y (t)

and (7.7), it follows that if (x, q, l) ∈ Y (t), then max(x,q,l)∈Y l(f(x, t) − q) =

l(f(x, t)− q). Since l is a linear function independent of t, we have

D+s(t) ≤ sup
(x,q,l)∈Y (t)

∂

∂t
l(f(x, t)− q) = sup

(x,q,l)∈Y (t)

l

„
∂f(x, t)

∂t

«
= sup

(x,q,l)∈Y (t)

{−l(∆gf(x, t)) + l(φ(f(x, t)))} (7.8)

Note that the last equality is true because f is a solution of the PDE (7.2).

By definition of Y (t), l(f(x, t)) has its maximum at x; so

l(−∆gf) = −∆gl(f) ≤ 0. (7.9)

On the other hand, by hypothesis, the solution of the ODE (7.3) stays in X

and we have proved in Lemma 7.7 that this means l(φ(z)) ≤ 0 for every l ∈ SzX

and z ∈ ∂X. Then, in particular, l(φ(q)) ≤ 0. So we get
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l(φ(f(x, t))) ≤ l(φ(f(x, t)))− l(φ(q))

= l(φ(f(x, t))− φ(q)) ≤ |l||φ(f(x, t))− φ(q)|
≤ c|f(x, t)− q| = c l(f(x, t)− q)

where c is the Lipschitz constant of φ and the last equality follows by the definition

of Y (t).

Finally, by substitution of the above inequality and (7.9) in (7.8), we obtain

D+s(t) ≤ c s(t), and, since f(0) ∈ X, s(t) = 0. Then applying Corollary 7.3, we

conclude that s(t) = supx∈M s(f(x, t)) = 0 for all time in which the solution is

defined. But this shows that f(x, t) remains in X. tu

This theorem admits a generalization for vector bundles. Since the main ideas

of the proof are contained in the previous lemmas, we just give the statement of

the theorem.

Theorem 7.9 (Bundle formulation of maximum principle) Let V be a vec-

tor bundle over a compact Riemannian manifold (M, g) and h a fixed metric on

V . Consider ∇ a connection on V compatible with h, both possibly varying in

time. Let φ be a vector field on V tangent to the fibers 27. Suppose that X is a

closed subset of V such that it is convex on each fiber and invariant respect to ∇-

parallel translation at all times. Assume that the solution of the ODE
df

dt
= φ(f)

(where f is a section of V depending smoothly on t) remains all time in X. Then

the solutions of
∂f

∂t
= −∆gf + φ(f) also remain inside X.

7.3. Maximum principle for functions
The following maximum principle will be used very often in the next lectures

Theorem 7.10 (scalar maximum principle) Let M be a compact manifold,

and let gt a 1-parametric family of smooth metrics on M depending smoothly on

t. Let Xt be a family of smooth vector fields on M depending smoothly on t. Let

us consider the partial differential inequations

∂ft

∂t
≥ −∆gtft + 〈gradtft, Xt〉+ φ ◦ ft, (7.10)

and the associated ordinary differential equation

dh(t)

dt
= φ ◦ h with h(0) = min{f0(x); x ∈ M}, (7.11)

then fx(t) ≥ h(t) for every t in an interval [0, T ] where there is a solution of

(7.10) and (7.11). One has the analog result for reversing inequalities.

27A vector field φ on V tangent to the fibers is a Cr map φ : V → V satisfying that
π ◦ φ = π, for the vector bundle π : V → M .
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8. LONG TIME EXISTENCE

Theorem 6.1 implies that there is a maximal interval [0, T [ on which the solu-

tion of the Ricci flow exists. If T < ∞, it is important to understand the reason

why solution stops at that time. Next theorem says that the only obstacle to the

long time existence of the flow is the curvature tensor becoming unbounded

Theorem 8.1 ( long time existence) If g0 is a smooth metric on a compact

n-dimensional manifold M , the unnormalized Ricci flow with g(0) = g0 has a

unique solution g(t) on a maximal time interval 0 ≤ t ≤ T ≤ ∞. Moreover, if

T < ∞, then

lim
t↗T

„
sup
x∈M

|Rm(x, t)|
«

= ∞

where Rm is the Riemannian curvature tensor.

8.1. Steps of the proof

1. Short time existence asserts that there is a unique smooth solution on a

maximal time interval 0 ≤ t < T for T ≤ ∞.

2. Suppose T < ∞ and the norm of the Riemannian curvature tensor (that is,

|Rm|) is bounded as t tends to T . Next show that all the space-time derivatives
∂

∂t
∇kRm are also bounded when t → T .

3. Prove that the metric g and all its ordinary derivatives in a local coordinate

chart remain bounded, and g remains bounded away from zero below.

4. As a consequence of step 3, the metric gt at time t converges to a smooth

limit metric gT as t → T .

5. Applying short time existence with g(0) = gT we can continue the solution

past T which is a contradiction, because T was maximal by election.

8.2. Results used along the proof
Fundamental in steps 1 and 5, is the short time existence Theorem 6.1.

Theorem 8.2 Given a compact Riemannian manifold (M, g0), there is an ε > 0

such that the equation
∂gij

∂t
= −2Rij has a unique smooth solution g(t) in ]0, ε[

satisfying g(0) = g0.

On the other hand, step 2 includes the proof of the following theorem about

derivative estimates of the curvature.

Theorem 8.3 Let (M, gt) be a solution of the Ricci flow on a compact n-dimensional

manifold. Then for every k ∈ N, there exists a constant Ck, depending only on k

and n, such that if

|Rm(x, t)|g ≤ ρ for all x ∈ M and t ∈ [0,
1

ρ
],
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then

|∇kRm(x, t)|g ≤
Ckρ

tk/2
for all x ∈ M and t ∈ [0,

1

ρ
]

Notation 8.1 From now on, given any tensor T , we shall write Ck`
ij T to indicate

the contraction, in T , of the i-th argument with the k-th argument, and that of

the j-th argument with the `-th argument.

Sketch of the proof.

• Step 1. Establish the evolution formula for the components of the Riemannian

curvature tensor.

∂

∂t
Rabcd = ∆Rabcd + 2(Babcd + Bacbd −Babdc −Badbc) (8.1)

where B = C68
24Rm ⊗ Rm) (i.e., using a local orthonormal frame, Babcd =

RaebfRcedf Next write the formula in the following way:

∂

∂t
Rm = ∆Rm + Rm ∗Rm (8.2)

where ∗ is defined by:

(Rm ∗Rm)(X, Y, Z, W ) = 2(C68
24Rm⊗Rm(X, Y, Z, W )

+ C68
24Rm⊗Rm(X, Z, Y, W )

− C68
24Rm⊗Rm(X, Y, W, Z)

− C68
24Rm⊗Rm(X, W, Y, Z))

• Step 2. Proof of the case k=1.

Using (8.2) we obtain the inequality

∂

∂t
|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3

Applying (8.2) to ∇Rm, we reach

∂

∂t
∇Rm = ∆∇Rm + Rm ∗ ∇Rm

and this leads to the formula

∂

∂t
|∇Rm|2 ≤ ∆|∇Rm|2 − 2|∇2Rm|2 + C|Rm||∇Rm|2

Next define F := t|∇Rm|2 + A|∇Rm|2, being A a constant. Next find upper

bounds for this function F and its time derivatives. This helps us to get an upper

bound for |∇Rm|.
• Step 3. Proof of the general case.

- Use (8.2) to find an evolution equation of ∇kRm.
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- Suppose by induction that |∇kRm| ≤ CkM/tk/2. Next we have to prove the

same for k + 1.

- Obtain upper bounds on
∂

∂t
|∇kRm|2 and

∂

∂t
|∇k+1Rm|2.

- Define Fk := t|∇k+1Rm|2 +Ak|∇kRm|2 and find upper bounds for
∂

∂t
Fk and

Fk. Finally, this gives the estimate on |∇k+1Rm| we were looking for. tu
Remark 8.3.1 Notice that the derivative estimates deteriorate as t goes to 0,

but this is the best we can do without further assumptions on the initial metric.

To complete step 2 only remains to prove the estimation for time derivatives.

Corollary 8.4 There exists constants Cj,k such that if the curvature is bounded

|Rm| ≤ ρ then the space-time derivatives are bounded

| ∂

∂t

j

∇kRm| ≤ ρ Cj,k

tj+(k/2)

Next we state the results about the bounds of the metric corresponding to step

3.

Proposition 8.5 Let (M, g(t)) be a solution of the Ricci flow on a compact n-

dimensional manifold with a fixed background metric ḡ and connection ∇̄. If there

exists ρ > 0 such that

|Rm(x, t)|g ≤ ρ for all x ∈ M and t ∈ [0, T ),

then there exists for every k ∈ N a constant Ck depending on k, n, K, T, g0, and

the pair (ḡ, ∇̄) such that

|∇̄kg(x, t)|ḡ ≤ Ck for all x ∈ M and t ∈ [0, T ).

Corollary 8.6 Let (Mn, g(t)) be a solution of the Ricci flow. If there exists a

constant K such that |Ric| ≤ K on the time interval [0, T ], then

e−2KT g(x, 0) ≤ g(x, t) ≤ e2KT g(x, 0)

for all x ∈ M and t ∈ [0, T ].

In particular, last result shows that we obtain positive definite metrics under

the Ricci flow.

8.2.1. Some more comments

On the other hand, there are some situations in which singularities de-
velop at finite time as shows the following lemma.
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Lemma 8.7 Let (M, gt), 0 ≤ t ≤ T be a solution of the unnormalized
Ricci flow on a compact n-dimensional manifold. If there are to ≥ 0 and
ρ > 0 such that

inf
x∈M

R(x, t0) = ρ,

then gt becomes singular in finite time.

Idea of the proof. The lemma follows by using the evolution equation
of scalar curvature under the Ricci flow, namely,

∂

∂t
R = ∆R+ 2|Ric|2,

and applying the weak maximum principle. tu

8.3. Case dim(M) = 3
3-dimensional case was the first problem discussed by Hamilton. Con-

sider now the normalized Ricci flow equation for n = 3

∂

∂t
g̃ij =

2
3
r̃ g̃ij − 2R̃ij

Then it is possible to prove the following result.

Lemma 8.8 If (M, g(t)) is a solution of the normalized Ricci flow on a
closed 3-manifold of initially positive Ricci curvature, then there exist pos-
itive constants C <∞ and δ > 0 such that∣∣∣∣R̃ic− 1

3
R̃g̃

∣∣∣∣ ≤ Ce−δt

for all positive time.

Last lemma allows us to prove that all derivatives of the curvature decay
exponentially.

Theorem 8.9 For every n > 0 we have maxM |∆nR̃ic| ≤ Ce−δt for some
constants C <∞ and δ > 0 depending on n.

In short, last theorem means that g(t) converges exponentially fast in
every Cm norm to a smooth Einstein metric g∞ 28. Then, since dim(M) =
3, the metric g∞ has constant sectional curvature.

28Recall that a metric is Einstein if the Ricci tensor is proportional to the metric,
that is,

Rij =
1

n
Rgij

When n ≥ 3, this implies the scalar curvature R is constant.
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9. RICCI FLOW ON SURFACES (I)

9.1. The normalized Ricci flow on surfaces

Recall the normalized Ricci flow equation

∂gij

∂t
=

2
n
r gij − 2 Rij (9.1)

When n = 2 the scalar curvature R and the Gaussian curvature K are
related by R = 2K, and the Ricci curvature is given by 29

Rij = Kgij =
R

2
gij (9.2)

By substitution of (9.2) into the normalized Ricci flow equation (9.1) we
obtain the following equation for the metric

∂gij

∂t
= (r −R)gij (9.3)

Notice that the change in the metric is pointwise a multiple of the metric,
so the conformal structure is preserved. The term r in the equation is added
to keep the area of the surface constant (cf. the comments around (5.6)).

The integral of R over a surface M gives the Euler characteristic χ(M)

by the Gauss-Bonnet formula
∫
Rdµ = 4πχ(M) and, as a consequence,

on a surface we see that r is constant even respect to t. Indeed

r =
4πχ(M)

A
, A being the area of M

The equation (9.3) makes perfectly good sense in higher dimension, but
differs from the Ricci flow. It is in fact the gradient flow for the Yamabe
problem, where we fix the conformal structure and the volume and try to
minimize the mean scalar curvature r.

When the metric gij evolves, so does its scalar curvature. The equation
for its evolution is

Proposition 9.1 when the metric g evolves following the normalized Ricci
flow, the scalar curvature R associated to g satisfies the equation:

∂R

∂t
= −∆gR+R(R− r) (9.4)

29Although the Ricci curvature is always a multiple of the metric on a 2-manifold,
this does not imply that R is constant (see [59] p.125). Thus the notion of an Einstein
metric makes sense only when n ≥ 3.
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Proof. Using isothermal coordinates 30, the metric of a surface can be
written locally as

ds2 = Λ(du2
1 + du2

2), Λ ≡ Λ(u1, u2) (9.5)

(that is, we can always consider the metric to be conformal to the standard
euclidean metric). In these new coordinates, (9.3) can be expressed as

∂Λ
∂t

= (r −R)Λ i.e.
∂ lnΛ
∂t

= r −R (9.6)

On the other hand, it is possible to check (substituting g11 = g22 =
Λ, g12 = g21 = 0 in the formula for the Gaussian curvature obtained in the
Gauss Egregium Theorem) the following formula

K =
1
2

∆E lnΛ
Λ

, so R =
∆E lnΛ

Λ
(9.7)

where ∆E = −(
∂2

∂u2
1

+
∂2

∂u2
2

) denotes the standard euclidean laplacian.

In dimension 2, in isothermal coordinates, we have
√
g = Λ, g11 = g22 =

1
Λ

and, by substitution in formula (4.7) for the laplacian, we obtain

∆gf =
∆Ef

Λ
(9.8)

We are already in position to deduce the expression (9.4). Derivating
(9.7) respect to t

∂R

∂t
=

∆E(
∂

∂t
lnΛ)

Λ
− 1

Λ2

∂Λ
∂t

∆ElnΛ (9.9)

From (9.6)

∂R

∂t
=

∆E(r −R)
Λ

− 1
Λ
∂lnΛ
∂t

∆ElnΛ

=
∆E(r −R)

Λ
− (r −R)

∆ElnΛ
Λ

=
∆E(r −R)

Λ
− (r −R)R

30The proof of the existence of isothermal coordinates systems for any regular sur-
face can be found in Bers, L. Riemann Surfaces. New York University, Institute of
Mathematical Sciences. New York, 1957-1958 pp.15-35.
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where the last equality follows from (9.7). So, using (9.8), we obtain (9.4).
tu

Note that (9.4) is a non linear parabolic equation. An equation of this
type is called of reaction-diffusion and it appears frequently in mathemat-
ical ecology, chemistry, etc. The laplacian term in (9.4) is causing the
diffusion of R. If the equation only contained this term, then the evolution
would be the heat equation and R would tend to a constant as t tends to
∞. The quadratic terms in R represent the reaction terms, if the equation
only contained this term, then the solution would blow up in finite time
for any initial data satisfying R(0) > max{r, 0}. How the scalar curvature
behaves under the normalized Ricci flow depends on weather the diffusion
or the reaction term dominates.

From now on, when there is no possibility of confusion, we shall use the
notation ∆ ≡ ∆g.

9.2. The reaction equation

Fix a point x ∈ M and consider the ordinary differential equation asso-
ciated to (9.4)

d

dt
R = R(R− r). (9.10)

9.2.1. Analytic solution

The first question is to determine the growth of the solution of this
equation. With this aim, we are going to solve it in an explicit way and

with initial datum R(0) = R0. We denote R′ :=
dR

dt
.

When r 6= 0 and R0 6= 0, we do the change of variable z =
1
R

(so

z′ = − 1
R2R

′ and z(0) = 1
R0

). Dividing equation (9.10) by R2, we obtain
R′

R2
= 1 − r

R
. Applying the change of variable, the result is z′ = rz − 1.

So we have now a first order Cauchy problem which can be solved using
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Lagrange formula31

z(t) = e
R t
0 r du

(
1
R0

+
∫ t

0

e−
R u
0 r dw(−1)du

)
= ert

(
1
R0

+
∫ t

0

−e−ru du

)
= ert

(
1
R0

+
(
e−ru

r

)t

0

)
= ert

(
1
R0

+
1
r
(e−rt − 1)

)
=
ert

r

(
r

R0
+ (e−rt − 1)

)
=

1
r

(
ert

(
r

R0
− 1
)

+ 1
)

Therefore, the solution of equation (9.10) when r 6= 0 and R0 6= 0 can
be written as

R(t) =
r

1− (1− r
R0

)ert
(9.11)

If r = 0, we have the equation R′ = R2. Using the same change of
variable as above, we obtain z′ = −1; integrating both sides of this equal-
ity, z(t) = −t + C, where C is a constant of integration which can be

determinated using the initial condition. In fact, C = z(0) =
1
R0

. So

z(t) = −t +
1
R0

=
−R0t+ 1

R0
. Substituting this into the formula of the

change of variable R =
1
z
, we arrive to the solution of equation (9.10)

when r = 0

R(t) =
R0

1−R0t
(9.12)

If R0 = 0 we are going to solve z′ = rz − 1 using the Lagrange formula
with undefined integrals32. After rearranging the constants of integration

obtained by applying this formula, the result is z(t) =
rertC +K

r
and so

R(t) =
r

rertC +K
. Using the initial datum, we have 0 = R(0) =

r

rC +K
and this implies r = 0. Therefore, substituting into the formula obtained
for R(t), we obtain

R(t) ≡ 0 when R0 = 0

31In general, an ODE of the form y′ = a(x)y + b(x) with initial data y(x0) = y0 is
called first order Cauchy problem. For solving it, we use the Lagrange formula

y(x) = e
R x
x0

a(u)du
(y0 +

Z x

x0

e
−

R u
x0

a(w)dw
b(u)du)

32y(x) = e
R

a(u) du(c +
R

e−
R

a(u)dub(u) du)
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Looking at the solution of equation (9.10), we conclude that, for all values
of r, the solution blows up in finite time when R0 > max{r, 0}. In fact, if
r = 0,

lim
t→T

R0

1−R0t
= ∞ if and only if T =

1
R0

Since R0 > 0, T is a finite positive number.
If r 6= 0,

lim
t→T

r

1− (1− r
R0

)ert
= ∞ if and only if T =

1
r

ln(1− r

R0
)

Since R0 > max{r, 0}, T is finite and greater than zero.
Hence we cannot obtain an upper bound for the curvature under the

normalized Ricci flow by directly solving equation (9.10).
On the other hand, the ODE behaves much better when R0 < min{r, 0},

in which case we have:

R(t) ≥ R0

In fact, if r 6= 0 then

R(t) =
rR0

R0 −R0ert + rert
≥ R0 iff A(t) :=

r

R0 −R0ert + rert
≤ 1

Here we distinguish two possibilities:
• r > 0. In this case we write A(t) =

r

rert + |R0|(1− ert)
. Note that

r > 0 implies ert is an increasing function and, moreover, it is equal to 1
when t = 0, so ert ≥ 1 and thus rert + |R0|(1− ert) ≥ r+ |R0|(1− ert) ≥ r.
Because of this remark, we can conlude A(t) ≤ 1.
• r < 0. Now we have

A(t) =
−r

−rert −R0(1− ert)
=

−r
[r(1− ert)− r]−R0(1− ert)

=
−r

−r + (r −R0)(1− ert)
.

At t = 0, ert = 1 and ert is a decreasing function of t because r < 0.
Therefore 1 − ert ≥ 0. On the other hand, by election of R0, we have
r−R0 > 0. As a consequence of these two facts, −r+(r−R0)(1−ert) ≥ −r
and thus A(t) ≤ 1.

It remains to study what happens when r = 0. In this situation the
solution of the reaction equation is

R(t) =
R0

1−R0t
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Now we can write the following chain of equivalences:

R(t) ≥ R0 iff
1

1−R0t
≤ 1 iff −R0t ≥ 0

and the last equality is true by the election of R0.
Since r is the mean value of the scalar curvature, we cannot have R(0) ≤

min{r, 0} nor R(0) ≥ max{r, 0} at all points of M . Then we need to
consider also points with R(0) between 0 and r. For it, now we do an
heuristic-qualitative study of equation (9.10) which includes these cases.

9.2.2. Heuristic study

Let us study how varies
d

dt
R in function of R in the equation (9.10)

looking at the graphic of R(R− r) as a function of R.

• Case R(0) ≥ 0 at every x ∈M (which implies r ≥ 0)
At the points x ∈ M where R(0) = R0 < r as in the figure, we see

dR0

dt
< 0, so R decreases. After the value zero,

dR

dt
> 0; then R increases,

but now the derivative is again negative and therefore R have to increase.
In short, it seems that the value of the scalar curvature tends to zero even
if we take R0 as close to r as we want.

Now, let us consider the points in M where R(0) = R1 > r. In this case
the derivative is always positive and R increases all the time, so R goes to
∞.

In conclusion, R = r is a fixed point for the reaction equation (i.e. a
solution of it) that is repulsive in the sense that, if we take an initial value
for the scalar curvature in a neighbourhood of r, at any case R moves away
from r in the course of time.
• Case R(0) ≤ 0 at every x ∈M (which implies r ≤ 0)
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First, let us consider the points where R(0) = R0 ≤ r, then
dR0

dt
> 0 and,

therefore, R increases until r. After that, the derivative is negative, so

R decreases; but beyond r we have
dR

dt
> 0 and R would increase again.

Then R tends to r.
At the points where R(0) = R1 > r the situation is similar:

dR1

dt
< 0 so

R1 decreases and after arriving to r, it begins to increase since
dR

dt
> 0; but

on the right of r the derivative is again negative, so R decreases. Finally,
in this case R tends to r too.

