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Abstract
The coordinate transformation between emission coordinates and inertial
coordinates in Minkowski spacetime is obtained for arbitrary configurations of
the emitters. It appears that a positioning system always generates two different
coordinate domains, namely, the front and the back emission coordinate
domains. For both domains, the corresponding covariant expression of the
transformation is explicitly given in terms of the emitter world lines. This
task requires the notion of the orientation of an emitter configuration. The
orientation is shown to be computable from the emission coordinates for the
users of a ‘central’ region of the front emission coordinate domain. Other
spacetime regions associated with the emission coordinates are also outlined.

PACS numbers: 04.20.−q, 04.20.Cv, 95.10.Jk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A relativistic positioning system consists of a set of four clocks A (A = 1, 2, 3, 4) broadcasting
their respective proper times τA by means of electromagnetic signals. Then, every event
reached by the signals is naturally labelled by the four times {τA}: the emission coordinates
of this event. Elsewhere [1], we have presented a brief report on relativistic positioning and
related issues, providing a background with current references on the subject.

A user of a positioning system that receives the four times {τA} knows his own coordinates
in the emission system. Then, if he wants to know his position in another coordinate system,
he must obtain the transformation between both coordinate systems. Thus, we must solve the
following important problem in relativistic positioning. Suppose that the world lines of the
emitters γA(τA) are known in a coordinate system {xα}: can the user obtain his coordinates
in this system if he knows his emission coordinates {τA}? Or, slightly more general, can the
coordinate transformation xα = κα(τA) be obtained?
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The main goal of this paper is to solve this question in Minkowski spacetime or, more
explicitly, to obtain the coordinate transformation between emission and inertial coordinates
for arbitrary world lines of the emitters.

In a two-dimensional approach to relativistic positioning systems this query is rather
simple. Indeed, in this case the knowledge of the emitter’s world lines in a chosen null
coordinate system gives the coordinate transformation between this null system and the
emission coordinates at once [2, 3]. This fact facilitates an analytical study of the positioning
systems defined by inertial emitters in the Minkowski plane [2], and those defined by stationary
emitters in both Minkowski and Schwarzschild planes [3].

The general properties of the emission coordinates for the four-dimensional case have
been analysed in [4]. Nevertheless, in this generic case, it is difficult to solve the above
stated problem. The study of specific three-dimensional situations [5] has shed light on the
complex geometry of the domains and codomains of the emission coordinates. On the other
hand, the transformation between emission and inertial coordinates has recently been obtained
for emitters following particular inertial motions in flat spacetime, and also considering the
immediate vicinity of a Fermi observer in the Schwarzschild geometry [6].

Here we present the solution to this problem for a generic configuration of the emitters
in Minkowski spacetime. We show that two emission domains exist, which are called the
front emission coordinate domain and the back emission coordinate domain, and we give the
coordinate transformation for each one. The transformation xα = κα(τA) between inertial
and emission coordinates is given in a covariant way in terms of the world lines γA(τA) of
the emitters. The compact covariant expression of our result is a powerful tool for use in
subsequent applications: to obtain the coordinate transformation for specific configurations of
the emitters or, under perturbation methods, modelling more realistic gravitational situations.

The paper is structured as follows. In section 2, we present the problem to be solved,
defining the emission regions and the main relations governing the coordinate transformation:
the null propagation conditions and the emission conditions. By choosing one of the emitters
arbitrarily as reference emitter, in section 3, we show that the null propagation equations of a
positioning system are equivalent to a rank three linear system and a sole quadratic equation.
Then, section 4 is devoted to obtaining the general solution of the linear system, and in
section 5 we impose the remaining quadratic equation and obtain a general form for both
solutions. In section 6, we apply the emission conditions which guarantee that the solutions
are physically interpretable as emission solutions. In section 7, we define the orientation
of the positioning system with respect to an event, a concept which allows us to give
the main result of this paper in a compact form, namely, the explicit expression of the
coordinate transformation between emission and inertial coordinates. The computational
and/or observational determination of the orientation of the positioning system is analysed in
section 8. Section 9 deals with the analysis of our results and comments about ongoing work
in progress and on further practical applications. Finally, an appendix is devoted to presenting
a technical proof of the results given in section 4.

