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1. Preliminary concepts

Let A and B be real vector spaces of finite dimensions a and b. We denote
by S(A) the subspace of A ⊗ A of symmetric tensors, that is S(A) is generated
by the elements as v ⊗ v, v ∈ A. Note that if w is another element of A, then
(v + w) ⊗ (v + w) − v ⊗ v − w ⊗ w = v ⊗ w + w ⊗ v. In the following, suppose
that A and B are Euclidean vector spaces with inner product denoted by a dot.
If (u1, . . . , ua) is an orthonormal basis of A and β, γ ∈ A∗, then we can define the
inner product of β and γ by

β · γ =
a∑
i=1

β(ui)γ(ui).

In fact, as it is easily proved, the result does not depend on the chosen orthonormal
basis. This may be generalized for defining the inner product of elements of

⊗
A∗.

In fact, if for example g, h ∈ A∗ ⊗ A∗ is a bilinear form on A, we define g · h =∑a
i,j=1 g(ui, uj)h(ui, uj), and as before this does not depend on the orthonormal

basis. Let (u1, . . . , ua) be the dual basis of (u1, . . . , ua). Then the elements ui ⊗
uj , i, j = 1, . . . , a, are an orthonormal basis of A∗ ⊗A∗. In fact,

(ui ⊗ uj) · (uk ⊗ ul) =
a∑

p,q=1

(ui ⊗ uj)(up, uq)(uk ⊗ ul)(up, uq) = δkiδlj ,

as required. In the same manner we may define the inner product in, say
⊗r

s A by
declaring that the elements

ui1 ⊗ · · · ⊗ uir ⊗ uj1 ⊗ · · · ⊗ ujs , i1, . . . , ir, j1, . . . , js = 1, . . . , a

are an orthonormal basis of
⊗r

s A. With that definition it is easy to prove that if for
instance we have the tensors m = β⊗v, n = γ⊗w ∈ A∗⊗A, then m·n = (β·γ)(v·w).

Let us show that the elements sii = ui ⊗ ui, i = 1, . . . , a, and the elements
sij = 1√

2
(ui⊗uj +uj ⊗ui), when 1 ≤ i < j ≤ a, are an orthonormal basis of S(T ).
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It is clear that they are a basis. Now,

sii · sjj = (ui · uj)2 = δ2ij = δij ,

sii · sjk =
1√
2

((ui · uj)(ui · uk) + (ui · uk)(ui · uj)) =
√

2δijδik = 0,

sjk · spq =
1
2

(2δjpδkq + 2δjqδkp) = δjpδkq,

because the second term is zero since j < k and p < q. Hence, the affirmation is
true. If, as before, g, h ∈ A∗ ⊗A∗ are symmetric we will have

g · h =
a∑

i,j=1

g(ui, uj)h(ui, uj) =
a∑
i=1

g(ui, ui)h(ui, ui)

+
a∑
i<j

(
g(ui, uj)h(ui, uj) + g(uj , ui)h(uj , ui)

)
=

a∑
i=1

g(sii)h(sii) +
a∑
i<j

g(sij)h(sij) =
a∑

1≤i≤j≤a

g(sij)h(sij).

We introduce another notation. If A is an Euclidean vector space we put SA =
{u ∈ A : u · u = 1} to denote the sphere in A.

Let now h : A → B be a homomorphism. Then, we can define the pull-back of
the inner product of B as the symmetric bilinear form h2 : A × A → R given by
h2(u, v) = h(u)·h(v). It is well known that there is an orthonormal basis (u1, . . . , ua)
of A and unique real numbers µ1 ≥ · · · ≥ µa ≥ 0 such that h2(ui, uj) = 0 if i 6= j
and h2(ui, ui) = µi. Let c ≤ Min(a, b) be the number of non zero elements µi.
If we call λi =