In short, when R(0) < 0, r is an attractive fixed point of the reaction
equation.

9.2.3. Conclusion

Both from the precise solutions of (9.10) and the above heuristic argu-
ments, we conclude that, for (9.10), if R is nonnegative (resp. nonpositive)
at the beginning, it remains so for all time.

9.3. The complete evolution equation of R

Applying any of the maximum principles stated in Theorems 7.8 or 7.10,
we obtain from the conclusion 9.2.3 for equation (9.10) that

Theorem 9.2 In the normalized Ricci flow for surfaces, if, at every point
in M , R ≥ 0 at the start, it remains so for all time. Likewise if, at every
point in M , R ≤ 0 at the start it remains so for all time. Thus both positive
and negative curvature are preserved for surfaces.

For negative scalar curvature and if we have restrictions on R, we can
tell more.

Theorem 9.3 If the scalar curvature of a Riemannian manifold satisfies
−c ≤ R ≤ −ε < 0 at a starting time t = 0 (for some c > 0, ε > 0), then it
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remains so and re−εt ≤ r −R ≤ cert. So, taking limits when t goes to ∞,
R tends to r exponentially.

Proof. First assertion follows from the maximum principle. Next we write
equation (9.4) specifying all the variables involved

∂R(x, t)
∂t

= −∆g(x,t)R(x, t) + (R(x, t)− r)R(x, t) (9.13)

where x ∈M and t ∈ R+
⋃
{0}.

We define Rmax(t) = supx∈M R(x, t). Since M is a compact mani-
fold, this supremum is actually a maximum. Then, at the points x where
R(x, t) = Rmax(t),

−∆g(t)R(x, t) ≤ 0, (9.14)

then, it follows from (9.13) and lemma 7.5 that Rmax is a Lipschitz function
and its upper right derivative satisfies

D+Rmax(t) ≤ sup
x∈M(t)

∂R

∂t
(x, t) ≤ sup

x∈M(t)

(R(x, t)− r)R(x, t),

where M(t) = {x ∈ M : R(x, t) = Rmax(t)} and the last equality follows
from (9.13) and (9.14). So, by definition of M(t),

D+Rmax ≤ Rmax(Rmax − r) ≤ −ε(Rmax − r)

Using the same rule of derivation as in the proof of Corollary 7.3, we get

D+((Rmax − r)eεt) ≤ εeεt(Rmax − r) + eεtD+(Rmax − r)

≤ εeεt(Rmax − r)− εeεt(Rmax − r) = 0

Arguing as in Lemma 7.1 with f(t) = Rmax(t)− r, we obtain

(Rmax(t)− r)eεt ≤ Rmax(0)− r

Therefore

R− r ≤ Rmax − r ≤ (Rmax(0)− r)e−εt,

that is,

r −R ≥ (r −Rmax(0))e−εt ≥ re−εt (9.15)

The last inequality is true because Rmax is negative.
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Analogously, using a result similar to lemma 7.5 for the lower right deriva-
tive, and having account that, at the points x where R(x, t) = Rmin(t),
−∆g(t)R(x, t) ≥ 0, we obtain from (9.13) that

D+Rmin ≥ Rmin(Rmin − r) ≥ r(Rmin − r),

being Rmin(t) = minx∈M R(x, t), because Rmin − r ≤ 0.
On the other hand,

D+((Rmin − r)e−rt) ≥ −re−rt(Rmin − r) + e−rtD+(Rmin − r)

≥ −re−rt(Rmin − r) + re−rt(Rmin − r) = 0

Then, using Corollary 7.2, we obtain

(Rmin − r)e−rt ≥ Rmin(0)− r ≥ Rmin(0),

because r < 0, which is a consequence of R < 0
In short,

r −R ≤ r −Rmin ≤ −Rmin(0)ert ≤ cert (9.16)

Note that the last inequality follows from Rmin ≥ −c.
The theorem follows from (9.15) and (9.16). tu

From Theorem 9.3 and the long time existence theorem, we obtain

Corollary 9.4 On a compact surface, if R < 0 then the solution exists
for all time and converges exponentially to a metric of constant negative
curvature.

For positive curvature, the situation is much worse, because R = r is a
repulsive fixed point for the ODE

dR

dt
= R2 − rR

and hence the reaction term in (9.10) is fighting strongly against the diffu-
sion term (cf. the pictures in section 9.2.2).

9.4. Ricci solitons

To improve the results when R0 > 0 (and also when r < 0 but with
R0 > 0 at some points) we need better methods. With this aim, we will
introduce a function that will help us to find estimations of the curvature.
First we shall introduce the concept of Ricci soliton, trying to understand
why it is natural the introduction of such a function.
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Definition 9.1 A solution g(t) of the Ricci flow is called a (steady) Ricci
soliton if there exists a 1-parameter family {ϕt} of diffeomorphisms of M
such that

g(t) = ϕ∗t g(0) (9.17)

Remark 9.1.1 Equation (9.17) means that we obtain no new metric under
the Ricci flow because the solution metric g(t) is the same as the initial
metric g(0) with a change of coordinates ϕt.

Differentiating equation (9.17) with respect of time (which is not a direct
computation, because ϕt is not necessarily a 1-parametric local group, see
[37]), we have33

dg

dt
= LV g

where Vt is the family of vector fields generated by ϕt
34.

From the normalized Ricci flow equation on surfaces, we have

(r −R)gij = ∇iVj +∇jVi

where ∇iVj := dxk(∇∂iV )gkj . In fact35

(LV g)ij = V gij − g([V, ∂i], ∂j)− g(∂i, [V, ∂j ])

= V gij − g(∇V ∂i, ∂j) + g(∇∂iV, ∂j)− g(∂i,∇V ∂j) + g(∂i,∇∂jV )

= g(∇∂iV, ∂j) + g(∂i,∇∂jV )

If we take V = −gradf , where f is some function which depends on time,
we obtain the expression

(R− r)gij = 2∇2
ijf

33In general, given a covariant tensor field τ on M , we define the Lie derivative of τ
with respect to a smooth vector field X on M by

(LXτ)p :=
∂

∂t
|t=0(θ∗t τ)p = lim

t→0

θ∗t τθt(p) − τp

t
,

where θt is the local 1-parametric group of diffeomorphisms associated to X

34Vt(ϕt(p)) =
∂

∂s

˛̨
s=t

(ϕs(p)).
35In general, if X is a smooth vector field and σ is a smooth covariant tensor field,

then LXσ can be computed by the following expression:

(LXσ)(Y1, . . . , Yk) = X(σ(Y1, . . . , Yk))−σ([X, Y1], Y2, . . . , Yk)−. . .−σ(Y1, . . . , Yk−1, [X, Yk])

This follows from elementary properties of the Lie derivative as we can see in [60] p.
475.
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In fact,

∇i(gradf)j +∇j(gradf)i = g(∇∂i
gradf, ∂j) + g(∇∂j

gradf, ∂i)

= ∂i(g(gradf, ∂j))− g(gradf,∇∂i
∂j)

+ ∂j(g(gradf, ∂i))− g(gradf,∇∂j
∂i)

= ∂i∂jf + ∂j∂if − (∇∂i∂j)f − (∇∂j∂i)f

= 2∂i∂jf − 2(∇∂i∂j)f = 2∇2
ijf

In this case the solution g(t) is called a gradient Ricci soliton. Taking
traces in the above equation, we arrive to the result

−∆f = R− r (9.18)

Examples 9.1.1 In two dimensions, the complete metric on the xy plane
given by

ds2 =
dx2 + dy2

1 + x2 + y2

is a gradient Ricci soliton of positive curvature with the metric flowing in

along the conformal vector field V = x
∂

∂x
+y

∂

∂y
. This Ricci soliton is called

the cigar soliton, because it is asymptotic to a flat cylinder at infinity and
has maximal curvature at the origin.

Theorem 9.5 On a compact surface there are no soliton solutions other
than constant curvature.

9.5. Potential of the curvature

We can always solve equation (9.18) because R− r has mean value zero,
and the solution is unique up to a constant, so we can make f have mean
value zero, that is ∫

M
f dµ∫

M
dµ

= 0. (9.19)

Note that the solution is well defined even if g is not a gradient Ricci soliton.
We are now in position to give next definition.

Definition 9.2 The potential f of the curvature is the solution of the equa-
tion

−∆f = R− r (9.20)
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with mean value zero36.

Lemma 9.6 Under the normalized Ricci flow, the potential of the curva-
ture satisfies

∂

∂t
f = −∆f + rf (9.21)

Proof. Taking isothermal coordinates, we have gij = Λδij ≡ Λ(du2
1 +

du2
2).
Substituting (9.20) in (9.8), we obtain

∆Ef

Λ
= r −R (9.22)

Differentiating both sides of (9.22) respect of t,

∆E

(
∂

∂t
f

)
Λ

− 1
Λ2

∂Λ
∂t

∆Ef = −∂R
∂t

= ∆gR−R(R− r), (9.23)

where the last equality follows from the equation of evolution of the scalar
curvature under the Ricci flow (9.4).

We can rewrite (9.23) in the following way

∆g

(
∂f

∂t

)
=
∂ lnΛ
∂t

∆Ef

Λ
+ ∆gR−R(−∆gf) (from (9.8), (9.20))

= (r −R)∆gf + ∆gR+R∆gf (from (9.6), (9.8))

= r∆gf −∆g∆gf (taking laplacians in (9.20))

So ∆g

(
∂f

∂t
− rf + ∆gf

)
= 0.

Since harmonic functions are constant on compact surfaces, we can con-
clude

∂f

∂t
= −∆gf + rf − b (9.24)

for some b which is constant over space and a function only of time. By inte-
gration of (9.24) along M , and having account of (9.19), we obtain b = 0 tu

The next step in our discussion is to introduce a new function h and a
2-covariant tensor M.

36This condition, i.e., the condition that f must satisfy (9.19) does not seem to be
necessary. Only R. Hamilton requires this condition in this definition
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Definition 9.3 We let

h = −∆f + |df |2 (9.25)

and

M = ∇2f +
1
2
∆fg (9.26)

which is the trace-free part of the second covariant derivative of f .

Lemma 9.7 (Ricci identity). Let X,Y, Z be vector fields on (M, g), and
α be a differential one-form. Then

((∇X∇Y −∇Y∇X)α)(Z) = α(R(X,Y )Z)

Proof. If we take X, Y vector fields such that ∇XY
∣∣
p

= ∇Y X
∣∣
p

= 0, we
get

∇X∇Y α(Z) = ∇2
XY α(Z) = ∇2α(X,Y, Z)

From the definition of curvature, we have

((∇X∇Y −∇Y∇X)α)(Z) = α(R(X,Y )Z) =
〈
(∇X∇Y −∇Y∇X)α], Z

〉
= R(Y,X, α], Z) = R(X,Y, Z, α]) = α(R(X,Y )Z).

tu

Lemma 9.8 (Bochner’s formula). For any smooth function on (M,g), we
have

−1
2
∆|gradf |2 = |∇2f |2 − 〈gradf, grad(∆f)〉+Ric(gradf, gradf) (9.27)

Proof. Choose an orthonormal basis {ei} of TpM and extend it to a
radial parallel orthonormal frame around p. By these elections, we have

∇W ei = 0 for every vector W ∈ TpM. (9.28)

Moreover, using the symmetry of the Levi-Civita connection,

[ei, ej ](p) = (∇ei
ej −∇ej

ei)(p) = 0 (9.29)

Take X, Y, Z three arbitrary elements of the aforementioned frame.
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Using Ricci identity with α = df , we obtain

∇2df(X,Y, Z)︸ ︷︷ ︸
1

−∇2df(Y,X,Z)︸ ︷︷ ︸
2

= df(R(X,Y )Z)︸ ︷︷ ︸
3

(9.30)

On the other hand, notice that

∇2df(X,Y, Z) = ∇2df(X,Z, Y ) (9.31)

In fact, since df is closed 37,

0 = d(df)(Z, Y ) = Zdf(Y )− Y df(Z)− df([Z, Y ]) = ZY f − Y Zf

So ZY f = Y Zf . Then,

∇df(Y, Z) = Y df(Z)− df(∇Y Z) = Y Zf = ZY f = ∇df(Z, Y )

Moreover,

∇(∇df)(X,Y, Z) = X(∇df(Y,Z))−∇df(∇XY, Z)−∇df(Y,∇XZ)

= X(∇df(Y, Z)) = X(∇df(Z, Y ))

= ∇(∇df)(X,Z, Y )

Tracing with respect to X and Z in (9.30), we have

trXZ(1) = trXZ [∇2df(X,Y, Z)] = trXZ [∇2df(X,Z, Y )] = (tr∇2df)(Y )

trXZ(2) = trXZ [∇2df(Y,X,Z)] =
∑
X

∇2df(Y,X,X) =
∑
X

Y (∇df(X,X))

= Y [tr(∇2df)] = Y (−∆f) = −(d∆f)(Y ) = −〈Y, gradf〉

trXZ(3) = trXZ [df(R(X,Y )Z)] =
∑
X

〈R(X,Y )X, gradf〉

=
∑
X

R(X,Y,X, gradf) =
∑
X

R(Y,X, gradf,X) = Ric(Y, gradf)

So, we have obtained next formula

(tr∇2df)(Y ) = −〈Y, gradf〉+Ric(Y, gradf) (9.32)

37Recall the general formula dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ])
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On the other side, ∇Y |gradf |2 = 2 〈∇Y gradf, gradf〉

∇2
XY |gradf |2 = ∇X∇Y |gradf |2 − (∇XY )(|gradf |2)

= ∇X∇Y |gradf |2 = ∇X(2 〈∇Y gradf, gradf〉)
= 2 〈∇X∇Y gradf, gradf〉+ 2 〈∇Y gradf,∇Xgradf〉

Tracing last equality and dividing by 2, we arrive to

−1
2
∆|gradf |2 = (tr∇2df)(gradf) + |∇2f |2 (9.33)

In fact,

|∇2f |2 =
∑
X,Y

(∇2f(X,Y ))2 =
∑
X,Y

〈∇Xgradf, Y 〉2 =
∑
X

〈∇Xgradf,∇Xgradf〉

trXY

〈
∇2

XY gradf, gradf
〉

= trXY

(
(∇2

XY df)(gradf)
)

= (tr∇2df)(gradf)

Finally, taking Y = gradf in (9.30) and adding the resulting equality to
(9.33) we reach the desired formula. tu

Remark 2 Very often from now on we shall use the fact that, in dimension

2, Ric =
R

2
g .

Lemma 9.9 Under the normalized Ricci flow, the evolution equation of h
has the form:

∂h

∂t
= −∆h− 2|M|2 + rh (9.34)

Proof. Using the definition of h and the equation (9.4) for the evolution of
R under the Ricci flow, we begin the computation of the evolution equation
of h.

∂h

∂t
=

∂

∂t
(−∆f + |df |2) =

∂

∂t
(−∆f) +

∂

∂t
(|df |2)

=
∂

∂t
(R− r) +

∂

∂t
(|df |2) =

∂R

∂t
+
∂

∂t
(|df |2) = −∆R+R(R− r) +

∂

∂t
(|df |2)

= −∆(R− r) + (R− r)2 + r(R− r) +
∂

∂t
(|df |2)

= ∆∆f + (∆f)2 − r∆f +
∂

∂t
(|df |2) (9.35)
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Note that in the last equality we have used the definition of the potential
of the curvature.

Using isothermal coordinates, we calculate

∂

∂t
(|df |2) =

∂

∂t

(
1
Λ

∑
i

(∂if)2
)

= − 1
Λ2

∂Λ
∂t

∑
i

(∂if)2 +
1
Λ

∑
i

2(∂if)
∂

∂t
(∂if)

= − 1
Λ2

(r −R)Λ
∑

i

(∂if)2 +
2
Λ

∑
i

(∂if)∂i(
∂f

∂t
)

= (R− r)
1
Λ

∑
i

(∂if)2 +
2
Λ

∑
i

(∂if)∂i(−∆f + rf − b)

[where we have used the evolution equation for f ]

= (R− r)|df |2 − 2
Λ

∑
i

(∂if)∂i(∆f) + 2r
1
Λ

∑
i

(∂if)2

= (R− r)|df |2 − 2 〈gradf, grad(∆f)〉+ 2r|df |2

= (R+ r)|df |2 −∆|df |2 − 2|∇2f |2 − 2Ric(gradf, gradf)

[by Bochner’s formula]

= (R+ r)|df |2 −∆|df |2 − 2|∇2f |2 −R|gradf |2

= r|df |2 −∆|df |2 − 2|∇2f |2

Substituting in (9.35) and rearranging the formula, we get

∂h

∂t
= ∆∆f −∆|df |2︸ ︷︷ ︸

−∆h

+ r(−∆f) + r|df |2︸ ︷︷ ︸
rh

−2|∇2f |2 + (∆f)2 (9.36)

On the other hand, we compute the norm of M

|M|2 = |∇2f |2 +
1
4
(∆f)2|g|2 + 2

1
2
∆f

〈
∇2f, g

〉
(9.37)

= |∇2f |2 +
1
2
(∆f)2 − (∆f)2 = |∇2f |2 − 1

2
(∆f)2

and (9.34) follows from (9.36) and (9.37) tu

Corollary 9.10 If h ≤ C at the start, then h ≤ C ert for all time. In
particular, R ≤ Cert + r.

Proof. Let us consider the ODE associated to (9.34), that is,

dh

dt
= −2|M|2 + rh
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with initial condition h(0) ≤ C.
Because of the nonpositivity of the first addend on the right, the next

inequality comes true

dh

dt
≤ rh

Solving it, we obtain h ≤ Kert and, using the initial datum, we get
C = h(0) = K. So

h ≤ Cert

Now, the scalar maximum principle (Theorem 7.10) assures that last in-
equality remains true when h is the solution of the PDE (9.34).

Moreover, substituting the definition of the potential f (i.e. equation
(9.17)) in (9.25), we have

h = −∆f + |df |2 = R− r + |df |2

Therefore, R = h− |df |2 + r ≤ h+ r ≤ Cert + r. tu

Remark 9.10.1 As a consequence of the last corollary, we have obtained
an upper bound for R. But it tends to infinity as t→∞ in the case r > 0.

We are going to find a bound from below with the aid of the maximum
principle. In order to do that, we study the ODE (9.10) associated to (9.4)
for Rmin instead of R like we did in section 9.2. We can conclude the
following:
• If r ≥ 0 and Rmin(0) < 0, then Rmin increases.
• If r ≤ 0 and Rmin(0) ≤ r, then Rmin increases.
We summarize the conclusions obtained in the following theorem.

Theorem 9.11 For any initial metric on a compact surface, there is a
constant C with

−C ≤ R ≤ Cert + r

Then, applying the long time existence theorem, we obtain

Corollary 9.12 For any initial metric on a compact surface, the Ricci flow
equation has a solution for all time. Moreover, if r ≤ 0, then the scalar
curvature R remains bounded both above and below.
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Theorem 9.13 On a compact surface with r < 0, for any initial metric
the solution exists for all time and converges to a metric with constant
negative curvature

Thus we have proved (up to many details, mainly on the convergence of
the metric) the theorem of Hamilton in the case r < 0.

10. RICCI FLOW ON SURFACES (II). HARNACK
INEQUALITY

In this lecture we will introduce Hamilton’s Harnack inequality for the
scalar curvature under the normalized Ricci flow. This construction was
inspired in the Li-Yau Harnack inequality for the heat equation on a Rie-
mannian manifold.

10.1. Classical Harnack inequality

Theorem 10.1 Let (M, g) be a compact n-dimensional Riemannian man-
ifold with non-negative Ricci curvature. Let f be a positive solution of the
heat equation

∂f

∂t
= −∆f, for 0 < t < T.

Then for any two points (ξ1, t1), (ξ2, t2) ∈M×]0, T [ with t1 < t2, we have

t
n
2
1 f(ξ1, t1) ≤ e

Ψ
4 t

n
2
2 f(ξ2, t2), (10.1)

where Ψ =
d(ξ1, ξ2)2

t2 − t1
and d(·, ·) denotes the distance in (M, g) .

Proof. Introduce L := ln f , then

∂L

∂t
= −∆L+ |dL|2 (10.2)

In fact, using the expression (4.7) for the laplacian, we have

∆L = − 1
√
g
∂j(
√
g gjk∂kL) = − 1

√
g
∂j

(
√
g gjk ∂kf

f

)
= − 1

√
g
∂j(
√
g gjk∂kf)

1
f
− 1
√
g
(
√
g gjk∂kf)

(
−∂jf

f2

)
=

∆f
f

+ gjk ∂kf

f

∂jf

f
=

∆f
f

+ gjk∂kL ∂jL =
∆f
f

+ |dL|2 (10.3)
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Derivating respect of t in the definition of L, we get

∂L

∂t
=

1
f

∂f

∂t
= −∆f

f
[by the heat equation]

= −∆L+ |dL|2 [from (10.3)]

Next define

Q :=
∂L

∂t
− |dL|2 = −∆L, (10.4)

so we have
∂L

∂t
= Q+ |dL|2. (10.5)

and, using Bochner’s formula, let us compute

∂Q

∂t
=

∂

∂t
(−∆L) = −∆

(
∂L

∂t

)
=

(10.5)
−∆Q−∆(|dL|2)

=
(10.4)

−∆Q− 2 〈grad(∆L), gradL〉+ 2|∇2L|2 + 2Ric(gradL, gradL)

= −∆Q+ 2 〈gradQ, gradL〉+ 2|∇2L|2 + 2Ric(gradL, gradL) (10.6)

By hypothesis, we have Ric(gradL, gradL) ≥ 0. In order to find a lower

bound for
∂Q

∂t
we are going to use the well known inequality between the

square of the norm and the trace of a symmetric tensor:

|∇2L|2 ≥ 1
n

(tr∇2L)2 =
1
n

(−∆L)2 =
1
n
Q2

By these remarks together with |∇2L| ≥ 0, we return to (10.6) and write

∂Q

∂t
≥ −∆Q+ 2 〈gradL, gradQ〉+

2
n
Q2 (10.7)

By the scalar maximum principle 7.10, we obtain from (10.7) the in-
equality

Q(x, t) ≥ Qmin(t) ≥ ϕ(t), (10.8)

where ϕ(t) is the solution of the ODE

dϕ

dt
=

2
n
ϕ2 with ϕ(0) = Qmin(0). (10.9)

Since M is compact,
∫

M

∆L = 0, then, if f is not constant at the start,

Q = −∆L must be negative at some point at the start, then ϕ(0) =
Qmin(0) < 0. From (10.8) and (10.9), we obtain
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ϕ(t) ≥ − n

2t− n
ϕ(0)

≥ − n

2t
and Q ≥ − n

2t
. (10.10)

Because M is a compact manifold, it is also complete 38. So it fol-
lows that there exists a minimal geodesic joining any pair of points in the
manifold. Hence we can take a minimal geodesic parametrized by time t
joining ξ1 and ξ2, that is, γ : [t1, t2] → M, such that γ(t1) = ξ1, γ(t2) =
ξ2 and d(ξ1, ξ2) = L(γ|[t1,t2]).