A short communication on this work has been presented at the Spanish Relativity meeting
ERE-2008 [7].

2. Statement of the problem. Emission regions and emission relations

2.1. The emission region R of a positioning system

Let us consider a positioning system in Minkowski spacetime M4, and let γA(τA),A =
1, . . . , 4, be the world lines of its four distinct emitters A (clocks) watching their proper
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(a) (b)

Figure 1. (a) The light-like vectors mA ≡ x − γA represent the trajectories followed by the
electromagnetic signals between the emitters and an event P in the emission region. x is the position
vector of this event with respect to some inertial chart, and γA,A = 1, 2, 3, 4, are the position
vectors of the emitters with respect to this chart. (b) If we choose the emitter 4 as origin (reference
emitter), the relative positions of the others (referred emitters) are ea = γa − γ4, a = 1, 2, 3, and
the position vector of the event P is y = m4.

time τA. These four times, broadcast by means of electromagnetic signals, will reach some
region, say the emission region R, of events of M4. In the interior of R, the four times {τA}
converging at every event define generically the so-called emission coordinates [2–4, 8, 9].

It is clear that an event P of M4 belongs to the emission region R if and only if there
exists a past directed null geodesic from P to every emitter γA(τA) for some value of τA. For
future discussions, we need to make the ingredients of this assertion more explicit.

Let us denote by x the position vector of P with respect to the origin O of some inertial
chart {xα}, x ≡ OP, and by γA the position vector of the emitters with respect to this chart,
γA ≡ OγA(τA). Then, in order for P to belong to R, the four vectors

mA ≡ x − γA, (1)

which represent the trajectories followed, in the vacuum, by the electromagnetic signals issued
from the emitters A (see figure 1(a)), must verify the null propagation conditions L:

L: (mA)2 = 0, ∀A.

Furthermore, these four vectors have to be future pointing or, in other words, must verify the
emission conditions E:

E: εu · mA < 0, ∀A,

where u is any given, everywhere non-vanishing, time-like vector field defining the arrow of
time and 2ε, ε = ±1, is the metric signature.

The events x where the emission condition E holds must be receivers, but it is worth
noting that the null propagation conditions L also apply in the case of ‘active’ events x, able to
send or to reflect null signals to one or more of the emitters. Such other location systems, as
the physical realizations of coordinate systems are called here, have been dealt with elsewhere
[10–12] but will not be considered here.

Nevertheless, in obtaining our coordinate transformations, we will need to consider,
besides the emission condition E, its ‘causally dual’ reception conditions R:

R: εu · mA > 0, ∀A,

3
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both condensed in the emission–reception conditions E–R:

E–R: εmA · mB < 0, ∀A,B,

as is easy to argue.
Now, the above assertion about P and R may be stated as follows. An event P belongs to

the emission region R of a positioning system of emitters γA(τA) if, and only if, its position
vector x in some inertial chart verifies the null and emission conditions L and E, respectively,
for some values of the proper times τA of the emitters.

2.2. The characteristic emission function � of a positioning system and the emission
coordinate region C of the spacetime

It then turns out that a positioning system may be considered as a device � that physically
associates, with every event of the emission region R, a set of four times {τA}.

From a formal point of view, this device is nothing but an application � : R −→ T ,
henceforth called the characteristic emission function of the positioning system, that, with
every event x of the emission region R of the spacetime, associates four times τA of the grid
T of the τ ′s,� : x �−→ (τA) = �(x).

The grid T is nothing but the Cartesian product T ≡ 4× {τ } ≈ R
4 of the spaces (real lines)

of the variables τ (for details on the concept and role of the grid, see for example [2, 3, 5]).
In this grid T , the image �(R) of the emission region R by the characteristic emission

function � is called the emission co-region of the positioning system and is denoted by
�R,�R = �(R). The points of this region of the grid T are the quadruplets of times that can
really be received in the spacetime, so that they are related to the spacetime events at which
they are measured. In this sense, this emission co-region �R is the sole region of the grid T
which possesses a physical meaning (the other quadruplets of T are a convenient mathematical
completion of the emission co-region but with no relation to spacetime events).