√
µi for 1 ≤ i ≤ a, and wi = h(ui)/λ, for 1 ≤ i ≤ c, we will

have wi · wi = h2(ui, ui) = 1, and wi · wj = 0, i 6= j. Also, if µi = 0, then
h2(ui, ui) = h(ui) · h(ui) = 0, whence h(ui) = 0. Therefore the kernel of h is
generated by the vectors u1, . . . , uc. We will assume that we have completed the
vectors wi to form an orthonormal basis of B and that (wi) denotes the dual basis.
It is clear that h(ui) = λiwi, for 1 ≤ i ≤ a. Using the Einstein convention, we will
have

h = wi(h(uj))wi ⊗ uj = (wi · λjwj)wi ⊗ uj =
c∑
j=1

λjwj ⊗ uj .

Since h is lineal, h(SA) must be a compact quadric, that is an ellipsoid that may
be degenerate. In other words, it consists in the intersection of a solid ellipsoid
centered at the origin with a subspace of B. Its axes are determined by the vectors
v ∈ SA such that the function f(u) = h(u) · h(u), u ∈ A, when restricted to SA, is
extremal at v. This means that the 1-form dfv annihilates the subspace orthogonal
to v. So, dfv must be a multiple of dr2v, say dfv = µdr2v, where r2 : A→ R is given
by r2(u) = u · u. If t 7→ γ(t) ∈ A is a smooth curve such that γ(0) = v and we put
u = γ′(0), then

(dfv − dr2v)(u) =
(
f(γ, γ)− µr2(γ, γ)

)′(0) = 2(h(v) · h(u)− µv · u) = 0

Suppose that v = ui, µ = µi and u = uj . Then

h(v) · h(u)− λv · u = h2(ui, uj)− µiδij = 0.
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Therefore, wi = h(ui) determines an axis of the ellipsoid and
√
µi is the half-axis

corresponding to it.
We may define the adjoint h∗ : B → A of h by saying that h∗(w) is the

unique element of A such that h∗(w) · u = w · h(u), for any u. We will have
h∗ = uj(h∗(wi))uj ⊗ wi, where we use the Einstein convention, and where (wi)
is the basis dual to (wi). Then

h∗ = uj · h∗(wi)uj ⊗wi = (h(uj) ·wi)uj ⊗wi = (λjwj ·wi)uj ⊗wi =
c∑
j=1

λjuj ⊗wj .

Hence, the half-axes of the corresponding ellipsoid in A are the same as those of
the ellipsoid in B, and the principal directions corresponding to non-zero half-axes
are images of each other.

Three-dimensional submanifolds: notation and inventory of
invariants

In the following, α will denote the value of the second fundamental form of a
three-dimensional submanifold S in R3+n at some point p. The tangent space to
S at that point will be denoted T and its orthogonal complement by N. Thus,
dimN = n, and T ⊕ N = R3+n. The inner product will be denoted by a dot and
the first fundamental form at p will be denoted by g, so that g(X,Y ) = X · Y.
The map from the unit sphere in T to N defined by α will be denoted by η; thus
η(t) = α(t, t) for t ∈ T satisfying t · t = 1. Some of our computations will be realized
by using a chart x : U ⊂ R3 → S, and we will use the following notation:

xi = ∂ix, xij = ∂j∂ix, gij = xi · xj , i, j = 1, . . . , 3.

Also, for any vector z ∈ T let us put z =
∑3
i=1 zixi. We shall denote by (t1, t2, t3)

the orthonormal basis of T built as follows

t1 =
x1

|x1|
, t2 =

g11x2 − g12x1

|g11x2 − g12x1|
, t3 := x3 − (t1 · x3)t1 − (t2 · x3)t2, t3 :=

t3
|t3|

.

In this manner, we will have

α(z, z) =
3∑

i,j=1

zizjα(xi,xj) =
3∑

i,j=1

zizj(Dxi
xj)⊥

and

(Dxixj)
⊥ = xij −

3∑
k=1

(xij · tk)tk.