Denoting γi ≡ γi(t) the component functions of the geodesic, we compute
(using the chain rule)

dL

dt
(γ(t), t) =

∂L

∂t
(γ(t), t) +

∂L

∂xi

dγi(t)
dt

=
∂L

∂t
(γ(t), t) + dL(γ′(t))

=
∂L

∂t
(γ(t), t) + 〈gradL, γ′(t)〉

≥ − n

2t
+ |dL|2 + 〈gradL, γ′(t)〉 [using (10.5) and (10.10)]

≥ − n

2t
+ |dL|2 − | 〈gradL, γ′(t)〉 |

≥ − n

2t
+ |dL|2 − |gradL||γ′(t)| [by Cauchy-Schwarz]

= − n

2t
+
(
|dL| − 1

2

∣∣∣∣dγdt
∣∣∣∣)2

− 1
4

∣∣∣∣dγdt
∣∣∣∣2 ≥ − n

2t
− 1

4

∣∣∣∣dγdt
∣∣∣∣2 . (10.11)

Integrating along the geodesic and using the fundamental theorem of
calculus,

L(γ(t2), t2)− L(γ(t1), t1) =
∫ t2

t1

dL

dt
(γ(t), t) dt ≥ −

∫ t2

t1

n

2t
dt− 1

4

∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣2 dt

= −n
2

ln
(
t2
t1

)
− 1

4

∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣2 dt. (10.12)

On the other hand, it is a well-known fact that all Riemannian geodesics
are constant speed curves 39. So we have

d(ξ1, ξ2) = L(γ|[t1,t2]) :=
∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣ dt =

∣∣∣∣dγdt
∣∣∣∣ (t2 − t1) →

∣∣∣∣dγdt
∣∣∣∣ = d(ξ1, ξ2)

t2 − t1
.

38From a corollary of Hopf-Rinow theorem. See [28] p. 149

39We say γ is constant speed if |γ′(t)| ≡
˛̨̨̨
dγ

dt

˛̨̨̨
is independent of t. For more details,

see [59] p.70.
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In conclusion, we get∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣2 dt =

∫ t2

t1

d(ξ1, ξ2)2

(t2 − t1)2
dt =

d(ξ1, ξ2)2

(t2 − t1)2

∫ t2

t1

dt =
d(ξ1, ξ2)2

t2 − t1
= Ψ.

Substituting this in (10.12), we reach

L(γ(t2), t2)− L(γ(t1), t1) ≥ −n
2

ln
(
t2
t1

)
− Ψ

4
,

and the definition of L given at the beginning of the proof yields have

ln
f(γ(t2), t2)
f(γ(t1), t1)

≥ −n
2

ln
(
t2
t1

)
− Ψ

4
,

and, taking exponentials,

f(ξ2, t2)
f(ξ1, t1)

≥
(
t2
t1

)−n
2

e−
Ψ
4 ,

which gives (10.1). tu

10.2. Hamilton’s Harnack inequality

In this section we are going to adapt last theorem for the Ricci flow on
a surface. The main difference is that the metric is changing in this case;
so we need a new definition for Ψ.

In the following sections we shall consider the case with R > 0 initially.

Definition 10.1 On a manifold with a Riemannian metric gt depending
on time t, we define

Ψ(ξ1, t1, ξ2, t2)

= inf

{∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣2
gt

dt; γ : [t1, t2] −→M, γ(t1) = ξ1, γ(t2) = ξ2

}
.

Remark 10.1.1 a) When the metric is fixed, Ψ(ξ1, t1, ξ2, t2) =
d(ξ1, ξ2)2

t2 − t1
.

b) Let γ and G be two fixed metrics independents of t, with associated
distances δ and D respectively. If γ ≤ gt ≤ G, then

δ(ξ1, ξ2)2

t2 − t1
≤ Ψ(ξ1, t1, ξ2, t2) ≤

D(ξ1, ξ2)2

t2 − t1
.
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Theorem 10.2 Suppose we have a solution of the Ricci flow equation on
a compact surface with R > 0 for 0 < t ≤ T . Then for any two points
(ξ1, t1) and (ξ2, t2) in space-time with 0 < t1 < t2 ≤ T , we have

(ert1 − 1)R(ξ1, t1) ≤ e
Ψ
4 (ert2 − 1)R(ξ2, t2) (10.13)

Proof. Let L := lnR. Using the equation (9.4) for the evolution of the
scalar curvature under the Ricci flow, we compute the evolution of L

∂L

∂t
=

1
R

∂R

∂t
= −∆R

R
+R− r (10.14)

On the other hand, imitating formula (10.3) with R instead of f we also
have

−∆R
R

= −∆L+ |dL|2 (10.15)

Substituting last expression in (10.14), the result is

∂L

∂t
= −∆L+ |dL|2 +R− r

Now define

Q :=
∂L

∂t
− |dL|2 = −∆L+R− r (10.16)

Next we want to compute the equation for the evolution of Q.

∂Q

∂t
=

∂

∂t
(−∆L+R− r) = − ∂

∂t
(∆L) +

∂R

∂t
(10.17)

Taking isothermal coordinates, we can develop the first addend in (10.15)
in the following way:

∂

∂t
(∆L) =

(9.8)

∂

∂t

(
∆EL

Λ

)
=

1
Λ

∆E

(
∂L

∂t

)
− ∆EL

Λ2

∂Λ
∂t

= ∆
(
∂L

∂t

)
− ∆EL

Λ
∂ lnΛ
∂t

=
(9.6)

∆
(
∂L

∂t

)
−∆L(r −R) = ∆

(
∂L

∂t

)
+ (R− r)∆L

=
(10.16)

∆(Q+ |dL|2) + (R− r)∆L = ∆Q+ ∆|dL|2 + (R− r)∆L
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Substituting this in (10.17) and replacing the second addend by −∆R+
R(R− r), we have

∂Q

∂t
= −∆Q−∆|dL|2 − (R− r)∆L−∆R+R(R− r) (10.18)

Applying Bochner’s formula, using Ric = (R/2)g and (10.16), we get

−∆|dL|2 = 2|∇2L|2 − 2 〈gradL, grad(∆L)〉+ 2Ric(gradL, gradL)

= 2|∇2L|2 + 2 〈gradL, grad(Q− (R− r))〉+R |gradL|2

= 2|∇2L|2 + 2 〈dL, dQ〉 − 2 〈dL, dR〉+R |dL|2

= 2|∇2L|2 + 2 〈dL, dQ〉 − 2 〈dL,RdL〉+R |dL|2

= 2|∇2L|2 + 2 〈dL, dQ〉 −R |dL|2

Substituting the last equality in (10.18),

∂Q

∂t
= −∆Q+2|∇2L|2 +2 〈dL, dQ〉−R|dL|2− (R−r)∆L−∆R+R(R−r)

(10.19)
On the other hand, using (10.15) and (10.16),

−R|dL|2 − (R− r)∆L−∆R = −R|dL|2 − (R− r)∆L−R∆L+R|dL|2 =

= −2(R− r)∆L− r∆L = −2(R− r)∆L+ rQ− r(R− r)

So, returning to (10.19), we reach

∂Q

∂t
= −∆Q+ 2|∇2L|2 + 2 〈dL, dQ〉 − 2(R− r)∆L+ rQ −r(R− r) +R(R− r)︸ ︷︷ ︸

−rR+r2+R2−rR

= −∆Q+ 2|∇2L|2 + 2 〈dL, dQ〉+ (∆L)2 − 2(R− r)∆L+ (R− r)2︸ ︷︷ ︸
Q2

−(∆L)2 + rQ

= −∆Q+ 2|∇2L|2 − (∆L)2 + 2 〈dL, dQ〉+Q2 + rQ

where 2|∇2L|2−(∆L)2 ≥ 0 because we are working in dimension 2. Taking

this into account, we have found a lower bound for
∂Q

∂t
:

∂Q

∂t
≥ −∆Q+ 2 〈dL, dQ〉+Q2 + rQ (10.20)

Arguing in the same way that when we obtained (10.10) from (10.7),
from (10.20) we get

Q ≥ − rert

ert − 1
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Now choose any path σ joining ξ1 and ξ2 and parametrized by time t for
t1 ≤ t ≤ t2, and compute using the chain rule

dL

dt
(σ(t), t) =

∂L

∂t
(σ(t), t) +

∂L

∂xi

dσi(t)
dt

=
(10.16)

Q+ |dL|2 +
∂L

∂xi

dσi(t)
dt

.

Integrating between t1 and t2,

L(σ(t2), t2)− L(σ(t1), t1) =
∫ t2

t1

dL

dt
(t, σ(t)) dt

≥
∫ t2

t1

{
|dL|2 − rert

ert − 1
+
∂L

∂xi

dσi(t)
dt

}
dt ≥ − ln

ert2 − 1
ert1 − 1

− 1
4

∫ t2

t1

∣∣∣∣dσdt
∣∣∣∣2 dt,

where where the last inequality follows from computations similar to that
used to obtain (10.11). Now the theorem follows by exponentiation, having
account of the definition of Ψ. tu

10.3. Entropy

Definition 10.2 If R(·, 0) > 0 for a metric gt under the normalized Ricci
flow, we define the entropy N by:

N(gt) =
∫

M

Rgt lnRgt dµt (10.21)

It is well defined, because Theorem 9.2 assures that R(., t) > 0 for t > 0.

Remark 10.2.1 This quantity is called entropy because it resembles other
quantities (also called entropy in Physics) which are the integral of a posi-
tive function times its logarithm.

Theorem 10.3 For the Ricci flow on a compact surface with R > 0 at the
starting time, the entropy is decreasing.

Proof. From (5.5) and (9.4) we obtain

∂

∂t
(R dµ) = (−∆R+R(R− r)) dµ+R(r −R) dµ = −∆R dµ, (10.22)
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then

dN

dt
=
∫

M

∂

∂t
(lnR)R dµ+

∫
M

lnR
∂

∂t
(R dµ)

=
∫

M

(−∆R+R(R− r)) dµ−
∫

M

lnR ∆R dµ

=
∫

M

(R(R− r)− lnR ∆R) dµ

=
∫

M

(
R(R− r)− |gradR|2

R

)
dµ, (10.23)

because
∫

M

lnR ∆R dµ =
∫

M

〈d lnR, dR〉 dµ =
∫

M

|gradR|2

R
dµ.

On the other hand, since
∫

M

(R− r)r dµ = 0,∫
M

R (R− r) dµ =
∫

M

R(R− r) dµ−
∫

M

(R− r)r dµ =
∫

M

(R− r)2 dµ

(10.24)

=
∫

M

(−∆f)2 dµ =
∫

M

〈df, d∆f〉 dµ

=
∫

M

(
|∇2f |2 +Ric(gradf, gradf)

)
dµ [by the Bochner formula (9.27)]

=
∫

M

(
|∇2f |2 +

R

2
|gradf |2

)
dµ. (10.25)

Moreover, from (9.37),∫
M

|M|2 dµ =
∫

M

(
|∇2f |2 − 1

2
(∆f)2

)
dµ

=
(10.25)

∫
M

R(R− r) dµ−
∫

M

R

2
|gradf |2 dµ− 1

2

∫
M

(R− r)2 dµ

=
(10.24)

1
2

∫
M

(
R (R− r)−R |gradf |2

)
dµ. (10.26)

Now, we compute the expression∫
M

|gradR+R gradf |2

R
dµ =

∫
M

|gradR|2 + 2R 〈gradR, gradf〉+R2|gradf |2

R
dµ

=
∫

M

|gradR|2

R
dµ+

∫
M

R |gradf |2 dµ+ 2
∫

M

〈gradf, gradR〉 dµ

=
∫

M

|gradR|2

R
dµ+

∫
M

R |gradf |2 dµ− 2
∫

M

R (R− r) dµ, (10.27)
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since
∫

M

〈gradf, gradR〉 dµ =
∫

M

R∆f dµ = −
∫

M

R (R − r) dµ. Multi-

plying (10.26) by 2, and adding with (10.27), we obtain

2
∫

M

|M|2 dµ+
∫

M

|gradR+R gradf |2

R
dµ = −

∫
M

(
R (R− r)− |gradR|2

R

)
dµ

(10.28)
From (10.28) and (10.23), we obtain

dN

dt
= −2

∫
M

|M|2 dµ−
∫

M

|gradR+R gradf |2

R
dµ (10.29)

which is negative because R > 0, then N is decreasing. tu

10.4. Bounds on R(t) when R > 0
In this section, we shall combine the Harnack inequality and the entropy

estimate to conclude that R is bounded.

Theorem 10.4 If we have a solution for the normalized Ricci flow with
R > 0 on a compact surface, then there are constants c > 0 and C < ∞
with c ≤ R ≤ C for all time.

Proof. At time τ , pick a point ξ where the curvature R is largest. Then

wait for a time T − τ =
1

2Rmax(τ)
. Along that time

D+Rmax(t) ≤ sup
{x∈M ; R(x,t)≤Rmax(t)}

∂

∂t
R(x, t) = Rmax(t)(Rmax(t)−r) ≤ Rmax(t)2,

then D+

(
− 1
Rmax

)
≤ D+Rmax(t)

Rmax(t)2
≤ 1, so, for every t ∈ [τ, T ],

− 1
Rmax(t)

+
1

Rmax(τ)
≤ t− τ ≤ T − τ =

1
2Rmax(τ)

, and so

Rmax(t) ≤ 2Rmax(τ) for every t ∈ [τ, T ]. (10.30)

On the other hand, since

∂

∂t
gij = (r −R)gij ,

integrating this evolution equation we obtain, for every t ∈ [τ, T ],

gt = gτ exp
(∫ t

τ

(r −R)dt
)
, then
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gτ = gt exp
(∫ t

τ

(R− r)dt
)
≤ exp ((2Rmax(τ)− r)(t− τ)) gt ≤ e gt,

Hence, if d(ξ,X) is the distance at time T , we will have (cf. Remark
10.1.1.b))

Ψ(ξ, τ,X, T ) ≤ e
d(ξ,X)2

T − τ
.

Then the Harnack inequality (10.13) gives

R(ξ, τ) ≤ erT − 1
erτ − 1

exp
(
e
d(ξ,X)2

4(T − τ)

)
R(X,T ).

But, if gτ has not constant curvature, Rmax(τ) > r, and 1/(2(T − τ)) =
Rmax(τ), then, if we considerX in a ball around ξ of radius ρ =

π√
Rmax(τ)

at time T , we have

R(ξ, τ) ≤ erT − 1
erτ − 1

exp
(
e
π2

2

)
R(X,T ). (10.31)

On the other hand, using again that T − τ = 1/(2Rmax(τ)) ≤ 1/(2r),

erT − 1
erτ − 1

=
erτer(T−τ) − 1

erτ − 1
≤ erτe1/2 − 1

erτ − 1
,

but the function
erτe1/2 − 1
erτ − 1

is decreasing in τ , then, taking τ0 < τ we

obtain

erT − 1
erτ − 1

≤ erτ0e1/2 − 1
erτ0 − 1

=: C1. (10.32)

If we denote C2 := C1 exp(eπ2/2), by substitution of (10.32) in (10.31),
we obtain

R(ξ, τ) ≤ C2 R(X,T ) (10.33)

Next we shall use this inequality to bound lnRmax(T ) by the entropyN(gT )
from above. We shall star with the entropy and we shall bound it. For it
we need the following remarks:

Since R(X,T ) ≤ Rmax(T ) ≤ 2Rmax(τ), the Pogorelov-Klingenberg’s
estimate of the iniectivity radius40 gives inj(M, gT ) ≥ π/Rmax(τ) = ρ.

40Klingerberg’s Theorem If all the sectional curvatures K of a Riemannian manifold
M satisfy 0 < K ≤ δ, then the injectivity radius inj(M) of M satisfies inj(M) ≥ π/

√
δ

(cf. [76] page 198). For the 2-dimensional case, this theorem had been proved by A. V.
Pogorelov, cf. [70].
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Then we can apply the Bishop comparison theorem for the area of the
geodesic disk B(ξ, ρ) of center ξ and radius ρ in the metric gT to obtain,
for the area, A(B(ξ, ρ)) ≥ A(Bρ), where Bρ is the geodesic ball of radius
ρ in the 2-sphere of sectional curvature Rmax(τ), which is all the 2-sphere,
then

A(B(ξ, ρ)) ≥ 4 π
Rmax(τ)

. (10.34)

Let us choose ξ satisfying Rmax(τ) = R(ξ, τ). Using (10.30), (10.33) and
(10.34), we can estimate the entropy

N(gT ) =
∫

M

R lnR dµT ≥
∫

B(ξ,ρ)

R lnR dµT ≥
4π
C2

ln
(

1
2C2

Rmax(T )
)
.

This inequality, combined with Theorem 10.3 shows thatRmax(T ) is bounded,
and hence Rmax(τ) is bounded. Then we have shown that, gien τ0 in the
interval [0, ε[ where we know that the solution gt of the normalized Ricci
flow exists (by the short time existence theorem), there is a constant C0

depending on τ0 such that

R(x, t) < C0 for every t ≥ τ0 and x ∈M. (10.35)

Taking

C = max{C0, C3}, where C3 = max
M×[0,τ0]

R(x, t), (10.36)

we obtain R(x, t) < C for every x and t.
Applying again Pogorelov’s injectivity estimate, we have inj(M, gt) ≥

π/
√
Rmax(t)/2 > π

√
2/C. If we have m(t) points p1, ..., .pm(t) ∈ M such

that dgt(pi, pj) ≥ π/
√
Rmax(t)/2, then the geodesic disks

Bg(t)(pi, π/
√
Rmax(t)/2) are disjoint and, as above, the Bishop’s com-

parison theorem gives A(Bg(t)(pi, π/
√
Rmax(t)/2) ≥ 2π/Rmax(t) > 2π/C.

Then A(M, g0) = A(M, gt)) > m(t) 2π/C. Then m(t) < C A(M, g0)/(2π),
and the diameter of (M, gt) is bounded from above by some constant

√
C4.

Then, we have an universal bound for d(ξ,X), and the same arguments
used in the proof of (10.33) give, choosing T = τ + η,

R(ξ, τ) ≤ er(τ0+η) − 1
erτ0 − 1

eeC4/(4η)R(X.τ + η).

Then, if we choose ξ satisfying R(ξ, τ) > r, we obtain a constant c, de-
pending only on g0, τ0 and η, satisfying

R(X, τ + η) ≥ c for every τ, (10.37)
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which is an universal lower bound of R if we take τ0 and η inside the inter-
val where we know gt is well defined by the short time existence theorem. tu

Using all the estimates obtained above and the Sobolev inequality, one
obtains (after non obvious computations)

Corollary 10.5 If we have a solution for the normalized Ricci flow on a
compact surface with R > 0 at the start, then there are constants all the
derivatives of the curvature remain bounded for all time also.

10.5. Asymptotic approach to a soliton

Let f be a potential function of the curvature (that is, f satisfies the
equation (9.20) −∆ft = R(t) − r), and let M(t) = ∇2ft + 1

2∆gt
ft gt be

the tensor defined in (9.26). We have the following evolution equations for
M(t).41

Lemma 10.6 Under the normalized Ricci flow, the tensor M evolves ac-
cording to the following formula

∂

∂t
M(t) = −∆gt

M(t) + (r −R(t))M(t) (10.38)

Proposition 10.7 Under the normalized Ricci flow, |M| satisfies the equa-
tion

∂

∂t
|M(t)|2 = −∆gt |M(t)|2 − 2|∇M(t)|2 − 2R|M|2 (10.39)

And, from this equation, by the maximum principle, we obtain

Corollary 10.8 If R ≥ c > 0 for some constant c, then there is a constant
C such that

|M(t)| ≤ Ce−ct.

Hence M → 0 exponentially.

10.6. Modified Ricci flow and the final Theorem

Now, we consider the following modification of the Ricci flow:

∂

∂t
gt = 2M(t) = (r −R(t))gt + 2∇2ft.

41see [22] pages 129-130 for a detailed proof of the results in this section.
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It is not hard to show that the solutions of this equation differ from those
of the Ricci flow only by the action of the 1-parameter family of diffeomor-
phisms generated by the family of vector fields gradgt

ft. Since M(t) con-
verges to zero exponentially, the modified metrics will converge as t→∞.
It is possible to show that their derivatives also converge to zero and the
limiting metric is smooth.

Since the solutions of the modified Ricci flow and the normalized Ricci
flow correspond by diffeomorphisms, the solutions gt of the modified Ricci
flow will converge also to a C∞ metric which, by Corollary 10.8, will have
M = 0.

Recall that M = 0 for Ricci solitons; so when R > 0 at t = 0, the
metric evolving under the normalized Ricci flow approaches a Ricci soliton
as t→∞.

Then, as a consequence of theorem 9.5 we have the following

Theorem 10.9 On a compact surface with R > 0, the solution of the
normalized Ricci flow

∂

∂t
gij = (r −R)gij

converges exponentially to a constant curvature metric.

10.7. Case r = 0

We already know the solution exists for all time and the curvature re-
mains bounded above and below. To reach Hamilton’s theorem in this case,
it remains to show that the solution converges to a flat metric.

The steps of the proof would be the following:

1. The metrics are uniformly equivalent for all t.
2.
∫
|dR|2 dµ ≤ Ce−ct.

3.
∫

(∆R)2 dµ ≤ Ce−ct.
4. Rmax converges to zero exponentially
5. The metric converges exponentially to the flat metric.

10.8. Chow’s Theorem

Without the restrictions on the sign of the scalar curvature R, the fol-
lowing theorem has been proved by B. Chow.

Theorem 10.10 For any smooth initial metric on S2, the solution to

∂g

∂t
= (r −R)g (10.40)



98 A. BORISENKO, E.CABEZAS-RIVAS, V. MIQUEL-MOLINA

exists for all time and converges to a constant curvature metric as t→∞.

11. MATRIX HARNACK INEQUALITY

In this lecture we shall give some ideas on the general Harnack inequality
for higher dimensions. From now on, unless otherwise stated, we shall work
only with the Ricci flow (not the normalized Ricci flow).

11.1. Matrix Harnack inequality

Theorem 11.1 Let (M, g(t)) be a solution for the Ricci flow which is either
compact or complete with bounded curvature, and suppose the curvature
operator is non-negative42, then for any vector field W and 2-vector U, we
have for all t > 0

Z := MabW
aW b + 2PabcU

abW c +RabcdU
abU cd ≥ 0 (11.1)

where

Pabc = ∇aRbc −∇bRac

and

Mab = ∆Rab −
1
2
∇2

a bR+ 2gcegdfRacbdRef − gcdRacRbd +
1
2t
Rab

Idea of the proof. . Assume for simplicity the manifold is compact. If Z
becomes negative, there will be a first time t0 when Z is zero; this happens
at a point x0 and in the direction of some U and W . We can extend these
any way we like in space and time and still we have Z ≥ 0 up to t0, and
we can profit by extending them with

∇aUbc =
1
2
(RabWc −RacWb) +

1
4t

(gabWc − gacWb)

and

∇aWb = 0

42We define the curvature operator on 2-vectors as R : Λ2TM → Λ2TM such that
〈R(X ∧ Y ), (Z ∧W )〉 = Rm(X, Y, Z, W ), where the scalar product over Λ2TM is de-
fined over basic vector fields as

〈X ∧ Y, Z ∧W 〉 := det

„
〈X, Z〉 〈X, W 〉
〈Y, Z〉 〈Y, W 〉

«
When we say that the curvature operator is non-negative, we mean ∀U ∈
Λ2TM 〈RU, U〉 ≥ 0.
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at the critical point where Z = 0. We also take

(
∂

∂t
+ ∆)Wa =

1
t
Wa and (

∂

∂t
+ ∆)Uab = 0

at the critical point. We then compute

(
∂

∂t
+ ∆)Z = (PabcWc +RabcdUcd)(PabeWe +RabefUef ) + 2RabcdMcdWaWb

− 2PacdPbdcWaWb + 8RadcePdbeUabWc + 4RaecfRbedfUabUcd

Finally, with these elections, we can check that if Z ≥ 0 then (
∂

∂t
−∆)Z ≥

0 and apply the maximum principle. Because of the factor 1
t in Z we have

Z positive for small t and then it must stay positive. tu

Next Corollary is a key piece in the study of singularities (see Lecture
14 by Hamilton and Perelman.

Corollary 11.2 If (Mn, gt) is a solution of the Ricci flow on a compact
manifold with initially positive curvature operator, then for any vector field
V on M and all times t > 0 such that the solution exists, one has

∂R

∂t
+
R

t
+ 2dR(V ) + 2Ric(V, V ) ≥ 0 (11.2)

This corollary follows immediately by taking

Uij =
1
2
(ViWj − VjWi)

in formula (11.1) and tracing over Wi.

Remark 11.2.1 Letting V = 0, we have
∂R

∂t
+
R

t
≥ 0 and multiplying by

t this yields
d

dt
(tR) ≥ 0 which implies that tR is increasing at each point

along the Ricci flow.

Corollary 11.3 Let x1, x2 ∈ M and let t1 and t2 be two different times
with 0 < t1 < t2. Then

R(x2, t2) ≥ R(x1, t1)
t1
t2
e−d(x1,x2,t1)

2/2(t2−t1) (11.3)

where d(x1, x2, t1) is the distance between x1 and x2 at time t1.
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Proof. At time t1, take a geodesic path γ(t) joining x1 and x2, namely,
γ : [t1, t2] → M such that γ(t1) = x1 and γ(t2) = x2. At time t1 the

constant velocity is
d(x1, x2, t1)
t2 − t1

, where d(x1, x2, t1) denotes the distance

from x1 to x2 at time t1
Now consider a path in space-time η : [t1, t2] → M × R defined by

η(t) = (γ(t), t); in other words, η is a path joining (x1, t1) and (x2, t2).
By hypothesis, Ric ≥ 0; so, using the Ricci flow equation, we have for

an arbitrary vector field V

∂

∂t
gt(V, V ) = −2Ric(V, V ) ≤ 0

As a consequence of this, gt(V, V ) is a decreasing function of t.
Thus, if we denote V ≡ γ′(t), we get

gt(V, V ) ≤ gt1(V, V ) = |V |2t1 =
d(x1, x2, t1)2

(t2 − t1)2
(11.4)

for every time t ≥ t1.
Using the chain rule, we compute

dR

dt
(η(t)) =

dR

dt
(t, γ(t)) =

∂R

∂t
(t, γ(t)) +

∂R

∂xi

dγi(t)
dt

=
∂R

∂t
(t, γ(t)) + dR(γ′(t))

=
∂R

∂t
(t, γ(t)) + dR(V ) (11.5)

Applying formula (11.2) to V
2 instead of V , we have the estimate

∂R

∂t
+
R

t
+ 2dR

(
V

2

)
+Ric

(
V

2
,
V

2

)
≥ 0

or, equivalently,

∂R

∂t
+ dR(V ) ≥ −R

t
− 1

2
Ric(V, V ) (11.6)

Combining (11.5) and (11.6), we reach

dR

dt
(t, γ(t)) ≥ −R

t
− 1

2
Ric(V, V )
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Since Ric is non-negative, it satisfies Rij−(
∑

iRii) gij ≤ 0, and therefore
Ric(V, V ) ≤ Rgt(V, V ). So, dividing by R last inequality,

d lnR
dt

(t, γ(t)) ≥ −1
t
− 1

2
gt(V, V )

≥ −1
t
− 1

2
d(x1, x2, t1)2

(t2 − t1)2
(from (11.4))

Then, by the fundamental theorem of calculus,

ln
R(x2, t2)
R(x1, t1)

=
∫ t2

t1

d

dt
lnR(t, γ(t)) dt ≥ −

∫ t2

t1

1
t
dt− 1

2

∫ t2

t1

d(x1, x2, t1)2

(t2 − t1)2
dt

= ln
t1
t2
− 1

2
d(x1, x2, t1)2

t2 − t1

Taking exponentials, we arrive to

R(x2, t2)
R(x1, t1)

≥ t1
t2
e−d(x1,x2,t1)

2/2(t2−t1)

So, multiplying both sides by R(x1, t1) gives the result. tu

11.2. How Hamilton derived the Harnack expression

It seems interesting to analyze what was in Hamilton’s mind when he
deduced the formula (11.2) which, as we have seen above, is fundamental
to generalize Harnack’s inequality for higher dimensions. Here we give first
the reasons Hamilton itself gave. Although we recognize that these reasons
are not very helpful, the short introduction to solitons in these pages is
interesting.

We need some previous knowledge about Ricci solitons in arbitrary di-
mensions.

11.2.1. Ricci solitons

Recall that a Ricci soliton is a solution to the Ricci flow which moves by
a one parameter group of diffeomorphisms φt, namely,

g(t) = φ∗t g(0) (11.7)
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Derivating respect of t and using the Ricci flow equation, we have43

LV g = −2Ric (11.8)

where V is the vector field generated by φt.
And thus, by the same computations as in section 8.2,

∇aVb +∇bVa = −2Rab (11.9)

Remark 3 In the original articles of Hamilton the Ricci soliton equations
(11.8) and (11.9) appear without the minus sign before Ric. The reason is
possibly a different definition of the Lie derivative.

If we take V = −gradf ,

Rab = ∇2
abf or Ric = ∇2f (11.10)

In order to check this formula, see computations of section 8.2.

Definition 11.1 We say g is a gradient Ricci soliton when the Ricci ten-
sor is the Hessian of a function. So (11.10) is the gradient Ricci soliton
equation.

Definition 11.2 A solution to the Ricci flow which moves by a diffeomor-
phism and at the same time shrinks or expands by a factor is called a
homothetic Ricci soliton. It satisfies

−2Ric = ρg + LV g (11.11)

where ρ is the homothetic constant. When ρ > 0 , ρ = 0 or ρ < 0, the
solitons are shrinking, steady or expanding, respectively. The case V = 0
is an Einstein metric.

Remark 11.2.1 The definition of Ricci soliton becomes more natural when
we use the normalized Ricci flow. Derivating equation (11.7) respect of t
and substituting the derivative of the metric by the expression of the nor-
malized Ricci flow, we get

−2Ric+ 2
r

n
g = LV g

43As we remarked in the lecture on surfaces, this is not so obvious, because φt defines
a family of vector fields Vt, and not only one. For more details on solitons see [?] pp.
22-23 and [23] pp. 5-8
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or, in local coordinates

−2Rij + 2
r

n
gij = ∇iVj +∇jVi

On the other hand, if we take V = −gradf the gradient Ricci soliton equa-
tion becomes

−Rij +
r

n
gij = ∇2

ijf

Then, if r > 0, r = 0 or r < 0, we say that the soliton is shrinking, steady
or expanding, respectively.

Examples 11.2.1 The cigar soliton satisfies the steady gradient soliton
equation with f(s) = − ln(cosh s).

Definition 11.3 An eternal solution of the Ricci flow is one that exists
for all time.

An ancient solution of the Ricci flow is one that exists on a maximal
time interval −∞ < t < T , where T <∞.

An immortal solution to the Ricci flow is one which exists on a maximal
time interval τ < t <∞, where τ > −∞.

Shrinking, steady and expanding solitons give examples of ancient, eter-
nal, and immortal solutions, respectively.

We already know the importance of Ricci solitons in dimension 2. The
following results illustrate that they are also fundamental in higher dimen-
sions.

Theorem 11.4 (Ivey, [52]) . There are no three-dimensional solitons on
a compact connected manifold M3 other than constant curvature metrics.

We are interested in solutions which are complete (that is, defined for
every point of the manifold), eternal and with Riemannian curvature uni-
formly bounded for all space and time (because this condition assures long
time existence of solution of the Ricci flow). Next theorem tells us why this
issue is related to Ricci solitons.

Theorem 11.5 (Hamilton, [48]) . Any complete simply connected eter-
nal solution of the Ricci flow with uniformly bounded curvature and strictly
positive curvature operator where the scalar curvature R assumes its max-
imum is necessarily a gradient soliton.
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11.2.2. Motivation of Harnack expression

On an expanding gradient soliton

∇aVb = Rab +
1
2t
gab (11.12)

since Va = ∇af implies ∇aVb = ∇bVa.
Differentiating (11.12) and commuting give the first order relations

∇aRbc −∇bRac = RabcdVd

and differentiating again gives

∇a∇bRcd −∇a∇cRbd = ∇aRbcdeVe +RaeRbcde +
1
2t
Rbcda

We take the trace of this on a and b to conclude

Mab + PcabVc = 0

where Mab and Pabc are defined as before. The first relation was then

PcbaVc +RacbdVcVd = 0

and in order to get a good expression we add the two equations to make

Mab + (Pcab + Pcba)Vc +RacbdVcVd = 0

We apply this to an arbitrary vector Wa and get

MabWaWb + (Pcab + Pcba)WaWbVc +RacbdWaVcWbVd = 0

If we write Uab = 1
2 (VaWb − VbWa) for the wedge product of V and W ,

the above can be rearranged as

Z = MabWaWb + 2PabcUabWc +RabcdUabUcd

which shows that the Harnack inequality becomes an equality on an ex-
panding gradient soliton.

Since there are other expressions which vanish, one may ask how Hamil-
ton come to select it.

One important criterion is that if Z ≥ 0 for all choices of W and U

then when Z = 0 on the soliton must also have
∂Z

∂W
=

∂Z

∂U
= 0. This
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dictates that we need to take the trace of the second derivative expression,
since otherwise we cannot mix it with first derivative expression, and it
also shows we must take an equal amount of each.

12. SURVEY ON LENGTH SPACES (I)

The only notion of distance between metrics that we explicitly use in
these notes is that of Cm-distance as defined for the Hamilton compact-
ness theorem. However, along the complete and detailed claimed proof
of geometrization conjecture, Gromov-Hausdorff distance and Alexandrov
spaces appear. For this reason, we give in this and next lectures a survey
about Alexandrov spaces and convergence of metric spaces. We shall state
the principal results about these items without proving them. Neverthe-
less, if the reader is interested in the proofs, most of them can be found in
[6] and [80].

12.1. Length spaces

Let (X, ρ) be a metric space.

Definition 12.1 A path c(t) joining p, q ∈ X is a continuous map c :
[a, b] → X such that c(a) = p, c(b) = q.

Definition 12.2 Given P a partition of the interval [a, b] (P ∈ P([a, b])),
that is, P = {t0, . . . , tk} with a = t0 ≤ t1 ≤ . . . ≤ tk = b, we define the sum

L(c, P ) :=
k−1∑
i=0

ρ(c(ti), c(ti+1))

A path c is said to be rectificable if the following set is bounded

{L(c, P ) : P ∈ P([a, b])}

Definition 12.3 If c is a rectificable path, its length is defined as

L(c) := sup{L(c, P ) : P ∈ P([a, b])}

Definition 12.4 A length space or space with intrinsic metric is a metric
space (X, ρ) such that

ρ(x, y) = d(x, y) := inf{L(c); c : [a, b] → X, c(a) = x, c(b) = y}
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Remark 12.4.1 In general, a metric space is not a length space. For
example, S1 with the euclidean distance. Indeed, the euclidean distance
between two opposite points is equal to 2, while the length distance between
the same points is π.

Definition 12.5 Let x, y, z be three distinct points in a metric space (X, d).
We define the comparison angle xyz as

∠d(x, y, z) := arccos
d(x, y)2 + d(y, z)2 − d(x, z)2

2d(x, y)d(y, z)
.

Definition 12.6 Let α : [0, ε) → X and β : [0, ε) → X be two paths in a
length space X emanating from the same point p = α(0) = β(0). The angle
∠(α, β) between α and β is defined by

∠(α, β) = lim
s,t→0

∠d(α(s), p, β(t))

if such limit exists.

When the angle is not well-defined, we consider upper angles, which
always exist.

Definition 12.7 The upper angle ∠u(α, β) is defined as

∠u(α, β) = lim sup
s,t→0

∠d(α(s), p, β(t))

From now on we’ll only consider length spaces (X, ρ) with a complete
metric, i.e. such that any two points can be joined by a shortest path44.

12.2. Alexandrov spaces
12.2.1. Spaces of nonpositive or nonnegative curvature

Definition 12.8 A triangle in X is a collection of three points a, b, c (ver-
tices) connected by three shortest paths (sides).

Remark 12.8.1 Given any two vertices, there may be different shortest
paths between them, so the vertices alone may not define a triangle uniquely.

44A theorem states that, in a length space, the properties of being complete and of
existing shortest geodesics between two points are equivalent (cfr.[6])
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Notation 12.9 Further, we are going to use the following notation:
- 4abc ≡ triangle with vertices a, b, c.
- γab ≡ any shortest path joining a and b.
- â ≡ ∠(γab, γac), where a, b, c are the vertices of a triangle.

Definition 12.10 We define the comparison triangle for 4abc ⊂ X as a
triangle 4a∗b∗c∗ in the euclidean plane with the same lengths of sides, i.e.

ρ(a, b) = |
−−→
a∗b∗|, ρ(b, c) = |

−−→
b∗c∗|, ρ(a, c) = |−−→a∗c∗|

It is uniquely defined up to a rigid motion.

Definition 12.11 (X, ρ) is a space of nonpositive (resp. nonnegative)
curvature if every point in X has a neighborhood U such that for every
4abc ⊂ U and every point d ∈ γac,

ρ(d, b) ≤ |
−−→
d∗b∗| (resp. ρ(d, b) ≥ |

−−→
d∗b∗|)

where d∗ is the point of the side −−→a∗c∗ of a comparison triangle 4a∗b∗c∗
such that ρ(a, d) = |

−−→
a∗d∗|.

Intuitively, it is natural to think that we can reformulate definition 12.11
via comparison of angles. Moreover, this point of view appears in Alexan-
drov’s original definition.

Definition 12.12 (X, ρ) is a space of nonpositive (resp. nonnegative) cur-
vature if every point of X has a neighborhood U such that, for every triangle
4abc ⊂ U the angles â, b̂ and ĉ are well defined and satisfy

â ≤ â∗, b̂ ≤ b̂∗, ĉ ≤ ĉ∗ (resp. â ≥ â∗, b̂ ≥ b̂∗, ĉ ≥ ĉ∗),

where 4a∗b∗c∗ is a comparison triangle. Moreover, for nonnegative cur-
vature an additional condition is needed45 : for two shortest path γpq and
γrs, where r is a inner point of γpq, one has ∠(γrp, γrs) + ∠(γrs, γrq) = π.

Obviously, definitions 12.11 and 12.12 are equivalent.

12.2.2. Spaces of curvature ≤ k or ≥ k

The definition 12.11 can be generalized by comparing the triangle 4abc
in X with a comparison triangle 4a∗b∗c∗ in a two-dimensional model space
of constant curvature k (≡ k-plane).

45Some authors are not sure if this condition is really necessary or not.



108 A. BORISENKO, E.CABEZAS-RIVAS, V. MIQUEL-MOLINA

Recall that these model spaces are the sphere of radius 1√
k

(with its
intrinsic metric), if k > 0; the hyperbolic plane of curvature k, if k < 0,
and the euclidean plane, if k = 0. Let us denote by Dk the diameter of the
model space of constant curvature k.

If we suppose that the perimeter of every triangle in a length space is less
than 2Dk, we can assure that a comparison triangle in a k-plane exists and
is unique up to an isometry. Notice that this restriction can be omitted if
k ≤ 0, since in this case Dk = ∞.

Notation 12.13 We will denote:
- −−→a∗c∗ ≡ any shortest path in a k-plane joining a∗ and c∗.
- |−−→a∗c∗| ≡ distance between a∗ and c∗ measured with the intrinsic metric

of the k-plane.

Definition 12.14 A space of curvature ≤ k (resp. ≥ k) is a length space
(X, ρ) which can be covered by a family of open sets {Ui}i∈I so that every
Ui satisfies:

1) Every two points in Ui can be connected by a shortest path in Ui.
2) For any 4abc ⊂ Ui of perimeter less than 2Dk and a point d ∈ γac,

ρ(d, b) ≤ |
−−→
d∗b∗| (resp. ρ(d, b) ≥ |

−−→
d∗b∗|),

where 4a∗b∗c∗ is a comparison triangle for 4abc in the k-plane and d∗ is
the point in −−→a∗c∗ such that ρ(a, d) = |

−−→
a∗d∗|.

Remark 12.14.1 In fact, it is sufficient to consider only the cases k =
−1, 0, 1 because all other cases can be reduced to these by rescaling. More-
over, it is enough to check condition 2) when d is a midpoint between a and
c.

Definition 12.15 We say that a length space X is a space of curvature
bounded above (resp. below) if every point x ∈ X has a neighborhood which
is a space of curvature ≤ k (resp. ≥ k) for some k ∈ R (possibly vary-
ing from one point to another, which makes the difference with Definition
12.14).

Definition 12.16 A space with bounded curvature is called Alexandrov
space.

12.2.3. Examples
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• Euclidean spaces are clearly Alexandrov spaces (both of nonpositive
and nonnegative curvature at the same time).
• The space constructed by gluing at one point several segments has

nonpositive curvature. So a locally-finite connected graph is a space of
nonpositive curvature.
• A cone over a metric space X is the quotient X × [0,∞[/X × {0}

with its natural metric. A cone over a circle of length 2πr is a space of
nonnegative curvature if r ≤ 1 and of nonpositive curvature if r ≥ 1.
• A two-dimensional polyedral space has nonnegative curvature if in any

vertex the sum of the angles is ≤ 2π.
• R2 \D2, where D2 is an open disk, has nonpositive curvature.
• R3 \B3, being B3 an open ball, is a space of curvature ≤ 1.
• A convex hypersurface in Rn with its length metric is a space of non-

negative curvature for all n ≥ 3.
• A Riemannian manifold is a space of curvature ≤ k (resp. ≥ k) if and

only if its sectional curvature is ≤ k (resp. ≥ k) everywhere.
• Next theorem provide us a way to construct many nontrivial examples

of spaces of curvature bounded above.