If A : V → V ∗ is a symmetric bilinear form in any Euclidean n-dimensional vector
space (V,g), we will call principal directions of A the non-vanishing vectors v ∈ V
such that (A − λg)(v) = 0 and the corresponding values λ ∈ R will be called
the eigenvalues of A; a unit vector v that defines a principal direction will be
called an eigenvector of A. This may also be expressed equivalently as follows.
Since g : V → V ∗ is an isomorphism, we can consider its inverse g−1 : V ∗ → V,
which is also a bilinear symmetric form on V ∗. Then Ã := g−1 ◦ A ∈ End(V ),
and the eigenvalues and eigenvectors of A are the eigenvalues and eigenvectors
of Ã in the usual sense. The trace or determinant of A will be defined as the
trace and determinant of Ã. The characteristic polynomial of Ã may be written as
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(−1)n
(
λn− tr(A)λn−1 + c2(A)λn−2− · · ·+ (−1)n−1cn−1(A)λ+ (−1)n det(A)

)
, and

it is clear that the ci(A) are invariants of A.
The geometric interpretation of some formulas will be related to the interpreta-

tion of the second fundamental form. Let u ∈ N be a unit vector. Then, we can
orthogonally project S, in a neighborhood of p, to the 4-space Ru ⊕ T. Thus we
obtain a hypersurface in a Euclidean 4-space, whose second fundamental form at p
is given by u ·α. Thus, we will say that u ·α is the u-second fundamental form of S
at p, or that u · α(t, t), t ∈ ST , is the u-normal curvature of S at p in the direction
t, etc.

Now we describe some concomitants of α. By a concomitant we understand
here some mathematical object obtained by means of α using only the properties
of α and the Euclidean structure of T and N, including the use of orthonormal
bases, provided that the obtained object does not depend on the choice of those
bases. A concomitant that is a real number will be called an invariant. Let us put
bi = α(ti, ti) and bij = α(ti, tj) for i, j = 1, . . . , 3, i 6= j. We have the following
concomitants:

Mean curvature vector:

H =
1
3

3∑
a=1

α(ta, ta) =
1
3

(b1 + b2 + b3).

Interpretation: If u ∈ SN , u ·H is the u-mean curvature of S at p.

Gauss curvature form: the symmetric trilinear form K : N × N × N → R
defined as the determinant of α, that is

K(u,u, u) = det
(
u · α(ta, tb)

)
=(u · b1)

(
(u · b2)(u · b3)− (u · b23)2

)
+ (u · b12)

(
(u · b31)(u · b23)− (u · b12)(u · b3)

)
+ (u · b31)

(
(u · b12)(u · b23)− (u · b31)(u · b2).

Interpretation: If u ∈ SN , K(u, u, u) is the u-Gauss curvature of S.

The ellipsoid: Let S(T ) be the subspace of symmetric elements of T ⊗ T . As
we know, the elements (sij of S(T ) are an orthonormal basis.

Let SS(T ) = {s ∈ S(T ) : s · s = 1}. The ellipsoid of curvature is α(SS(T )) ⊂ N.
It is an ellipsoid that could be degenerate. Its axes are the images of the extremal
points of the real function in SS(T ) given by U 7→ α2(U,U) = α(U) · α(U), U ∈
SS(T ). That function is the restriction to SS(T ) of the quadratic form defined by
the bilinear form α2 in S(T ) given by α2(U, V ) = α(U) · α(V ). Then, the non-zero
vector U defines a principal direction or an axis iff there is a real number λ such
that α2(U, V ) = λU · V, ∀V ∈ S(T ). The half-axis corresponding to that principal
direction is

√
λ. The matrix of α2 in the preceding orthonormal basis sij , i < j, of

S(T ) is easily computed.