Theorem 12.1 (Reshetnyak’s Gluing Theorem). Let {(Xi, di)}i=1,2 be two
(complete locally compact) spaces of curvature ≤ k. Suppose that there
exists an isometry f : S1 → S2 between two convex sets Si ⊂ Xi and
consider X = X1 ∪f X2. Then (X, d)46 is a space of curvature ≤ k.

• We’ll give now the statement of another gluing theorem.

Theorem 12.2 (Alexandrov). Let X1, X2 ⊂ R2 be two convex sets. Sup-
pose that their boundaries ∂X1 and ∂X2 have curvatures γi ≥ 0 for i = 1, 2
(where the curvatures γi are defined in an integral way). Consider an
isometry f : ∂X1 → ∂X2. Then X = X1 ∪f X2 is a space of nonnegative
curvature.

12.2.4. Global geometry of Alexandrov spaces

There is still another definition of Alexandrov space with a more global
flavour.

Definition 12.17 A length space X has curvature ≤ k (resp. ≥ k) globally
if it satisfies condition 2 of definition 12.14 for every triangle 4abc in
the length space for which comparison triangle in a k-plane is well defined
(exists and is unique up to a rigid motion), no matter how big it is.

46d is the length metric. See definition 12.4.
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• Globalization theorem for nonpositive curvature

Definition 12.18 A Hadamard space is a complete simply connected space
of nonpositive curvature.

Theorem 12.3 Let X be a Hadamard space of curvature ≤ k. Then X is
a space of curvature ≤ k globally.

Remark 12.3.1 From the definition of Hadamard space, it is clear that
k ≤ 0 in the statement of the theorem.

• Toponogov’s globalization theorem

Theorem 12.4 Let k ∈ R and let X be a complete length space of curva-
ture ≥ k. Then X has curvature ≥ k globally.

Remark 12.4.1 This theorem was proved by: Alexandrov, for two dimen-
sions; Topogonov, for Riemannian manifolds of any dimension and Perel-
man generalized it for Alexandrov spaces.

12.2.5. Splitting theorem

Definition 12.19 A geodesic γ : (−∞,∞) → X is called a (straight) line
if every one of its segments is a shortest path between its endpoints.

Theorem 12.5 Let X be a locally compact space of nonnegative curvature.
If X contains a line, then it is isometric to a direct product R× Y , where
Y is some space of nonnegative curvature.

Remark 12.5.1 Toponogov proved the theorem for Riemannian manifolds
and Milka generalized it for Alexandrov spaces. Moreover, for Riemannian
manifolds, the theorem also holds assuming nonnegativity of Ricci curva-
tures instead of sectional curvatures (cf. [15]).

12.3. Space of metric spaces

In the same way as we work with a real number as a member of the real
line, for now on we shall consider every metric space as an element of a
class of similar objects called space of metric spaces. This allows us to talk
about convergence of metric spaces.

Next we are going to motivate this section with some examples.
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12.3.1. Examples

We begin with an example of a set that can be constructed as a limit of
other sets.
• Tangent cone of a convex set. Let X ⊂ Rn be a convex set

and p ∈ X. We identify p with the origin of Rn and construct the set
λX = {λx : x ∈ X}, for any λ > 0. The tangent cone is obtained as the
limit of the family of sets {λX} as λ → ∞. But, what is the meaning of
the word limit here?

From convexity, it follows that λ1X ⊂ λ2X if λ1 < λ2; therefore, these
sets are contained in their union

⋃
λ>0 λX. Since the tangent cone is a

closed set, the limit is the closure of the aforementioned union.
• Converging surfaces
A task previous to the definition of limit is to specify when two spaces

have a small distance between them. Intuitively, it seems reasonable to
impose that close spaces are homeomorphic and, moreover, that they have
similar geometric characteristics, such as distance between their points.
Nevertheless, this two conditions lead us to an unsatisfying notion of con-
vergence, as we illustrate with the following examples.

1.- Spheres with vanishing handles. Consider the sequence {Xn}, where
each Xn is a sphere S2 with a handle of diameter less than 1/n. As n
grows, it seems that the handles vanish to a point and Xn converge to S2.
But Xn is not homeomorphic to S2.

2.- Homeomorphic surfaces with non-preserved distances. Consider two
spheres of very different radii connected by a long thin tube. Let X be the
space obtained by attaching a little handle to the larger sphere and let Y
be the same but with the handle in the smaller sphere. Then X and Y are
homeomorphic, but any continuous map from X to Y changes distances
between some points, no matter how small the handles are. But X and
Y are close in the sense that they converge to the same surface when the
diameter of the handles tends to 0.

In short, we have found examples of spaces intuitively close but not
homeomorphic (1.) and also of homeomorphic spaces with some different
geometric properties (2.). So we have to introduce a different concept of
convergence. In order to do this, the first step is to define a distance
between abstract metric spaces. As we have seen above, this isn’t an easy
task, in fact, in this section we’ll give several definitions of distance suitable
for different purposes.

12.3.2. Uniform convergence
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Definition 12.20 A sequence {fn} of real-valued functions on a set X is
said to uniformly converge to a function f if

sup
x∈X

|fn(x)− f(x)| → 0 as n→∞.

We can apply last definition to metrics because every metric on X is a
real-valued function defined on X ×X. So

Definition 12.21 We say that a sequence {dn} of metrics on X uniformly
converges to a metric d if

sup
x,x′∈X

|dn(x, x′)− d(x, x′)| → 0 as n→∞.

This type of convergence has the following nice properties:
- If the metrics dn are intrinsic, the limit metric is intrinsic too.
- If the curvatures of the converging metrics are uniformly bounded from

below, this curvature bound is inherited by the limit metric.
Nevertheless, uniform convergence is a relatively weak type of conver-

gence. For example, a uniform limit of Riemannian metrics can be non
Riemannian.

Definition 12.22 Let (X, dX) and (Y, dY ) be metric spaces and f : X →
Y an arbitrary map. We define the distortion of f as

disf = sup
x1,x2∈X

|dY (f(x1), f(x2))− dX(x1, x2)|

Definition 12.23 A sequence {Xn} of metric spaces uniformly converges
to a metric space X if there exist homeomorphisms fn : Xn → X such that
dis(fn) → 0 as n→∞.

12.3.3. Lipschitz distance

Now we are going to introduce a new distance in order to measure relative
difference between metrics. Thus we’ll say that two metric spaces X and Y
are close to each other in the Lipschitz sense if there is a homeomorphism
f : X → Y such that dY (f(x), f(x′))/dX(x, x′) is about 1.

Definition 12.24 Let X and Y be two metric spaces and f : X → Y a
Lipschitz map. The dilatation of f is defined by

dilf = sup
x,x′∈X

dY (f(x), f(x′))
dX(x, x′)
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Definition 12.25 The Lipschitz distance dL between two metric spaces X
and Y is defined by

dL(X,Y ) = inf
f :X→Y

ln
(
max{dil(f), dil(f−1)}

)
where the infimum is taken over all bi-Lipschitz homeomorphisms f : X →
Y .

Remark 12.25.1 A homeomorphism f is called bi-Lipschitz if both f and
f−1 are Lipschitz maps.

Definition 12.26 A sequence {Xn}∞n=1 of metric spaces is said to converge
in the Lipschitz sense to a metric space X if dL(Xn, X) → 0 as n→∞. If
there are no bi-Lipschitz homeomorphisms from X to Y , then dL(X,Y ) =
∞.

In general, dL is nonnegative, symmetric and satisfies the triangle in-
equality. Moreover, for compact spaces X and Y , dL(X,Y ) = 0 if and only
if X and Y are isometric. This tells us that Lipschitz distance is a metric
on the “space” of isometry classes of compact metric spaces.

On the other hand, Lipschitz convergence of compact metric spaces im-
plies uniform convergence and they are equivalent in the class of finite
metric spaces.

Next we state an important result about Lipschitz convergence of Rie-
mannian manifolds.

Let C = C(n,Λ, δ0, V0) be the set of all connected compact C∞ n-
dimensional Riemannian manifolds with |sectional curvature| ≤ Λ2, diameter<
δ0, and V olume > V0.

Theorem 12.6 Given a sequence {Ml} in C and α ∈ (0, 1), there exists a
subsequence {Mlk} together with a C∞ manifold M on which is defined a
C1,α-Riemannian metric such that {Mlk} converges to M with respect to
the Lipschitz distance.

13. SURVEY ON LENGTH SPACES (II)
13.1. Gromov-Hausdorff distance

First we talk about Hausdorff distance, which is a distance between sub-
sets of a metric space, not between abstract metric spaces. Let S be a subset
of a metric space (X, ρ) and let us denote Ur(S) := {x : ρ(x, S) < r}.
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Definition 13.1 Let A and B subsets of a metric space. The Hausdorff
distance between A and B is defined by

dH(A,B) = inf{r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)}

Proposition 13.1 (M(X), dH) is a metric space, where M(X) is the set
of closed subsets of X.

Remark 13.1.1 There are another important results about the metric space
introduced in last proposition.

1.- If X is complete, then M(X) is also complete.
2.- If X is compact, then M(X) is also compact.
A corollary of 2 is:
(Blaschke theorem). The set of all compact convex subsets contained in

any fixed closed ball in Rn is compact respect to the Hausdorff distance.

Now we are in position to define the Gromov-Hausdorff distance dGH

following two fundamental ideas: distance between isometric spaces is zero
and, given two subspaces X,Y of the same metric space, dGH(X,Y ) ≤
dH(X,Y ).

Definition 13.2 Let (X, dX), (Y, dY ) be two metric spaces and r > 0. We
say dGH(X,Y ) < r if there exists some metric space (Z, d) and subspaces
X ′, Y ′ ⊂ Z, with the induced metric, satisfying

(a) (X ′, d|X′) is isometric to (X, dX).
(b) (Y ′, d|Y ′) is isometric to (Y, dY ).
(c) dH(X ′, Y ′) < r.

In other words, dGH(X,Y ) = inf{r > 0 : ∃ Z,X ′, Y ′ for which (a), (b), (c) hold}

In practice, this is a very complicated definition. Indeed, if we want to
find out the Gromov-Hausdorff distance between X and Y , we have to work
with all metric spaces Z containing subspaces isometric to X and Y . Next
we shall give another definition, which is equivalent to 13.2.

Definition 13.3 Given (X, dX) and (Y, dY ) two metric spaces. Consider
(XtY, d), being XtY the disjoint union between X and Y , and d a metric
such that d|X = dX , d|Y = dY . The Gromov-Hausdorff distance between
X and Y is defined by

dGH(X,Y ) = inf{dH(X,Y ) in (X t Y, d)},

where the infimum is taken over all (semi)-metrics d on X t Y such that
d|X = dX and d|Y = dY .
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Examples 13.3.1 1. Given (X, dX) a metric space and S ⊂ X an ε-net47,
dGH(X,S) ≤ ε. In fact, by the definition of ε-net, we have X ⊂ Uε(S) =⋃

x∈S B(x, ε) and, obviously, S ⊂ Uε(X) = X. Then dH(X,S) ≤ ε and so
dGH(X,S) ≤ dH(X,S) ≤ ε.

2. Let (X, dX), (Y, dY ) be compact metric spaces with diameter ≤ D,
then dGH(X,Y ) ≤ D/2. Indeed, we define a distance d on X tY such that
d|X = dX , d|Y = dY and d(x, y) = D/2 if (x, y) ∈ X × Y . It is easy to
check that d is a metric on X tY . Moreover, from the definition of d, it is
obvious that X ⊂ UD/2(Y ) and Y ⊂ UD/2(X). Therefore, dH(X,Y ) ≤ D/2
and then dGH(X,Y ) ≤ D/2.

3. A generalization of the argument used in example 2 yields the next
property: if X and Y are bounded metric spaces, then dGH(X,Y ) <∞.

We have already defined the Gromov-Hausdorff distance and now we
wonder when dGH is actually a metric.

Theorem 13.2 (IC, dGH) is a metric space, where IC ≡ space of isometry
classes of compact metric spaces. Moreover, dGH is finite on IC.

Remark 13.2.1 The proof consists on checking that dGH is nonnegative,
symmetric, satisfies the triangle inequality and, moreover, dGH(X,Y ) = 0
if and only if X and Y are isometric.

On the other hand, recall that (IC, dL), where dL is the Lipschitz dis-
tance, is also a metric space. However, in this case, dL could be infinity on
IC.

13.1.1. ε-isometries

Definition 13.4 Let X,Y be metric spaces and ε > 0. A map f : X → Y

(not necessarily continuous) is said to be an ε-isometry if disf ≤ ε and
f(X) is an ε-net in Y .

Remark 13.4.1 Recall that disf ≤ ε means |dX(x1, x2)−dY (f(x1), f(x2))| ≤
ε for all x1, x2 ∈ X (cf. Definition 12.22).

The notion of ε-isometry provides us a different way to deal with Gromov-
Hausdorff distances.

47Let X be a metric space and ε > 0. A set S ⊂ X is called an ε-net if dist(x, S) ≤ ε
for every x ∈ X.
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Theorem 13.3 Consider two metric spaces X,Y and ε > 0. We have the
following properties

1. If dGH(X,Y ) < ε, then there exists a 2ε-isometry f : X → Y .
2. If there exists an ε-isometry from X to Y , then dGH(X,Y ) < 2ε.

Next example illustrates this theorem.

Examples 13.4.1 Let (X, dX), (Y, dY ) be compact metric spaces and ε >
0. Consider {x1, . . . , xn} ⊂ X and {y1, . . . , yn} ⊂ Y such that

- |dX(xi, xj)− d(yi, yj)| < ε for all i, j = 1, . . . , n
- Uε({x1, . . . , xn}) = X

- Uε({y1, . . . , yn}) = Y .
In other words, {xi}, {yj} are ε-nets in X and Y , respectively, and

f(xi) = yi is an ε-isometry.
We define a metric on XtY as d(x, y) = min{d(x, xi)+ε+d(yi, y) : i =

1 . . . , n} for x ∈ X and y ∈ Y . One can check that with this metric X ⊂
U2ε(Y ) and Y ⊂ U2ε(X). In particular, this implies that dGH(X,Y ) ≤ 2ε.

13.2. Gromov-Hausdorff convergence

Definition 13.5 A sequence {Xn}∞n=1 of compact metric spaces converges
to a compact metric space in the Gromov-Hausdorff sense if dGH(Xn, X) →
0 as n→∞.

This is the more general concept of convergence we have defined until
now. Indeed, uniform convergence implies Gromov-Hausdorff convergence
and, as we have seen at the end of Lecture 12, Lipschitz convergence is a
particular case of uniform convergence.

Notation 13.6 For the type of convergence introduced in the last defini-
tion, we will use the notation Xn −−→

GH
X.

Examples 13.6.1 1. Every compact metric space X is a limit of finite
spaces. In fact, consider a sequence εn → 0 of positive numbers and take a
finite εn-net Sn ⊂ X for every n. Since dGH(X,Sn) ≤ εn (see example 1
of 13.3.1), Sn −−→

GH
X.

2. Consider the unit sphere S3 as a subset of C2 and the following action
of S1 on S3

(eit, (z, w)) 7→ (eitz, eitw)

This action defines a foliation F on S3 whose leafs are the orbits of the
action, that is, great circles in S3. We can consider S3/F and the quotient
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projection (Hopf fibration)

π : S3 −→ S3/F ≡M

It is possible to prove 48 that there exists a unique Riemannian metric on
M such that π is a Riemannian submersion. Using this, one can show that
S3/F is isomorphic to S2 with sectional curvature 4.

Since π is a Riemannian submersion, we have the decomposition

TxS
3 = Vx ⊕Hx, where Vx = π−1

x∗ (0) = Txπ
−1(π(x)) and Hx = (Vx)⊥

(13.1)

Then πx∗| : Hx −→ Tπ(x)S
2 is an isomorphism.

We introduce a 1-parametric family of metrics gλ on S3 in the following
natural way:

Using the decomposition 13.1, if U,W ∈ TxS
3 we can write U = UV +

UH , W = WV +WH . Then we define

gλ(U,W ) = λ2g(UV ,WV ) + g(UH ,WH), λ ∈ R

We shall denote gλ = λ2gV ⊕ gH .
For every λ, the Riemannian manifold (S3, gλ) is called a Berger’s

sphere.
Now, let us consider the family of Berger’s spheres (S3, gε) with 0 < ε <

1. If we let ε → 0, intuitively g0 = limε→0 gε = gH and, as we have seen
above, this is the metric of the 2-sphere S2(4) with sectional curvature 4.
So we can conclude (S3, gε) −−→

GH
S2(4).

A more rigorous argument for this, but changing a little bit the family
of Berger’s spheres (which now will fiber over different S2) runs as fol-
lows. Let S3

C(r) := {x ∈ CP 2 : d(p, x) = r} = expp S
3(r) a geodesic

sphere of radius r in CP 2(1). It is a well known fact that, for r before
the first cut distance t0 =

π

2
from p, S3

C(r) is isometric to the Berger’s

sphere corresponding to the fibration π : S3(1/ sin r) −→ S2(4/ sin r) with
contraction factor ε = cos r on the fiber. Now, it is easy to show that
S3

C(r) −−→
GH

S2(4) ≡ CP 1, because both CP 1 and S3
C(r) are in CP 2, and

CP 1 ⊂ Uπ
2−r(S3

C(r)) and S3
C(r) ⊂ Uπ

2−r(CP 1). And, by definition, this
implies dGH(S3

C(r),CP 1(1)) ≤ π
2 − r and so S3

C(r) −−→
GH

CP 1.

This phenomenon is called a collapse because the dimension of the limit
is smaller than the dimension of the elements in the sequence.

48See [66] for more details.
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3. Consider the unit cube [0, 1]3 ⊂ R3 and take the grid

Xn := {(x, y, z) ∈ [0, 1]3 : at least 2 coordinates are

rational numbers with denominator n}.

Let Yn = ∂Ur−n(Xn) ⊂ R3. As n → ∞ both Xn and Yn fill up [0, 1]3

so Xn → [0, 1]3 and Yn → [0, 1]3. This phenomenon is called an explo-
sion, because the limit space has larger dimension than the elements in the
sequence.

4. Fix a point p ∈ S1 and consider S1
n = S1\{interval around p of length 1/n}.

It is possible to show that S1
n do not converge to S1 as n→∞.

On the other hand, let p ∈ S2 and take S2
n = S2 \ Bp( 1

n ). In this case,
S2

n → S2 when n→∞.

Using suitable ε-nets, one can reduce convergence of arbitrary compact
metric spaces to convergence of their finite subsets. With this aim, we shall
introduce the concept of (ε, δ)-approximation.

Definition 13.7 Let X,Y be compact metric spaces and ε, δ > 0. We
say that X and Y are (ε, δ)-approximations of each other if there exist
{x1, . . . , xn} and {y1, . . . , yn} ε-nets in X and Y , respectively, such that

|dX(xi, xj)− dY (xi, xj)| < δ ∀i, j = 1, . . . , n

We use the word ε-approximation when ε = δ.

Proposition 13.4 Let X and Y be compact metric spaces.
1. If Y is an (ε, δ)-approximation of X, then dGH(X,Y ) < 2ε+ δ.
2. If dGH(X,Y ) < ε, then Y is an 5ε-approximation of X.

Last proposition yields a criterium for convergence of compact metric
spaces.

Proposition 13.5 Xn −−→
GH

X if and only if ∀ε > 0 there exists a finite

ε-net Sn in each Xn such that Sn −−→
GH

S, being S a finite ε-net in X.

From 13.3, we arrive to another criterium for Gromov-Hausdorff conver-
gence.

Theorem 13.6 Xn −−→
GH

X if and only if there exists a sequence of maps

fn : Xn → X (or fn : X → Xn) such that every fn is an εn-isometry and
εn → 0.
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13.2.1. (Pre-)compactness theorems

Definition 13.8 A class X of compact metric spaces is uniformly totally
bounded if

1. There is a constant D such that diam(X) ≤ D for every X ∈ X.
2. For every ε > 0 there is a N(ε) ∈ N such that, for all X ∈ X there is

an ε-net in X of no more than N(ε) points.

Theorem 13.7 X satisfying definition 13.8 is pre-compact. This means
that any sequence {Xn} ⊂ X contains some subsequence convergent (in the
Gromov-Hausdorff sense) to some metric space X ∈ X.

There are some classes of Riemannian manifolds which are pre-compact
in the Gromov-Hausdorff topology.
R(n, V, r) := {Mn Riemannian manifold ; V olume(M) ≤ V

and injectivity radius ≥ r} is pre-compact.
R(n, k,D) := {Mn Riemannian manifold ; diam(M) ≤ D

and sectional curvature ≥ k} is pre-compact.
The result remains true if we substitute the sectional curvature by the Ricci
curvature.

This is a particular case of a more general statement about Alexandrov
spaces.

Theorem 13.8 The classM(n, k,D) := {X : X is an Alexandrov space of
curvature ≥ k, diam(X) ≤ D and dimH(X) ≤ n}49, regarded with the

Gromov-Hausdorff metric, is compact. Moreover, if k > 0, the condition
diam(X) ≤ D can be removed and the result is still correct.

13.3. Tangent cone and Asymptotic cone of a metric space

Let (X, p) be a metric space with some fixed point p ∈ X. We call (X, p)
pointed metric space.

49dimH(X) is the Hausdorff dimension of X defined by

dimH(X) = inf{d ≥ 0 : µd(X) 6= ∞},

being µd(X) the d-dimensional Hausdorff measure of X, which is given by

µd(X) = C(d) lim
ε→0

µd,ε(X),

where C(d) is a positive constant and, for ε > 0,

µd,ε = inf{ωd({Si}) : diam(Si) < ε ∀i},

being {Si}i∈I a finite or countable covering of X and ωd({Si}) =
P

i(diam(Si))
d (if

d = 0 we substitute each -if any- 00 term in the formula by 1). By convention, µd(∅) =
0 ∀d ≥ 0.
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Definition 13.9 We say (Xn, pn) −−→
GH

(X, p) if ∀r, ε > 0 ∃n0 ∈ N /∀n >
n0 ∃f : Br(pn) → X (maybe not continuous) such that:

1. f(pn) = p.
2. disf < ε.
3. Uε(f(Br(pn))) ⊃ Br−ε(p).

Notation 13.10 For a metric space X and λ > 0, we represent by λX the
set of points X, but with the original metric multiplied by λ.

Definition 13.11 A pointed metric space is called a cone if (λX, p) is
isometric to (X, p) for any λ > 0.

Definition 13.12 Given (X, p) a pointed metric space, where X is a (bound-
edly compact50) metric space. The (Gromov-Hausdorff) tangent cone of X
at p is limλ→∞(λX, p), if the limit exists.

Remark 13.12.1 The tangent cone is actually a cone in the sense of def-
inition 13.11.

Definition 13.13 Let X be a (boundedly compact) metric space and p ∈
X. The asymptotic cone of X is limλ→0(λX, p), if the limit exists.

Remark 13.13.1 If the asymptotic cone exists, it does not depend on the
choice of the fixed point p.

Examples 13.13.1 1. As we have seen in previous lectures, the tangent
cone at a point p to a convex surface S in R3 is the smallest convex cone
with vertex at p which contains S.

2. Consider a convex surface S in R3 and a sequence of values for λ
tending to 0. If we choose, in particular, 0 < λ < 1 and consider the
distance obtained multiplying by λ the euclidean distance, we obtain the set
λS, which lies inside S. As λ→ 0 it seems that λS tends to a convex cone;
but if

∫
M
K dM > π, the sequence {λS} degenerates to a line. In short,

unlike the tangent cone, the asymptotic cone lies inside the surface.

It is known the following result that assures the existence of asymptotic
cone in a Riemannian manifold under certain conditions.

50A metric space is said to be boundedly compact if all closed bounded sets in it are
compact.
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Theorem 13.9 (Kasue). Let M be a complete non compact Riemannian

manifold such that for some c < ∞ and δ > 0 satisfies Secx ≥
−c

|px|2+δ
,

where |px| = d(p, x). Then M has an asymptotic cone.

Remark 13.13.2 In particular, a complete noncompact Riemannian man-
ifold with nonnegative curvature always has an asymptotic cone. On the
contrary, Lobachebski (≡ hyperbolic) space has no asymptotic cone.

14. SINGULARITIES AND DILATIONS ABOUT THEM

14.1. Introduction

Let (Mn, gt) be a solution of the Ricci flow defined on [0, T ). Re-
call that a maximal solution is said to be non-singular if T = ∞ and
supM×[0,T ) |Rm| < ∞ and is called singular if supM×[0,T ) |Rm| = ∞; in
this case, we say that the solution obeys a singularity at the maximal time
T ∈ (0,∞], which is called singular time.

However, for our purposes, it is convenient to adopt another point of
view. Namely, we consider a maximal solution to be non-singular before T
and singular at T , because it cannot be extended further in time.

Given a solution (Mn, g(t)) of the Ricci flow with a singularity at time
T <∞, it is expected that, after a finite number of surgeries on the singu-
larities, the solution becomes non-singular. Therefore, it is important that
we understand previously the main properties of non-singular solutions in
order to use them in the future.

Before doing the aforementioned surgery and in order to improve the
method for it, we need to study in depth two items:

1. The different type of singularities that can arise.
2. The possible limits of dilations of the metric about these singularities.

The method of dilations consists in constructing a suitable sequence of
solutions (M, gi(t)) and study its limit (M∞, g∞(t)) (if it exists). If we
select carefully such sequence, it is possible to assure that the limit exists
and is a complete nontrivial solution of the Ricci flow. One expects that
this limit solution (called singularity model) can yield information about
the original manifold, at least for points near the singularity and times just
before its formation

14.2. Properties of non-singular solutions
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First we recall as an important property of these solutions the Harnack
inequality (trace form), Corollary 11.2, given in lecture 11. Other impor-
tant properties are:

Proposition 14.1 Let Rmin(t) = infx∈M R(x, t), where M is a compact n-
dimensional manifold. Under the normalized Ricci flow, whenever Rmin ≤
0 it is increasing; whereas if Rmin ≥ 0, it remains so forever.

Proof. The evolution equation for the scalar curvature under the Ricci
flow is (cf. [38])

∂R

∂t
= −∆R+ 2

(
|Ric|2 − 1

n
rR

)
(14.1)

We compute the norm of the Ricci tensor considering its decomposition

Ric =
◦
Ric +

1
n
Rg, (14.2)

where tr
◦
Ric= 0 and R = trRic is the scalar curvature.

By substitution in (14.1), we obtain

∂R

∂t
= −∆R+ 2

(∣∣ ◦
Ric

∣∣2 +
1
n
R(R− r)

)
(14.3)

Notice that at the points x where R(x, t) = Rmin(t), −∆gR(x, t) ≥ 0, then
we have

D+Rmin ≥ inf
x∈M(t)

∂R

∂t
(x, t) ≥ inf

x∈M(t)
2
(∣∣ ◦

Ric
∣∣2 +

1
n
R(x, t)(R(x, t)− r)

)
≥ 2
n
Rmin(Rmin − r)

If there exists t0 ∈ R such that Rmin(t0) ≤ 0 then, since always Rmin ≤ r,
we have D+Rmin ≥ 0. So Rmin is increasing.

On the other hand, suppose that there exists some t0 ∈ R such that
Rmin(t0) ≥ 0. For simplicity in the computations, assume t0 = 0. Consider
the ODE associated to (14.3), that is,

dR

dt
= 2

(∣∣ ◦
Ric

∣∣2 +
1
n
R(R− r)

)

So we have the inequality
dR

dt
≥ 1
n
R(R− r).
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Solving this (with the change of variable z(t) = 1
R(t) and applying the

Lagrange formula to z′ = rz − 2
n ), we reach

R(t) ≥ nr

2
(
ert
(

nr
2Rmin(0) − 1

)
+ 1
) .

Since 0 ≤ Rmin(0) ≤ r, then r
Rmin(0) ≥ 1 and so R(t) ≥ 0 if n ≥ 2. In

particular, Rmin(t) ≥ 0 for all t such that the solution exists. tu

Proposition 14.2 If Rmin(t) > 0 for some t, then the maximal time in-
terval [0, T [ of the corresponding solution of the Ricci flow is finite.

Proof. We have the following evolution equation for the scalar curvature
under the Ricci flow

∂R

∂t
= −∆R+ 2|Ric|2 (14.4)

The decomposition of the Ricci tensor given by (14.2) yields

∂R

∂t
= −∆R+ 2

(∣∣ ◦
Ric

∣∣2 +
1
n
R2

)
And so, considering the associated ODE, we arrive to

dR

dt
= 2

(∣∣ ◦
Ric

∣∣2 +
1
n
R2

)
≥ 2
n
R2 (14.5)

Suppose that there exists some t0 ∈ R+ ∪ {0} such that Rmin(t0) > 0.
Solving (14.5) and applying the maximum principle, we have

R(x, t) ≥ Rmin ≥
n

n(Rmin(t0))−1 − 2(t− t0)
.

Hence Rmin blows up at a finite time T = n
2 (Rmin(t0))−1 + t0. Notice that

t > 0 since, by hypothesis, Rmin(t0) > 0. tu

Proposition 14.3 Let (M3, gt) be a complete solution to the Ricci flow
on a 3-manifold which is complete with bounded curvature for t ≥ 0. Con-
sider the eigenvalues λ ≥ µ ≥ ν of the curvature operator and suppose
infx∈M ν(x, 0) ≥ −1. Then, at all points and all times where ν(x, t) < 0,
the scalar curvature is estimated by

R ≥ |ν|(ln |ν|+ ln(1 + t)− 3) (14.6)
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Remark 14.3.1 1. A detailed proof of this fact can be found in [41] and
consists of studying the reaction equations associated to the system of evo-
lution equations for the eigenvalues: ∂tλ = ∆λ+ λ2 + µν

∂tµ = ∆µ+ µ2 + νλ
∂tν = ∆ν + ν2 + λµ

2. Later we shall show that the condition infx∈M ν(x, 0) ≥ −1 can always
be achieved by scaling g(0) by a suitable constant.

3. When we have |ν| ≥ e3/(1 + t) (which is a condition easy to reach
for t sufficiently large), the inequality (14.6) says that the scalar curvature
is nonnegative. Since it is the sum of sectional curvatures, this means
that, if there exists any point and time (x, t) where a sectional curvature is
negative, then it is possible to find a larger positive curvature at the same
(x, t).

The last property gives us a pinching estimate, that is, an inequality
which is preserved by the flow. There are other results which yield similar
pinching estimates, for instance, here is one referred to the Ricci tensor
proved by T. Ivey (see [52] for more details).

Proposition 14.4 If (M3, gt) is a solution to the normalized Ricci flow on
a compact 3-manifold and has scalar curvature bounded below by a positive
constant for all t ≥ 0, then there exists a positive function φ(t) satisfying

Ric(gt) ≥ −φ(R(t)) r(t) and lim
t→∞

φ(t) = 0.

14.3. Classification of maximal solutions

A first approach to the classification of the maximal solutions to the
Ricci flow by their singularity type is given by the maximal time T for
which the solution exists. According to this, we distinguish between finite
time (T <∞) and infinite time (T = ∞) singularities.

On the other hand, from long time existence, we know that if T < ∞,
then the curvature is unbounded in the sense that supM×[0,T ) |Rm(x, t)| =
∞. So we cannot use the norm of the curvature tensor to distinguish
between different types of finite-time singularities. A way to do so is to
make distinctions between slowly and rapidly forming singularities, in other
words, we shall do the classification according to the rate at which the
curvature tends to infinity as time goes to T .
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In short, if (Mn, g(t)) is a solution to the Ricci flow which exists up
to a maximal time T ≤ ∞, the following table summarizes its possible
singularities.

Singularities
Finite Time Type I sup

M×[0,T )

|Rm(·, t)|(T − t) <∞

T <∞ Type IIa sup
M×[0,T )

|Rm(·, t)|(T − t) = ∞

Infinite Time Type IIb sup
M×[0,∞)

|Rm(·, t)|t = ∞

T = ∞ Type III sup
M×[0,∞)

|Rm(·, t)|t <∞

Table: Classification of maximal solutions

We are interested in finite-time singularities (and, in particular, in Type
I singularities) because they play an important role in Perelman’s work
towards the proof of the geometrization conjecture for closed 3-manifolds.

14.4. Singularity models

Definition 14.1 A solution to the Ricci flow is called a singularity model
if it is a complete nonflat solution obtained as limit of dilations of a solution
51 near a singularity.

There exist different types of singularity models (Mn
∞, g∞(t)) (classified

according to their existence time interval and some curvature bound) cor-
responding to the possible singularities explained in the last section. The
classification appears in the following table:

Singularity model time interval curvature bound
Ancient Type I (−∞, ω)/ω > 0 sup

M∞×(−∞,0]

|Rm∞(·, t)||t| <∞

Ancient Type II (−∞, ω)/ω > 0 sup
M∞×(−∞,0]

|Rm∞(·, t)||t| = ∞

Eternal Type II (−∞,∞) sup
M∞×(−∞,0]

|Rm∞(·, t)| <∞

Immortal Type III (−α,∞)/α > 0 sup
M∞×(−∞,0]

|Rm∞(·, t)| · t <∞

Table: Singularity models

51there are many possibilities of taking these dilations, the more usual is that we shall
define in (14.8)
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14.5. Properties of the ancient solutions

Because we are interested in finite time singularities and the correspond-
ing singularity models are ancient solutions, we shall study its main prop-
erties in this section.

Proposition 14.5 Let (Mn, g(t)) be a complete solution of the Ricci flow.
Suppose that Rmin(t) is finite for all t ≤ 0 and that there exists a continuous
function φ(t) such that |Ksec(gt)| ≤ φ(t). Then gt has nonnegative scalar
curvature for as long as it exists.

Proof. Since, for each t, the sectional curvature is bounded, Rmin(t) exists.
As in the proof of Proposition 14.2, we have, for the scalar curvature under

the Ricci flow, the evolution equation
∂R

∂t
= −∆R+2|Ric|2 ≥ −∆R+

2
n
R2,

and, applying the maximum priciple we obtain D+Rmin(t) ≥ 2
nR

2
min, then

Rmin(t) is increasing with t. Hence, if R becomes nonnegative, it remains
so for bigger times and, if there is t1 where Rmin(t1) < 0, then Rmin(t0) < 0
for every t0 ≤ t1 and

Rmin(t) ≥ n

n(Rmin(t0))−1 − 2(t− t0)
≥ − n

2(t− t0)
for all t > t0. (14.7)

Since the solution is ancient, we may let t → −∞, obtaining Rmin(t) ≥
− lim

t0→−∞

n

2(t− t0)
= 0. tu

Proposition 14.6 Let (M3, g(t)) be a complete ancient solution of the
Ricci flow. Assume that there exists a continuous function φ(t) such that
|Ksec(gt)| ≤ φ(t). Then gt has nonnegative sectional curvature for as long
as it exists.

Proof. For the proof we want to use the pinching estimate (14.6). However,
to apply this result, we need the condition infx∈M ν(x, 0) ≥ −1.

If (M, g(t)) is a solution of the Ricci flow that exists at least for 0 ≤ t < T

and

ν0 := inf
x∈M

ν(x, 0) < 0,

then, taking t̃ = |ν0|t, we have g̃(t) = |ν0|g( t
|ν0| ) and g̃(t) is a solution of

the Ricci flow. From ν̃ + µ̃ + λ̃ = R̃ = 1
|ν0|R = 1

|ν0| (ν + µ + λ), we get

ν̃ = 1
|ν0|ν and, in particular, ν̃(x, 0) = ν(x,0)

|ν0| ≤ ν0
|ν0| = −1.

Now, if we suppose that ν̃
(
x, t̃
)
< 0, we are in position to apply (14.6)

to conclude

R̃(x, t̃) ≥ |ν̃(x, t̃)|[ln |ν̃(x, t̃)|+ ln(1 + t̃)− 3] ∀(x, t̃) ∈M × [0, T )
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We can rewrite the last inequality in terms of the metric g to get

|ν0|R(x, t) ≥ 1
|ν0|

|ν(x, t)|
(

ln
(
|ν(x, t)|
|ν0|

)
+ ln(1 + |ν0|t)− 3

)
,

wherever ν(x, t) < 0.
Simplifying the above expression, we obtain

R(x, t) ≥ |ν(x, t)|
(
ln |ν(x, t)|+ ln(|ν0|−1 + t)− 3

)
In particular, if ν(x, t) < 0 at some point x ∈M and time t > 0, then

R(x, t) > |ν(x, t)| (ln |ν(x, t)|+ ln t− 3) ,

because ln is a strictly increasing function.
Now assume that g(t) exists for −α ≤ t ≤ ω. Taking t̃ = t+ α, we have

R̃ = R and ν̃ = ν. Substituting this in the last inequality, we reach

R(x, t) > |ν(x, t)| (ln |ν(x, t)|+ ln(t+ α)− 3) wherever ν(x, t) < 0

Since, by hypothesis, g(t) is an ancient solution, we can take limits when
α → −∞. But, in this case, we get limα→−∞(t + α) = ∞. So R is
unbounded; however, this is a contradiction with |Ksec| ≤ φ(t), since the
scalar curvature R is the sum of the sectional curvatures. Hence ν(x, t) ≥ 0
for all x and t. tu

Next we state a corollary of the last property. If the reader is interested
in the proof, it can be found in [22] p.261.

Proposition 14.7 In dimension n = 3 every Type I limit of Type I singu-
larity has nonnegative sectional curvature for as long as it exists.

Proposition 14.8 Let (Mn, g(t)) be a solution of the Ricci flow on a com-
pact manifold with initially positive curvature operator. Then the function
tR is pointwise nondecreasing for all t ≥ 0 such that the solution exists.
Moreover, if (Mn, g(t)) is also ancient, then R itself is pointwise nonde-
creasing.

Proof. Taking X = 0 in the trace form of the Harnack inequality (11.2),

we get
∂

∂t
(Rt) = t

(
∂R

∂t
+
R

t

)
≥ 0 for all t ≥ 0 such that the solution

exists.
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On the other hand, suppose that the solution exists for −α ≤ t < ω and
consider t̃ = t+ α. Then R̃ = R and so

∂R

∂t
+

R

t+ α
≥ 0

or, equivalently,

∂R

∂t
≥ − R

t+ α
.

Since g(t) is an ancient solution, taking limits when α→ −∞, we check
the second assertion of the property. tu

14.6. Dilations about singularities

Here we shall study how singularities may be removed by dilations of
the metric. The first step consists in taking a sequence of points and times
where the norm of the curvature tends to infinity and is comparable (in the
sense of definition 14.2 below) to its maximum in sufficiently large spatial
and temporal neighborhoods of the chosen points and times.

Definition 14.2 A sequence {(xi, ti)} is said to be globally curvature es-
sential if it satisfies

1. ti ↗ T ≤ ∞.
2. There exists a constant C ≥ 1 and a sequence ri ∈ (0,

√
ti) such that

sup{|Rm(x, t)| : x ∈ Bg(t)(xi, ri), t ∈ [ti − r2i , ti]} ≤ C|Rm(xi, ti)|

for all i ∈ N where limi→∞ r2i |Rm(xi, ti)| = ∞.

Given a globally curvature essential sequence {(xi, ti)}, we construct a
sequence of solutions of the Ricci flow by dilating the metric by a factor
|Rm(xi, ti)| and the time by a factor 1/|Rm(xi, ti)|, and traslating the
origin of time by ti. That is, we define the family of metrics {gi(t)} given
by

gi(t) = |Rm(xi, ti)|g
(
ti +

t

|Rm(xi, ti)|

)
(14.8)

for 0 ≤ ti + t
|Rm(xi,ti)| ≤ T .

(Mn, gi(t)) is called the sequence of parabolic dilations and exists for

−ti|Rm(xi, ti)| ≤ t < (T − ti)|Rm(xi, ti)|. (14.9)
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Derivating respect to t, we check that gi(t) is a solution to the Ricci flow.
In addition, notice that gi(0) is a homothetic multiple of g(ti).

By the relation between the curvatures of homothetic metrics, we have
constructed a sequence of pointed metric spaces (M, gi(t), xi) satisfying

|Rmi(xi, 0)| = 1

This condition guarantees that, if the limit exists, it will not be flat.
In particular, for Type I singularities, it holds from (14.9) that

−∞ ≤ t < C <∞

Then, we can state the following result.

Proposition 14.9 If the limit of {(Mn, gi(t))}i∈N (given by the parabolic
dilations (14.8)) exists, it is an ancient solution.

14.7. Existence of convergent subsequences

Now our principal aim is to find out conditions which ensure the exis-
tence of subsequences of (Mn, gi(t)) convergent to nontrivial limits (that
is, nonflat metrics) which are complete solutions to the Ricci flow.

The Compactness Theorem for the Ricci flow, which we shall state be-
low and whose proof can be found in [46], is the main result in this direc-
tion. If we check that our sequence of complete solutions of the Ricci flow
(Mn, gi(t)) satisfies:

1. Sectional curvatures uniformly bounded from above,
2. Injectivity radius uniformly bounded from below,

the Compactness Theorem assures that it contains a convergent subse-
quence.

Theorem 14.10 (Compactness Theorem). Let {Mn
i , gi(t), Oi, Fi}i∈N, where,

for each i ∈ N,
- gi(t) is a complete solution to the Ricci flow for t ∈ (α, ω), being −∞ ≤

α < 0 < ω ≤ ∞.
- Oi is a point in the n-dimensional manifold Mi.
- Fi is an orthonormal (respect to gi(0)) frame at Oi.
Suppose that the following conditions hold:

1. There is a constant C < ∞ such that supM×(α,ω) |Ksec(gi)| ≤ C for
all i ∈ N.
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2. There is a contsnat δ > 0 such that injgi(0)(Oi) ≥ δ for all i ∈ N.

Then there exists a subsequence convergent (in the pointed sense) to a com-
plete solution (Mn

∞, g∞(t), O∞, F∞) of the Ricci flow existing for t ∈ (α, ω)
and with the same properties for Ksec and inj.

The convergence in the above theorem is the one corresponding to the
following definition of distance:

Definition 14.3 We say that two pointed Ricci flows (M, g(t), x, τ) and
(M ′, g′(t), x′, τ ′) are at Cm-distance lower than ε if there are open sets U
and U ′ satisfying B(x, τ, 1/ε) ⊂ U ⊂M and B(x′, τ ′, 1/ε) ⊂ U ′ ⊂M ′ and
a diffeomorphism φ : U −→ U ′ such that, for every t ∈] − 1

ε2 , 0] one has∣∣∣∣∂j(φ∗g′)
∂tj

(τ ′ + t)− ∂j(g)
∂tj

(τ + t)
∣∣∣∣
Cm

< ε for every 0 ≤ j ≤ m.

14.7.1. A comment about the convergence

It is a remarkable fact that, requiring only bounds on curvature and
not on its covariant derivatives, theorem 14.10 provides convergence in
the C∞ topology on compact sets. The reason for this is that a local
bound on the curvature of a solution to the Ricci flow implies bounds on all
derivatives of the curvature. This property was originally proved by W.X.
Shi in [79]52 using N.S. Bernstein ideas; here we just give the statement for
the estimation of the first derivative (the results for higher derivatives are
similar).