α2(sii, sjj) = α(sii) · α(sjj) = bi · bj ,

α2(sii, sjk) = α(sii) · α(sjk) =
√

2 bi · bjk,
α2(shi, sjk) = α(shi) · α(sjk) = 2bhi · bjk.
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It is easy to show that the determinant of α2 is a multiple of the squared length
of b1 ∧ b2 ∧ b3 ∧ b12 ∧ b23 ∧ b31. Therefore, the determinant of α2 vanishes iff the
rank of α : S(T )→ N is less than 6, and then the ellipsoid is degenerate.

Curvature energy form: The symmetric bilinear form given by

E(u, u) = (u·α)·(u·α) = (u·b1)2+(u·b2)2+(u·b3)2+2(u·b12)2+2(u·b23)2+2(u·b31)2,

Interpretation: If u ∈ SN , we could have chosen (t1, t2, t3) to be an orthonormal
basis of eigenvectors of the u-second fundamental form, so that u ·bi = u ·α(ti, ti) =
ki(u), i = 1, . . . , 3, and u · bij = 0, i < j ≤ 3, where the ki(u) would be the
u-principal normal curvatures. Thus, E(u, u) =

∑3
i=1 ki(u)2, and this explains the

adopted name.
There is another interpretation of E. We can consider α as a linear map α : N →

S(T )∗, defined by u ∈ N 7→ u · α ∈ S(T )∗. Then, E is the pull-back by α of the
inner product in S(T )∗.

Let us consider the map α∗ : N → S(T ), adjoint to α : S(T ) → N. Thus, if
u ∈ N and s ∈ S(T ) we will have α∗(u) · s = u ·α(s). The unit sphere in N applies
now to some ellipsoid in S(T ) and we will have also its corresponding axes. Let us
compute the action of α∗2 : N ×N → R. We will have

α∗2(u, u) = α∗(u) · α∗(u) =
∑
i≤j

(α∗(u) · sij)(α∗(u) · sij)

=
3∑
i=1

(u · α(sij))(u · α(sij)) = (u · α) · (u · α)

=E(u, u),

that is we have E = α∗2. Therefore, the ellipsoid and E have the same information
about α.

The trace of E will give another invariant:
Mean curvature energy:

EM =
1
n

n∑
i=1

E(ui, ui)

=
1
n

n∑
i=1

(
(ui · b1)2 + (ui · b2)2 + (ui · b3)2 + 2(ui · b12)2 + 2(ui · b13)2 + 2(ui · b23)2

)
=

1
n

(b1 · b1 + b2 · b2 + b3 · b3 + 2b12 · b12 + 2b23 · b23 + 2b31 · b31).

Third fundamental form W in T given by

W (t, t) = α(t, .) · α(t, .) =
3∑
i=1

α(t, ti) · α(t, ti).

Interpretation: For a fixed t ∈ T, let h := α(t, .) : T → N. For each s ∈ ST , we
have that h(s) is the projection on N of the covariant derivative of (any extension
of) s with respect to t. Thus, it measures the extrinsic twist, along t, of the tangent
direction s of S. Hence, h(s) ·h(s) is the squared length (called also energy) of that
twist, and as a consequence, up to a constant factor, W (t, t) is the average twisting
energy along t.
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As for its trace, we have

3∑
i=1

W (ti, ti) =
3∑

i,j=1

n∑
a=1

(
ua · α(ti, tj)

)(
ua · α(ti, tj)

)
=

n∑
a=1

(ua · α) · (ua · α) =
n∑
a=1

E(ua, ua) = nEM .

that is a constant multiple of EM .

Riemannnian curvature of S: The standard formula for the Riemann tensor
field is the following

RT (X,Y, Z,W ) = α(X,W ) · α(Y,Z)− α(X,Z) · α(Y,W ).

Therefore, the Ricci tensor field is given by

Ricci(X,Z) =
3∑
i=1

(
α(X, ti) · α(ti, Z)− α(X,Z) · α(ti, ti)

)
= W (X,Z)− 3H · α(X,Z).

Now we compute the scalar curvature ρ.

ρ =
3∑
j=1

Ricci(tj , tj) =
3∑
j=1

W (tj , tj)− 9H ·H = nEM − 9H ·H.