Theorem 14.11 Let g(x, t) be a solution to the Ricci flow on U × [0, T ],
where U ⊂ M is an open neighborhood of x ∈ M . Assume the following
conditions are satisfied:

1. There exists some constant K such that |Rm(x, t)| ≤ K for every
(x, t) ∈ U × [0, T ].
2. There is r > 0 such that, at time t = 0, the closed ball Br(x) of center
x and radius r is a compact set contained in U .

Then we can find a constant C <∞ for which we have the following esti-
mation for the covariant derivatives of the curvature

|∇Rm(x, T )|2 ≤ CK2

(
1
r2

+
1
T

+K

)

52See also [41] section 13 and these notes, Theorem 8.3 for global estimates.
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14.7.2. A comment about the injectivity radius bound

In the statement of the theorem 14.10, we have restriction on injectivity
radii only in an specific point. We can wonder what happens to the injec-
tivity radius at a point P as the distance of P from the origin O grows to
infinity. In [17], it is shown that the injectivity radius inj(P ) falls off at
worst exponentially; in particular

inj(P ) ≥ c√
k

(
δ
√
k
)n

e−C
√

k d(O,P ),

where k is an upper bound on |Ksec|, δ a lower bound on the inj(O) with
δ ≤ c√

k
and c > 0, C <∞ are constants depending only on the dimension

n.
The form given here follows from knowing that the volume of the ball of

radius r in hyperbolic space grows exponentially in r.

14.8. Limit of dilated solutions

Let us return to our particular problem of finding convergent subse-
quences of (Mn, gi(t)), where gi(t) are dilated solutions of the Ricci flow
defined as in (14.8). For now on, we assume the global bound

sup{|Rm(x, t)| : x ∈M, t ∈ [0, ti]} ≤ C|Rm(xi, ti)| (14.10)

14.8.1. Bounds on the curvature

Here we wonder how changes the curvature after dilation of the metric.
First we need the following result which shows that the blow-up rate of
finite time singularities is bounded below.

Lemma 14.12 Let (Mn, g(t)) a solution of the Ricci flow which exists on
a maximal time interval [0, T ), where T <∞ and M is a compact manifold.
Then there exists a constant c0 > 0 (depending only on n) such that

sup
x∈M

|Rm(x, t)| ≥ c0
T − t

On the other hand, given a Type I singular solution (Mn, g(t)) on [0, T )
define S by

S := sup
M×[0,T )

|Rm(x, t)|(T − t) (14.11)

Notice that the definition of Type I singularity assures S <∞.
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Now we are in position to give an estimate for the curvature tensor
associated to the metric gi(t). From the definition of gi(t), it holds

|Rmi(x, t)| =
1

|Rm(xi, ti)|

∣∣∣∣Rm(ti +
t

|Rm(xi, ti)|

)∣∣∣∣ (14.12)

Using (14.10), we have

1
|Rm(xi, ti)|

≤ C

sup{|Rm(x, t)| : x ∈M, t ∈ [0, ti]}
≤ C

sup{|Rm(x, ti)| : x ∈M}

≤ C

c0
(T − ti) (14.13)

Notice that the last inequality follows from lemma 14.12.
Denoting c := C

c0
, substituting (14.13) in (14.12) and using the definition

of S, we get

|Rmi(x, t)| ≤ c (T − ti)
S

T −
(
ti + t

|Rm(xi,ti)|

)
= c S

T − ti
T − ti − t

|Rm(xi,ti)|
= c S

1
1− t

(T−ti)|Rm(xi,ti)|

≤ c S

(
1 +

|t|
S

)−1

∀x ∈M and ti ∈ [−αi, 0] (14.14)

Then

|t||Rmi(x, t)| ≤ c S|t|
(

S

S + |t|

)
= c S2

(
|t|

S + |t|

)
≤ c S2

So we have the estimate

sup
M×[−αi,0]

|t||Rmi(x, t)| ≤ c S2 <∞

And this guarantees the first condition of the Compactness Theorem.

14.8.2. Injectivity radius bound

In order to apply the Compactness Theorem to our sequence of pointed
dilated solutions (Mn

i , gi(t), xi) to the Ricci flow, we still need to find out
if it satisfies a suitable estimate on the injectivity radius.

The following theorem, which can be found in [67], give us the condition
we were looking for.
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Theorem 14.13 (Perelman’s No Local Collapsing Theorem). Let (Mn, g(t))
be a solution to the Ricci flow that becomes singular in a finite time T . Then
there exists a constant C > 0 independent of t and a subsequence (xi, ti)
such that

inj(xi, ti) ≥
C√

maxM |Rm(·, t)|
.

This is the most general result that provides the injectivity radius bound
which guarantees (by means of theorem 14.10) the existence of the desired
limit. But Perelman’s Theorem is relatively recent; before it, there are
some results (due to Hamilton) which provide a global injectivity radius
estimate for particular cases.

14.8.3. Further results

After assuring the existence of limit, we are in position to prove the
following result (cf. [22] p. 242).

Proposition 14.14 Let (Mn, g(t)) a solution to the Ricci flow with a sin-
gularity at time T ∈ (0,∞) and let (xi, ti) be a globally curvature essential
sequence. Then any limit (Mn

∞, g∞(t)) is an ancient Type I singularity
model with a Type I singularity at some time ω <∞.

Some properties of the ancient solutions stated in section 14.5 are used
in the proofs of some important results towards the classification of singu-
larities. For instance, property 14.5 is needed to show the next proposition,
which plays an important role in the classification of 3-dimensional model
singularities (see theorem 6.8 ).

Proposition 14.15 (cf.[22] p.275 or [41] p.129). A complete ancient Type
I solution (N2, h(t)) of the Ricci flow on a surface is a quotient of either a
shrinking round S2 or else a flat R2.

On the other hand, the case of Type II ancient solutions is proved with
the aid of property 14.8.

Finally, it is possible to show (using 14.7) that an ancient solution of
positive sectional curvature is either isometric to a spherical space form
or else contains points at arbitrarily ancient times where the geometry is
arbitrarily close to the product of a surface and a line.

15. SURVEY ON PERELMAN’S WORK (I): NEW
FUNCTIONALS AND κ-COLLAPSE
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15.1. Introduction

In this and the next lectures we summarize the main results and tech-
niques developed by G. Perelman in his preprint [67], with some hints on
[68] and [69].

From the preceding chapters, we know that we have a singularity at time
T in a solution to the Ricci flow, we can take a sequence {(xi, ti)} and dilate
the corresponding metrics g(xi, ti). If the sequence of dilated metrics gi(t)
converges, it converges to an ancient solution with nonnegative curvature
operator and defined on time −∞ ≤ t ≤ 0.

The question is: does this sequence gi(t) converges?. The first result of
Perelman is to answer “yes”. Then he studies more properties of ancient
solutions which are k-noncollapsing (a concept introduced by him) he re-
searches the asymptotic behaviour of these k-solutions (another Perelman’s
concept), that is, he takes the limit of these solutions when t goes to −∞
and he shows that it is a gradient shrinking soliton. Then he shows that
in a 3-dimensional compact manifols the only possible gradient shrinking
solitons are: S3/Γ, S2 × S1 and S2 × R/Z2. This implies that on our k-
solution, except on a compact set, every point has a neighborhood ε-close
to a part of a neck S2 × R. Then going back at points gi(t), near T , the
singularity is of neck or cap type (which precise definitions we shall see
later).

15.2. Ricci flow as a gradient flow

We know that the functional
∫

M
RdV has critical points satisfying Ric =

0 or, subject to the conditions of constant volume forM , Ric− 2
ng = 0. This

is the natural functional when we look for Einstein manifolds (as Hamilton
did in his program for solving geometrization conjecture). But the flow
corresponding to the gradient of this functional has no solution, even for
short time. For this reason R. Hamilton introduced his Ricci flow.

The first thing which Perelman did in [67] was to introduce a functional
whose gradient could give rise to the Ricci flow. He did so in the following
way: let M be a closed manifold, M the space of metrics on M and C :=
C∞(M,R), then he defines the functional

F : M×C → R; F(g, f) =
∫

M

(Rg + |df |2g)e−f dVg (15.1)

Notice that the expression R+ |∇f |2 had appeared in Hamilton’s work.
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A computation (see [56] and [37]) gives the first variation formula for
this functional

δF(v, h) =
∫

M

e−f
(
−
〈
v, (Ricg +∇2f)

〉
+
(

1
2
trgv − h

)
(Rg − |df |2 − 2∆gf)

)
dVg, (15.2)

where v = δg is a 2-covariant tensor field on M and h = δf is a C∞

function on M .
If we consider only the variations with dm = e−f dVg constant, then

1
2 trgv − h = 0. But to consider only those variations for the functional F
is equivalent to consider, given a fixed volume form dm, any variation of
the functional

Fm : M→ R;Fm =
∫

M

(R+ |∇f |2) dm (15.3)

where f = ln
(
dV

dm

)
(then f depends on g in this approach).

From 1
2 trgv−h = 0 for dm fixed and (15.2), it follows that the L2-gradient

of Fm at g ∈ M is the symmetric 2-tensor field, on M , gradFm(g) =
−2(Ricg +∇2f). To this gradient (vector field on M) corresponds the flow
(equation giving the integral curves of gradFm in M)

∂g

∂t
= −2(Ricg +∇2f) (15.4)

and, from f = ln
(
dV

dm

)
, it follows that

∂f

∂t
=

1
2
trg

∂g

∂t
and, using (15.4),

∂f

∂t
= −Rg + ∆gf (15.5)

The solution of system (15.4) and (15.5) exists if and only if it is the
Ricci flow modified by a diffeomorphism. Now, the fixed points of this flow
are not only Einstein manifolds, but also solitons.

Notice that (15.4) had already appeared in Hamilton’s paper about sur-
faces.

Example 6 In order to have some intuition, we consider the so-called basic
example in [56] notes, where M = Rn, a non closed manifold on which we
can still define the flow given by (15.4) and (15.5). Let us consider Rn
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with its standard metric, constant in time. Let τ = t0 − t, with t0 fixed.
We take the following function

f(t, x) =
|x|2

4τ
+
n

2
ln(4πτ) (15.6)

This implies e−f = (4πτ)−n/2 e−|x|
2/4τ , that is, e−f is the standard heat

kernel for τ going from 0 to t0, that is, for t going from T0 to 0 (see (4.3)).
Then f satisfies (15.5), because we are considering gt to be the euclidean
metric for every t. Moreover, the well-known property that∫

Rn

e−|x|
2/4τ dV = (4πτ)−n/2, (15.7)

assures that f is properly normalized. From (15.6),

∇f = x/2τ and |∇f |2 = |x|2/4τ (15.8)

Differentiating (15.7) with respect of τ , we get∫
Rn

|x|2

4τ2
e−|x|

2/4τ dV = (4πτ)−n/2 · n
2τ

(15.9)

So, using (15.8), we have
∫

Rn

|∇f |2e−f dV =
n

2τ
. Then F(t) = n

2τ . In

particular, this is a nondecreasing function of t ∈ [0, t0).

15.3. Shrinking solitons

A main question in Hamilton’s program is to classify the solitons, which
are a particular type of solutions to the Ricci flow (cf. definitions 9.1
and 11.2). In section 2 of the aforementioned preprint, Perelman proved
that there are no nontrivial (that is, with nonconstant Ricci curvature)
steady or expanding solitons on closed M . This result was proved before
by Hamilton and Ivey (cf. [52] and [?]). However, the same question for
shrinking solitons was open and Perelman deals with this in [67]§3. Having
this purpose in mind, he introduces a new functionalW(g, f, τ) (using ideas
connected to statistical physics).

First he introduces the concept of breather

Definition 15.1 A metric g solution of the Ricci flow is called a breather
if, for some t1 < t2 and α > 0, the metrics αg(t1) and g(t2) differ only by
a diffeomorphism. We say that a breather is steady if α = 1, shrinking if
α < 1 and expanding if α > 1
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Definition 15.2 A breather is called trivial if it is a breather for every
t1, t2 in the interval of existence of the solution. Then, a Ricci soliton is a
trivial breather and reciprocally.

Now we consider the functional W : M×C × (0,∞) → R defined by

W(g, f, τ) =
∫

M

(
τ(|df |2g +Rg) + f − n

)
(4πτ)−n/2 e−f dVg (15.10)

and restricted to the f satisfying the following additional condition (to keep
the dm-volume constant)∫

M

(4πτ)−n/2 e−f dV = 1, τ > 0 (15.11)

Notice that W is a generalization of the functional F defined by (15.1). On
the other hand, W is invariant under simultaneous scaling of τ and g. The
evolution equations (which generalize (15.4) and (15.5)) are

∂g

∂t
= −2Ric

∂f

∂t
= ∆f + |df |2 −R+

n

2τ
(15.12)

∂τ

∂t
= −1

The evolution equation for f can also be written as �∗u = 0, being �∗ =

∆ +R− ∂

∂t
the conjugate heat operator and u = (4πτ)−n/2 e−f .

We can compute a formula for the first variation of W in the direction
of the curve (g(·, t), f(·, t), τ(t)):

dW
dt

=
∫

M

2τ
∣∣R+∇2f − 1

2τ
gij︸ ︷︷ ︸

(?)

∣∣2 (4πτ)−n/2 e−f dV (15.13)

Notice that (?) = 0 is the equation of a gradient shrinking soliton.
Perelman call (15.13) a monotonicity formula.
Now, we introduce the quantities

µ(g, τ) = inf{W(g, f, τ) : f ∈ C and satisfying (15.11)}

ν(g) = inf
τ>0

µ(g, τ)
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From (15.13), it follows that, for every τ ∈ R+, t 7→ µ(gt, τ − t) is
nondecreasing along the Ricci flow, for t in ]−∞, τ [.

Here Perelman states the first result related to the introduced function-
als.

Proposition 15.1 For an arbitrary g ∈ M, µ(g, τ) < 0 for small τ > 0
and lim

τ→0
µ(g, τ) = 0.

The proof consists in arriving to a contradiction with the Gaussian log-
arithmic Sobolev inequality 53 in euclidean space:

∫
Rn

(f2 ln f) ρ dx−
(∫

Rn

f2 ρ dx

)
ln
(∫

Rn

f2 ρ dx

)1/2

≤
∫

Rn

|∇f |2 ρ dx

(15.14)
where ρ(x) = (2π)−n/2e−|x|

2/2 and f is any nonnegative function which is
square integrable and with |∇f |2 integrable on Rn respect to the measure
ρ dx.

An important example of a gradient shrinking soliton is the Gaussian
soliton, which corresponds to the example 6. In fact, as we know, a gradient
Ricci soliton has to satisfy Ric+cg+ 1

2 (∇i∇ja+∇j∇ia) = 0, a ∈ C, which
works for the basic example with c = 1 and a = −|x|2/2.

As a corollary of this first result, Perelman obtains that “there are no
shrinking breathers other than gradient solitons”.

In dimension 3, Ivey (cf.[52]) have proved even more: “there are no other
shrinking breathers other than trivial (i.e. Einstein) Ricci solitons”.

15.4. No Local Collapsing Theorem

Definition 15.3 A smooth solution g(t) of the Ricci flow defined on a time
interval [0, T ) is said to be locally collapsing at T if there exists a sequence
of times tk → T and metric balls Bk = Btk

(pk, rk) satisfying

1. r2k/tk is bounded (when T <∞, this is equivalent to r2k bounded).
2. |Rmg(tk)| ≤ 1/r2k in Bk.
3. r−n

k V olume(Bk) −−−−→
k→∞

0 (i.e. V olume(Bk) � V olume(euclidean ball of radius rk)).

53Recall that the usual Sobolev inequality (which works for M Riemannian manifold
either compact or non compact) is given byZ

M
C

„Z
M

f
n

n−1 dV

« n−1
n

dV ≤
Z

M
|∇f | dV,

for some constant C.
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The following result is an application of formula (15.13) to the analysis
of singularities of the Ricci flow.

Theorem 15.2 (No local collapsing theorem) If M is closed and T <

∞ then g(t) is not locally collapsing at time T .

Idea of the proof. 54. In the case of flat Rn, put τ = t0 − t for some
t0 > 0 fixed. Taking f(x, t) = |x|2/4τ , it is possible to check that (gt, ft, τt)
satisfies the conditions (15.11) and (15.12) of the previous section.

From the definition of f , we obtain

τ(|∇f |2 +R) + f − n = τ
|x|2

4τ2
+
|x|2

4τ
− n =

|x|2

2τ
− n

So, using (15.7) and (15.9), this yields W(t) = 0∀t ∈ [0, t0), so W(g, f, τ) =
0.

Therefore, if we put τ = r2k and e−fk(x) = e−|x|
2/4r2

k , we haveW(g, fk, r
2
k) =

0.
But euclidean space is non collapsing. In the collapsing case, the idea is

to use a test function fk so that

e−fk(x) ∼ e−ck e−disttk
(x,pk)2/4r2

k , (15.15)

where ck is defined by the normalization condition∫
M

(4πr2k)−n/2e−fk dV = 1 (15.16)

The main difference between computing (15.16) in M and in Rn comes

from the difference in volumes, which give us e−ck ∼ 1
r−n
k V olume(Bk)

. In

particular, ck → −∞ as k →∞.
Now that fk is normalized correctly, the main difference between comput-

ing W(g(tk), fk, r
2
k) in M and the analogous computation for the Gaussian

case comes from the f term in the integrand of W. Since fk ∼ ck, we get

W(g(tk), fk, rk) −−−−→
k→∞

−∞

and so µ(g(tk), r2k) → −∞.
From (15.13), it is true that, for any t0, µ(g(t), t0 − t) is nondecreasing

in t. Then

µ(g(0), tk + r2k) ≤ µ(g(tk), r2k) → −∞

54See [56] for a complete proof.
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So µ(g(0), tk + r2k) → −∞. But this is a contradiction, because T is finite
and thus tk, r2k are bounded. Hence the infimum is also finite. In conclu-
sion, g(t) is not locally collapsing at T . tu

Very related with Definition 15.3 is the following

Definition 15.4 The metric g is said to be κ-noncollapsed on the scale ρ
if every metric ball Br of radius r < ρ, with curvature |Rm(x)| ≤ 1

r2 for
every x ∈ B, satisfies V olume(Br) ≥ κrn.

Examples 15.4.1 1. Consider the cigar solitons, that is, the following
metric on R2 × R

g =
dx2 + dy2

1 + x2 + y2
+ dz2

This metric has positive sectional curvature which decays exponentially fast
to 0 in the geodesic distance to some basic point, then |Rm| ≤ c/r2. As the
volume growth satisfies V olumeg(Bs) ∼ s, then g is κ-collapsed for some
values of ρ and not for others.

2. (Rn, gcan) is ωn-noncollapsed55. Nevertheless, the flat product Rn−1×
S1 is ωn-noncollapsed for small balls, but highly collapsed for a large ball.

An important corollary of Theorem 15.2 is

Corollary 15.3 Let g(t), t ∈ [0, T ) be a solution to the Ricci flow on a
closed manifold M , T < ∞. Suppose that, for some sequence {(pk, tk)},
where pk ∈M and tk → T , and some constant c, we have Qk := |Rm|(pk, tk) →
∞ and |Rm|(x, t) ≤ cQk for t < tk. Then there exists a subsequence of
Qkg(tk, pk) convergent to a complete ancient solution to the Ricci flow,
which is κ-noncollapsed on all scales for some κ > 0.

Remark 15.3.1 This theorem is an important refinement of previous re-
sults of R. Hamilton. It uses Hamilton compactness Theorem 14.10. The
difficult problem of checking the hypothesis on the injectivity radius is solved
by the k-noncollapsing results, because, given the sectional curvature bounds,
the lower bound on the injectivity radii is equivalent to a lower bound on
the volumes of balls. This equivalence follows from [16], Theorem 4.7.

55Recall that ωn = V olume(Sn−1).
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16. SURVEY ON PERELMAN’S WORK (II): κ-SOLUTIONS
16.1. The L-distance

Our first aim is to understand singularities. Before we gave a theorem
where dilations near singularities converge to an ancient solution. By re-
versing the time, an ancient solution can be considered as an immortal
solution, but with the time reversed. For this reason, in this lecture we
shall work with the backward Ricci flow on a manifold M , that is,

∂g

∂τ
= 2Ric (16.1)

Let g(τ) be a Riemannian metric evolving under the backward Ricci flow.
Suppose that either M is closed, or the metrics are complete with uniformly
bounded curvatures.

In space-time Mn × R, we introduce the L-length of a curve γ(τ), 0 <
τ1 ≤ τ ≤ τ2 by the following formula

L(γ) =
∫ τ2

τ1

√
τ
(
Rgτ

(γ(τ)) + |γ̇(τ)|2gτ

)
dτ (16.2)

After this definition, it is possible to derive a formula for the first varia-
tion and then deduce the equation of the L-geodesics:

∇XX − 1
2
gradR+

1
2τ
X + 2Ric(X, ·) = 0 (16.3)

where X(τ) = γ̇(τ).
Fixing a point p, we denote by L(q, τ) the L-length of the L-shortest

curve γ(τ), 0 ≤ τ ≤ τ , joining p and q. In other words,

L(q, τ) = inf{L(γ)/ γ : [0, τ ] →M with γ(0) = p, γ(τ) = q}

The following inequality holds

−∆L ≤ −2
√
τR+

n√
τ
− 1
τ
K (16.4)

being K = K(γ, τ) =
∫ τ

0

τ3/2H(X) dτ and H(X) is the Hamilton expres-

sion for the Harnack inequality (trace version) with t = −τ , that is,

H(X) =
∂R

∂t
+
R

t
+ 2 〈gradR,X〉+ 2Ric(X,X) (16.5)
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The above inequality (16.4) and the next ones (16.8), (16.9), are analogs
to the following Laplacian Comparison Theorem in Riemannian geome-
try: Let Mn be a complete Riemannian manifold with Ric(M) ≥ −(n −
1)k2, k ≥ 0. Denote by ρM the distance function of M and by ρN the dis-
tance function of N , which is a space of constant curvature −k2. If x ∈M
and ρM is differentiable at x, then for any y ∈ N with ρN (y) = ρM (x)

−∆Mρ(x) ≤ −∆Nρ(y) =
n− 1
ρ

(1 + kρ)

We call

l(q, τ) =
1

2
√
τ
L(q, τ) (16.6)

the reduced distance and denote

L(q, τ) = 2
√
τL(q, τ) (16.7)

After computing the second variation formula for L and the equation for
the L-Jacobi fields, we arrive to the following inequalities

lτ −∆l + |∇l|2 −R+
n

2τ
≥ 0 (16.8)

Lτ + ∆L ≤ 2n (16.9)

From this follows that the minimum of L(·, τ)− 2nτ is non increasing and,
in particular,

min
τ>0

l(·, τ) ≤ n/2. (16.10)

An analogy with this ideas can be found in the original proof of the
Harnack inequality given by Li and Yau (cf. [58]). They proved that, under
the assumption Ric(M) ≥ −k, a positive solution of the heat equation(
∂

∂t
+ ∆

)
u = 0 satisfies the gradient estimate:

|gradu|2

u2
−ut

t
≤ n

2t
. Along

the proof of this fact, they define the function F (x, t) := t(|gradf |2 − ft),
where f = lnu, and show that maxF ≤ n/2.