Curvature of the normal bundle: Let us denote by A : N × T → T the
map that satisfies Y · Au(X) = −u · α(X,Y ) for u ∈ N and X,Y ∈ T. Then the
curvature RN of the normal bundle at p satisfies

v ·RN (X,Y )u = Au(Y ) ·Av(X)−Au(X) ·Av(Y ), u, v ∈ NpS, X, Y ∈ TpS.

Thus, we have

v ·RN (X,Y )u =
3∑
k=1

(
(tk ·Au(X))(tk ·Av(Y )− (tk ·Au(Y ))(tk ·Av(X)

)
=

3∑
k=1

(
(u · α(tk, Y ))(v · α(tk, X))− (u · α(tk, X))(v · α(tk, Y )

)
.

So, if we denote by w] ∈ NpS the 1-form given by w](u) = w · u, we can put:

R̂N (X,Y )(u, v) = v ·RN (X,Y )u =
( 3∑
k=1

α(tk, Y )] ∧ α(tk, X)]
)

(u, v).

Then we have

R̂N (X,Y ) =
3∑
k=1

α(tk, Y )] ∧ α(tk, X)]
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Some properties relative to the second fundamental form

The second fundamental form defines a map from the projective space PT to N,
that we will call the Veronese of curvature. It is given by

η([t]) = η(t) =
α(t, t)
t · t

.

Its image will be the same as the image of the map t 7→ η(t), for t ∈ ST . Let us
put V = η(ST ). We begin with the following property that does not depend on the
dimension of the immersed manifold S.

Proposition 1.1. With the preceding notation let us assume that the dimension
of S is a ≥ 2. Then V is contained in the affine subspace of N generated by the
vectors bii − b11, i = 2, . . . , a and the vectors bij , 1 ≤ i < j ≤ a, that contains H.
It has dimension less or equal to 1

2 (a+ 2)(a− 1).

Proof. Suppose that (ti)ai=1 is an orthonormal basis of T. ThenH = 1
a

∑a
i=1 α(ti, ti).

Now, we consider the 1
2a(a+ 1)-dimensional vector subspace S(T ) of symmetric el-

ements of T ⊗ T and denote by α̃ : S(T ) → N the natural linear map defined by
α. Any element of V is the image by α̃ of some element v⊗ v ∈ S(A) with v ∈ ST .
Let us consider the orthonormal basis (sij)a1≤i≤j of S(T ) defined as in section 1.
Let us define H̃ ∈ S(T ) as

H̃ =
1
a
g−1 =

1
a

(t1 ⊗ t1 + · · ·+ ta ⊗ ta) =
1
a

a∑
i=1

sii,

where g−1 defines the inner product in N∗. Thus, H̃ does not depend on the
chosen orthonormal basis (ti) of N. We consider the map tr1 : S(T )→ R given by
tr1(h) = (h−H̃)·H̃. The equation tr1(h) = 0 is the equation of an affine hyperplane
C in S(T ), whose dimension is

1
2
a(a+ 1)− 1 =

1
2

(a+ 2)(a− 1).

Now, if h = t⊗t for t ∈ SA we can suppose that t is the first vector of an orthonormal
basis (ti) of T. Thus

tr1(h) = (s11 − H̃) · H̃ =
1
a2

(
(a− 1)s11 − s22 − · · · − saa

)
· (s11 + · · ·+ saa) = 0.

Hence it is clear that V ⊂ α̃(C). Since α̃ is linear, the sii belong to C and H̃ ·sij = 0
if i < j the claim follows immediately. �

The Veronese V lies in an affine hyperplane of N iff there is a unit vector k ∈
N such that k · α = µg, where µ ∈ R. In fact, if t ∈ T is a unit vector then
k · η(t) = µg(t, t) = µ, that is η(t) belongs to the affine hyperplane in N with unit
normal k, at a distance µ of the origin. By polarization we obtain the converse.
In the same manner, iff there are orthonormal vectors k1, . . . , kr ∈ N such that
ki ·α = µig, i = 1, . . . , r, then, η(ST ) lies in an affine subspace of N of codimension
r, etc.

Proposition 1.2. Let n = 3 and k ∈ ST be such that k · α = µg for some µ ∈ R.
Then, k · RN = 0 and RN (X,Y )k = 0 for any X,Y ∈ T. On the contrary, let us
suppose that k ·RN = 0. Then either V lies in an affine plane or in a cone.
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Proof. If k · α = µg then R̂N (X,Y )(k, ·) = k · RN (X,Y ) = 0 for any X,Y ∈ T. In
fact, we have

3∑
i=1

(k · α(ti, Y ))(v · α(ti, X)) = µ

3∑
i=1

g(ti, Y )(v · α(ti, X)) = µv · α(Y,X),

and the claim follows from the symmetry of α and the antisymmetry of R̂N . Suppose
now that k · RN = 0. Let (t1, t2, t3) an orthonormal principal basis of the bilinear
form k ·α. Then there are real numbers µi such that k ·α(ti, tj) = µiδij = −tj ·Ak(ti)
and this implies Ak(ti) = −µiti If µ1 = µ2 = µ3 := µ, then we have Ak = −µ idT ,
that is k · α = µg, so that V lies in a hyperplane. If not all the µi are equal and
1 ≤ i < j ≤ 3 we have

k·RN (ti, tj)v = Ak(ti) ·Av(tj)−Ak(tj) ·Av(ti) = µiv · α(ti, tj)− µjv · α(tj , ti)

=(µi − µj)v · α(ti, tj) = 0.

Suppose first that the µi are different from each other. Then, v · α(ti, tj) = 0 for
any v ∈ N, whence bij = 0, 1 ≤ i < j ≤ 3. Thus, if X =

∑3
i=1 xiti is a unit vector,

we will have η(X) = x2
1b11 + x2

2b22 + x2
3b33, so that the sum of the components of

X in the system of vectors b11, b22, b33 is equal to one and this entails that V lies in
an affine subspace of N whose dimension is equal to the rank of that system minus
one. Finally, let us suppose that µ1 = µ2 6= µ3. Then, b13 = b23 = 0 and since
x2

3 = 1− x2
1 − x2

2 we will have

η(X) = x2
1b11+x2

2b22+x2
3b33+2x1x2b23 = b33+x2

1(b11−b33)+x2
2(b22−b33)+2x1x2b23.

Then, the components x, y, z of η(X)− b33 in the system of vectors (b11− b33, b22−
b33, b23) satisfy 4xy−z2 = 0. That is, if those vectors are linearly independent then
V lies in a cone of vertex b33, else V lies in an affine plane or in an affine line of
N. �

We can identify R̂N with a linear map from T to N as follows. Let us suppose
that T and N are oriented and that X × Y denotes the cross product defined by g
and the orientation of T and that u× v denotes the same in N. Then we define the
map R̃N : T → N by

R̃N (Z) =
3∑
k=1

α(tk, X)] × α(tk, Y )]

if Z = X × Y. In fact, X × Y = X ′ × Y ′ iff X ∧ Y = X ′ ∧ Y ′, as it is easy to verify.
This map allows us to define special directions in T and N at p. In fact, as we

have shown in section 1, there are orthonormal bases (ti)3i=1 of T and (ni)3i=1 of
N and real numbers νi such that R̃N (ti) = νini. From these bases is easy to find
vectors as in the hypotheses of the preceding proposition.

In the same manner we may define other special directions in T by the map
R̃T : T → T obtained in the same manner from the Riemann curvature tensor field.

Computation of the Veronese of curvature

We may parameterize ST by putting

Ψ(θ, φ) = sin θ(cosφ t1 + sinφ t2) + cos θ t3.