Example 7 (Kleiner-Lott) Consider Rn with the flat metric and fix some
point p. For some q, γ(τ) =

(
τ
τ

)1/2
~q and then

L(q, τ) =
1
2
τ−1/2|q|2, l(q, τ) =

|q|2

4τ
, L(q, τ) = |q|2.
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Now we state a result which compares l with the distance.

Lemma 16.1 (cf. [87]). Suppose that the curvature operator is nonnega-
tive for each τ . For a fixed point x ∈M , we have

−l(x, τ)− 1 + C1
d2(x, q, τ)

τ
≤ l(q, τ) ≤ l(x, τ) + C2

d2(x, q, τ)
τ

∀q ∈M,

where C1, C2 > 0 are constants depending only on M and d(x, q, τ) denotes
the distance between the points x, q with respect to the metric g(τ).

16.2. The reduced volume

Definition 16.1 Given a solution of the backward Ricci flow, the reduced
volume function is defined as

Ṽ (τ) =
∫

M

τ−n/2 exp (−l(q, τ)) dq, (16.11)

being dq the volume form of g(τ).

Notice that the integrand is the heat kernel in the euclidean space.
In the next Proposition we summarize the main properties of this func-

tion.

Proposition 16.2 ([87]) 1). If Ric is bounded from below on [0, τ ] for
each τ , then Ṽ (τ) is a nonincreasing function.

2). If we assume that at least one of the following conditions holds

(a) Ric is bounded on [0, τ ] for all τ .
(b) The curvature operator is nonnegative for each τ .

Then Ṽ (τ) ≤ (4π)n/2 for all τ .
3). If we assume that either

(a) Ksec is bounded on [0, τ ] for all τ , or
(b) Rm is nonnegative.

Then we have the following equality

Ṽ (τ2)− Ṽ (τ1) = −
∫ τ2

τ1

∫
M

(
lτ −R+

n

2τ

)
e−lτ−n/2 dq dτ (16.12)

Remark 16.2.1 Notice that (4π)n/2 =
∫

Rn τ
−n/2e−l(q,τ) dq, which is the

same integral of the reduced function, but in the euclidean space.



144 A. BORISENKO, E.CABEZAS-RIVAS, V. MIQUEL-MOLINA

16.3. No local collapsing theorem II

Definition 16.2 We say that a solution to the Ricci flow is κ-collapsed at
(x0, t0) on the scale r > 0 if

i). |Rm|(x, t) ≤ 1/r2 for all (x, t) ∈ Bgt0
r (x0)× t ∈ [t0 − r2, t0].

ii). V olume(Bt0(x0, r
2)) < κrn, where Bt0(x0, r

2) is the ball of center x0

and radius r4 in the metric g(t0).

Now we state a result which is an application of the reduced length and
reduced volume functions.

Theorem 16.3 For any A > 0 there exists a constant κ = κ(A) > 0 such
that if g(t) is a solution to the Ricci flow on [0, r20] satisfying

i. |Rm(x, t)| ≤ 1
r2
0

for every (x, t) such that dist0(x, x0) < r0.

ii. V olume(B0(x0, r0)) ≥ A−1rn
0 .

Then g(t) cannot be κ-collapsed on the scales less than r0 at a point (x, r20)
with distr2

0
(x, x0) < A−1r0.

Idea of the proof. It is possible to scale the metric and suppose r0 = 1;
we may also assume dist1(x, x0) = A. If g(t) is collapsed at x on the
scale r ≤ 1, then the reduced volume Ṽ (r2) must be very small. On
the other hand, Ṽ (1) cannot be small unless min l(x, 1

2 ) over x satisfying
dist1(x, x0) ≤ 1

10 is large. thus all we need is to estimate l, or equivalently,
L, in that ball. Indeed, L(q, τ) ≥ −n/3 for τ ∈ [0, 1

2 ] (Kleiner-Lott) tu

16.4. κ-solutions

Until now, we have stated some results without dimensional or curvature
restrictions. Here we begin the work on details of Hamilton program for
geometrization of three manifolds. Hence our first aim is to study ancient
solutions, which (as we showed in the last lecture) arise as limits of dilations
about singularities.

Definition 16.3 A smooth ancient solution to the Ricci flow ∂tg = −2Ric,
−∞ ≤ t ≤ 0 is called κ-solution if it satisfies the following properties

1. For each t, g(t) is a complete non-flat metric of bounded curvature
and nonnegative curvature operator.

2. g(t) is κ-noncollapsed on all scales, for some κ > 0 fixed.

Let g̃(t) be a κ-solution for some κ > 0 on a manifold M . Pick an
arbitrary point (p, t0) ∈ M × (−∞, 0] and set τ := t0 − t for t ≤ t0. Then
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g(τ) = g̃(t0− τ), τ ∈ [0,∞] is a solution of the backward Ricci flow (16.1).
Recall that, since Ṽ (τ) is nonincreasing, there exists Ṽ∞ := limτ→∞ Ṽ (τ).

Now take x = x(τ) a minimum point for l(·, τ), by (16.10), l(x, τ) ≤ n/2.
We shall use x as the center for pointed convergence. The reference point
p is not suitable for this purpose, because the estimates around p are not
good enough after rescaling.

Given τ > 0, we set gτ (τ) = 1
τ g(ττ).

Theorem 16.4 Consider a sequence τk → ∞. Then the pointed flow
(M, gτk

(τ), x(τk)) with τ ∈ (0,∞) has a subsequence convergent to a non-
flat gradient shrinking soliton (M∞, g∞, x∞), that is, a solution satisfying

Ricg∞ +∇2
g∞f −

1
2τ
g∞ = 0,

where f = l∞ (limit of the reduced distance l).

These limits are called asymptotic solitons of g.
For dimension 3, if the asymptotic soliton has non strictly positive sec-

tional curvature, a Hamilton’s maximum principle applies to show that
it admits a local metric spplitting, and, in this case, the soliton is ei-
ther S2 × R, with its canonical metric, or its Z2 quotient (in this quo-
tient the Z2-action is (x, t) 7→ (−x,−t)) which topologicaly is S2 × R+,
with the boundary glued to RP 2 by the canonical projection S2 −→ RP 2.
If the asymptotic soliton is compact and has strictly positive sectional
curvature, then it has to be a quotient metric of the round sphere (by
[38]). On the other hand, Perelman proves that there is no complete ori-
ented 3-dimensional noncompact κ-nonccollapsed gradient shrinking soliton
with bounded positive sectional curvature, which finishes the classification
of asymptotic solitons.

Let M be a complete Riemannian manifold of nonnegative Ricci curva-
ture. For a fixed point p ∈ M , the function V olume(B(p, r)) r−n is non
increasing in r > 0. Thus we can give the next definition.

Definition 16.4 We call asymptotic volume ratio to the limit

V := lim
r→∞

V olume(B(p, r)) r−n

Proposition 16.5 For a κ-solution, V = 0 for each t.

For the proof, Perelman defines the asymptotic scalar curvature ratio

R := lim sup
d(x)→∞

R(x, t0)d2(x),
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where d(x) denotes the distance, at time t0, from x to some fixed point x0.
If R = ∞, the proof follows by using Topogonov’s splitting theorem.

A key theorem that Perelman proves using the invariants used in this
lecture is the following compacity theorem:

Theorem 16.6 In dimension 3, the set of complete κ-solutions is compact
modulo scaling; that is, from any sequence of such solutions and points
(xk, 0) with R(xk, 0) = 1, we can find a smoothly converging subsequence,
whose limit satisfies the same conditions.

This theorem and his proof an important corollary about the structure
of a κ-solution. Before stating it, we give some definitions.

Definition 16.5 Let us denote by B(x, t, r) the open ball of radius r and
center x with respect to the metric g(t). We shall call a parabolic neigh-
borhood P (x, t, r,∆t) of (x, t) to the set of all points (x′, t′) such that
x′ ∈ B(x, t, r) and t′ ∈ [t+ ∆t, t] or t′ ∈ [t, t+ ∆t]

This kind of neighborhoods have their motivation in Harnack’s inequalities,
which gives control on the curvature at past or future times from the value
of curvature at present. Perelman will use the preceding definition also to
give future and past bounds on the curvature.

Definition 16.6 A ball B(x, t, ε−1r) is called an ε-neck if, after scaling
the metric with factor r−2, it is ε-close to the standard neck S2 × I with
the product metric, where S2 has constant scalar curvature one and I has
length 2ε−1. Here ε-close refers to the CN -topology with N > ε−1. x is
called the center of the ε-neck.

Definition 16.7 A parabolic neighborhood P (x, t, ε−1r, r2) is called a strong
ε-neck if, after scaling the metric with factor r−2, it is ε-close to the evolv-
ing standard neck, which at each time t′ ∈ [−1, 0] has length 2ε−1 and
scalar curvature 1− t′.

x0︸ ︷︷ ︸
ε−1

Mε

ε-neck centered at x0 illustration of Corollary 16.7
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From Theorem 16.6 and its proof, it follows that

Corollary 16.7 For any ε > 0, there exists C = C(ε, κ) > 0 such that, if
g(t) is a κ-solution of a non compact 3-manifold and Mε denotes the set of
points which are not centers of ε-necks, then Mε is compact, diam(Mε) ≤
C Q−

1
2 , and C−1 Q ≤ R(x, 0) ≤ C Q whenever x ∈ Mε, where Q =

R(x0, 0) for some x0 ∈ ∂Mε

From Theorem 16.4, the classification of asymptotic solitons, and The-
orem 16.6 and its Corollary, one obtains a classification of the κ-solutions
in dimension 3:
• If such a solution has a compact asymptotic soliton, then it is itself a

metric quotient of the 3-sphere of constant sectional curvature.
• If the asymptotic soliton is S2×R/Z2, then the solution has a Z2 cover,

whose asymptotic soliton is S2×R with its standard metric (up to a scale).
• Finally, if the asymptotic soliton is the cylinder S2 × R, then the

solution can be either non-compact or compact.
A consequence of the above classification and the same quoted theorems

and their proofs is a estimate on the gradient and the temporal derivative
of R, and a classification of the local look of the κ-solutions. We shall state
this result after giving a lemma, consequence of 16.4, which allows to apply
Theorem 16.6. Before, another definition.

Definition 16.8 A metric on B3 or RP 3 such that each point outside some
compact subset is contained in some ε-neck is called an ε-cap if the scalar
curvature stays bounded

Lemma 16.8 There exists κ0 > 0 such that every ancient κ-solution is
either a κ0-solution or a metric quotient of the round sphere.

Theorem 16.9 There is an universal constant η such that, at each point
of every ancient κ-solution we have the estimates

|∇R| < ηR
3
2 , |Rt| < ηR2 (16.13)

For every sufficiently small ε > 0 one can find constants C1, C2 such
that for every point (x, t) in every ancient κ-solution there is a radius r <
C1R(x, t)−1/2 and a neighborhood B, B(x, t, r) ⊂ B ⊂ B(x, t, 2r) which
falls into one of the collowing categories:

(a) B is the slice of a strong ε-neck at its maximal time,
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(b) B is a ε-cap,
(c) B is a closed manifold, diffeomorphic to S3 or RP 3,
(d) B is a closed manifold of constant positive sectional curvature.

Moreover, the scalar curvature in B at time t is between C−1
2 R(x, t) and

C2R(x, t), its volume in cases (a), (b), (c) is greater than C−1
2 R(x, t)−3/2,

and, in case (c), the sectional curvature in B at time t is greater than
C−1

2 R(x, t).

From the above theorems, Perelman obtains the next principal result,
valid for almost nonnegatively curved manifolds. First we give this concept
on the curvature:

Definition 16.9 Let φ : R −→ R be a decreasing function satisfying that
limR→∞ φ(R) = 0. A solution to the Ricci flow is said to have φ-almost
nonnegative curvature if it satisfies Rm(x, t) ≥ −φ(R(x, t)) R(x, t).

Theorem 16.10 (of the canonical neighborhood) Given ε > 0, κ >
0 and a function φ as above, there is r0 > 0 with the property that, if
g(t), 0 ≤ t ≤ T , is a solution to Ricci flow on a closed 3-manifold M ,
which has φ-almost nonnegative curvature and is κ- noncollapsed on scales
< r0, then, for any point (x0, t0) with t0 ≥ 1 and Q = R(x0, t0) ≥ r−2

0 ,
the solution in {(x, t); dist2t0(x, x0) < (εQ)−1, t0 − (ε Q)−1 ≤ t ≤ t0} is,
after scaling by the factor Q, ε-close to the corresponding subset of some
κ-solution.

17. SURVEY ON PERELMAN’S WORK (III): THE WAY TO
THE END

Before to continue we simplify technically the problem by considering
only Ricci flow with normalized initial conditions:

Definition 17.1 We shall call a Riemannian manifold (M, g) normalized
if

1. M is a closed oriented 3-manifold and the sectional curvature of g
does not excede 1 in absolute value, and
2. the volume of every metric ball of radius 1 is at least half the volume

of the Euclidean limit.

For smooth Ricci flow with normalized initial data, it is a consequence
of a pinching estimates by Hamilton and Ivey (cf. [43] and [52]) that the
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solution metric is φ-almost nonnegatively curved on finite intervals of time,
with φ satisfying the conditions of Definition 16.9.

Let us consider a smooth solution g(t) of the Ricci flow on M × [0, T [,
where M is a closed oriented 3-manifold with normalized data, T < ∞,
and the solution becomes singular at t = T (i.e. the curvature goes to ∞
as t goes to T ).

Then, by Theorems 16.9 and 16.10, we can find r = r(ε) such that each
point (x, t) with R(x, t) ≥ r−2 satisfies the estimates (16.13) and has a
neighborhood which is either an ε-neck or an ε-cap or a closed positively
curved manifold.

In the later case the solution becomes extint at time T , so we do not
need to consider it any more. If it is not the case, let Ω be the set of all
points in M where the curvature stays bounded as t → T . The estimates
(16.13) imply that Ω is open and that R(x, t) → ∞ as t → ∞ for each
x ∈M −Ω. If Ω is empty, then the soliton becomes extinct at time T and
it is entirely covered by an ε-neck and caps strictly before that time, and
M is diffeomorphic toeither S3 or RP 3 or S2 × S1 or RP 3]RP 3.

If Ω is not empty, we left the metric to flow until time T , and consider
on Ω the metric g = limt→T g(t). For ρ < r, let Ωρ denote the set of
points x ∈ Ω where the scalar curvature R of g satisfies R(x) ≤ ρ−2. Ωρ is
compact. In order to describe Ω−Ωρ, it is convenient to give the following
definitions:

Definition 17.2 An ε-tube in Ω is a submanifold diffeomorphic to S2×
[0, 1] such that each point is the center of an ε-neck in Ω (then its scalar
curvature stays bounded on both ends).

An ε-circuit in Ω is a component of Ω which is a closed manifold and
each one of its points is the center of an ε-neck. It is diffeomorphic to
S2 × S1.

An ε-horn H is a closed subset of Ω diffeomorphic to S2 × [0, 1[ with
boundary contained in Ωρ such that every point in H is the center of an
ε-neck in Ω. The scalar curvature is bounded at the end in Ωρ and goes to
infinity at the other.

A double ε-horn is a closed subset of Ω diffeomorphic to S2×]0, 1[ such
that every point is the center of an ε-neck in Ω. The scalar curvature goes
to infinity at each end of it.

A capped ε-horn is a closed subset of Ω diffeomorphic to the open ball
D3 such that each point is either the center of an ε-neck or is contained
in an ε-cap. The scalar curvature goes to infinity near the end of a capped
ε-horn.
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ε-horn double ε-horn

capped ε-thorn

It follows from the classification given when t < T that,

Corollary 17.1 At time T every x ∈ Ω − Ωρ, is contained in one of the
following:

(1) a component of Ω containing x is diffeomorphic to a quotient of a
sphere,

(2) an ε-circuit diffeomorphic to S2 × S1,
(3) an ε-tube with boundary components in Ωρ,
(4) an ε-cap with boundary in Ωρ,
(5) an ε-horn with boundary in Ωρ,
(6) a capped ε-horn,
(7) a double ε-horn.

By looking at our solutions for times t just before T , the topology of
M can be reconstructed as follows. Take the components Ωj of Ω which
contains points of Ωρ, truncate their ε-horns and glue to the boundary
components of truncated Ωj a collection of tubes S2 × I and caps B3 or
RP 3−B3. That M is diffeomorphic to a connected sum of Ωj with a finite
number of S2 × S1 and a finite number of RP 3.

But we still need to know about the topology of Ωj , and this is the
point where Perelman introduces surgery. The idea is the following. When
we arrive to singular time T , we remove all the subsets of Ω of types (1),
(2), (6) and (7) in Corollary 17.1. On the other pieces, we cut along well
chosen S2 satisfying appropriate bounds of curvature and radius and paste,
with appropriate metric, the “standard solution”, defined by Perelman, and
which has the topology of R3 with a metric close to the standard metric
on the upper hemisphere of S3 union the product metric on S2 × [0,∞[.
After the gluing is done, one checks that: a) the number of surgeries at
time t is finite, and b) the new manifold obtained still satisfies the essential
properties of the original one (φ-almost nonnegative curvature and satisfies
the theorem of the canonical neighborhood). Part a) is a consequence on
the bounds on the volume lost in each surgery process. Part b) has a very
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which has the topology of R3 with a metric close to the standard metric
on the upper hemisphere of S3 union the product metric on S2 × [0,∞[.
After the gluing is done, one checks that: a) the number of surgeries at
time t is finite, and b) the new manifold obtained still satisfies the essential
properties of the original one (φ-almost nonnegative curvature and satisfies
the theorem of the canonical neighborhood). Part a) is a consequence on
the bounds on the volume lost in each surgery process. Part b) has a very
delicated proof. Then we continue the flow until next singularity appears,
and do surgery as before. The numbers of surgeries in each finite interval
of time is bounded (then finite), again using the argument of the bound of
the volume lost in each surgery process. We continue this flow with surgery
until the time when the next theorems allows us to say something about
the topology of the resulting Ωj .

Theorem 17.2 For any ω > 0 there exist K = K(ω) < ∞, ρ = ρ(ω) > 0
such that for sufficiently large t the manifold M admits a thick-thin decom-
position M = Mthick ∪Mthin with the following properties

(a) For every x ∈ Mthick we have an estimate |Rm| ≤ K in the ball

B(x, ρ(ω), t) and the volume of this ball is at least
1
10
ω(ρ(ω)

√
t)n.

(b) For every y ∈ Mthin there exists r = r(y), 0 < r < ρ(ω)
√
t, such

that for all points in the ball B(y, r) we have Rm ≥ −r−2, and the volume
of this ball is < ωrn.

From the arguments of Hamilton in [43] it follows that either Mthick is
empty for large t, or, for an appropriate sequence of t → ∞ and ω → 0,
it converges to a (possibly disconnected) complete hyperbolic manifold of
finite volume which boundary (if there is any) is an incompressible torus.
On the other hand, for Mthin, a result of Shioya and Yamaguchi ([81]) says

Theorem 17.3 There are positive numbers ε and δ such that if an oriented
3-dimensional manifold has a complete metric with sectional curvature K ≥
1 and V olume(M) < ε, the one of the following conditions holds:

i) M is homeomorphic to a graph manifold 56

ii) diam(M) ≤ δ and M has finite fundamental group

The proof of the geometric conjecture is then finished for case i) of the
Shioya-Yamaguchi theorem, the case ii) does not conclude, but it is covered
by the third preprint of Perelman [69].

56Result connected with the Cheeger-Gromov theorem: “If M3 has a complete metric
g, with |K| ≤ 1 and volume sufficiently small, then it is a graph manifold”



152 A. BORISENKO, E.CABEZAS-RIVAS, V. MIQUEL-MOLINA

REFERENCES
1. Perelman’s Ricci flow Page http://www.math.lsa.umich.edu/ lott/ricciflow/perelman.html

2. M. T. Anderson. Geometrization of 3-manifolds via the Ricci flow. Notices Amer.
Math. Soc. 51 (2004), no. 2, 184-193.

3. M.T.Anderson, Scalar curvature and geometrization conjecture for three-manifolds,
Comparison Geometry (Berkeley, 1993-94), MSRI Publ. 30 (1997), 49-82.

4. L. Andersson, The global existence problem in general relativity, The Einstein equa-
tions and the large scale behavior of gravitational fields, 71–120, Birkhäuser, Basel,
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