COMPUTATIONS ON 3-DIMENSIONAL SUBMANIFOLDS 9

Then we have the following parameterization of η(ST ) :

η(θ, φ) := η
(
Ψ(θ, φ)

)
= sin2 θ(cos2 φ b1 + sin2 φ b2 + sin 2φ b12) + cos2 θ b3

+ sin 2θ(cosφ b13 + sinφ b23)

=H +
1
12

(1 + 3 cos 2θ)(2b3 − b1 − b2) +
1
2

cos 2φ sin2 θ(b1 − b2)

+ sin 2φ sin2 θ b12 + sin 2θ(cosφ b13 + sinφ b23).

The last expression, obtained with the use of Mathematicar, says that the
Veronese of curvature lies in an affine subspace of N of dimension less or equal
to five.

Since

bi =
3∑

j,k=1

tijtikα(xj ,xk), bij =
3∑

h,k=1

tihtjkα(xh,xk),

the computation of the Veronese is straightforward.
For drawing the Veronese we will need the normals to it at the vertexes of the

triangulation. They will be computed through the partial derivatives ηφ and ηθ of
η with respect to the variables φ and θ. Now, we have

ηθ = 2 cos 2θ(cosφ b13 + sinφ b13) + sin 2θ(cos2 φ b1 + sin2 φ b2 − 2b3),

ηφ = sin2 θ(2 cos 2φ b12 + sin 2φ(b2 − b1)) + sin 2θ(cosφ b23 − sinφ b13).

The normal is parallel to the cross product of these two vectors.
Fot the record, let us show the computations when we use a “flat” chart:

(u, v) 7→ (u, v, 1)√
u2 + v2 + 1

, u, v ∈ R.

Then, the point in the Veronese corresponding to (u, v) will be

η(u, v) =
1

u2 + v2 + 1
(u2 b1 + v2 b2 + b3 + 2uv b12 + 2u b13 + 2v b23).

The partial derivatives of η(u, v) will be given by

ηu(u, v) =
2(u b1 + v b12 + b13 − u η(u, v))

u2 + v2 + 1
,

ηv(u, v) =
2(v b2 + u b12 + b23 − v η(u, v))

u2 + v2 + 1
.

Now, if we use a stereographic chart for the projective tangent space at p, we
will have the map

(u, v) 7→ (2u, 2v, 1− u2 − v2)
u2 + v2 + 1

, u2 + v2 ≤ 1.

Then, the point in the Veronese corresponding to (u, v) will be

η(u, v) =
4u2 b1 + 4v2 b2 + 8uv b12 + (1− u2 − v2)((1− u2 − v2)b3 + 4u b13 + 4v b23)

(u2 + v2 + 1)2
.
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The partial derivatives of η(u, v) will be given by
1
4
ηu(u, v)

=
2vb12 + (1− 3u2 − v2)b13 + u(2b1 − 2vb23 + (u2 + v2 − 1)b3 − (1 + u2 + v2)η(u, v))

(u2 + v2 + 1)2
,

1
4
ηv(u, v)

=
2ub12 + (1− 3v2 − u2)b23 + v(2b2 − 2ub13 + (u2 + v2 − 1)b3 − (1 + u2 + v2)η(u, v))

(u2 + v2 + 1)2
.

Computation of the focal set

It may be interesting to compute the focal locus in the normal space at a point
of S. The focal locus is given as the following set:

F(S) = {u ∈ NS : det(gp − u · αp) = 0,where p = πN (u)},
where πN : NS → S is the normal bundle over S and g is the first fundamental
form of S. Let Fp(S) = F(S) ∩NpS.

Suppose that we have orthonormal bases (ti)3i=1 and (ni)3i=1 of T and N respec-
tively and suppose that u =

∑3
i=1 uini. Then u · α(ti, tj) =

∑3
k=1 uknk · bij . Let us

put bk,ij = nk · bij . Then

(g − u · α)(ti, tj) = δij −
3∑
k=1

ukbk,ij .

Therefore det(gp − u · αp) is a polynomial of degree three in the components uk of
u.
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