Obviously, if the world lines of the four emitters are sufficiently smooth and broadcast
their proper time continuously, the emission co-region �R ⊂ T is connected and, because of
the regularity of the light cones in Minkowski spacetime, R is connected too. But this property
does not guarantee that the emission function �, τA = �A(x), is invertible in R.

For � to be invertible, the gradients dτA, normal to the hypersurfaces τA = constant,
have to be well defined and linearly independent. But, because in Minkowski spacetime our
light cones are everywhere differentiable up to on their vertices, i.e. on the emitter world lines
γA, the gradients dτA are well defined everywhere in R up to on R ∩ (∪AγA(τA)). Then, on
the region R− (∪AγA(τA)), because the dτA are metrically collinear to the above null vectors
mA, the linear independence of the dτA may be expressed by the coordinate condition C:

C: m1 ∧ m2 ∧ m3 ∧ m4 �= 0.

This condition C is equivalent to say that j�(x) �= 0, where j�(x) is the determinant of
the Jacobian matrix J�(x) of �, so that the locus where the dτA are linearly dependent
is the hypersurface J in R of equation J ≡ {j�(x) = 0}. We shall call the regions
D ≡ J ∪ (∪AγA(τA)) and C ≡ R − D the emission degenerate and the emission coordinate
regions, respectively, R = C ∪ D.

It is to be noted that, the condition C being satisfied on its events, C is an open set. For
the same reason, � is invertible in C, so that all its events may be locally labelled by the
coordinates {τA}. Nevertheless, this does not mean necessarily that C be a coordinate domain
of a local chart (C,�), because the condition C assures only the local invertibility of �. In
fact, we will see that C is not a coordinate domain, but the union of two coordinate domains;
this is why we have called C the emission coordinate region. The region in the grid T where

4



Class. Quantum Grav. 27 (2010) 065013 B Coll et al

the characteristic emission function �, τA = �A(x), is locally invertible is the region �C ≡
�(C), and will be called the emission coordinate co-region of the grid T .

2.3. The main relations of a positioning system

When the world lines of the emitters are known, the main relations of a positioning system
are the set {L, E} of the null propagation conditions L and the emission conditions E.

In terms of the position vectors γA of these world lines γA(τA), they give rise, by (1), to
the null propagation equations

L: (x − γA) · (x − γA) = 0, ∀A, (2)

and to the emission inequalities

E: εu · (x − γA) < 0, ∀A, (3)

where u is any given, everywhere non-vanishing, future-pointing time-like vector.
To invert the function � in the emission coordinate co-region �C is to solve the main

relations (2) and (3) in x, x = κ(τA), for values of the τAs verifying the coordinate condition
C or, by (1), the coordinate inequality

C: (x − γ1) ∧ (x − γ2) ∧ (x − γ3) ∧ (x − γ4) �= 0. (4)

These solutions x = κ(τA) may alternatively be read as the position vectors of the events
whose past light cone cuts the emitter world lines γA(τA) at their times τA. The components
xα = κα(τA) of x then define the coordinate transformation between the emission coordinates
{τA} and the inertial ones {xα}.

The main object of this paper is to obtain this coordinate transformation.

3. The null propagation equations L

When {τA} are the emission coordinates of the event x, the emitters are at the events {γA(τA)}.
These four events define the internal configuration of the emitters for the event x.

One can try to solve the null propagation equations (2) in x, x = κ(τA) directly, but it is
better to first carefully separate the ingredients intrinsically related to the configuration of the
four emitters A, which are independent of the inertial chart {xα}, from the ingredients related
to this chart, which is independent of the configuration of the emitters.

For this purpose, we shall arbitrarily choose one of the emitters, say A = 4, as the reference
emitter, and we shall search the solution x under the form

x = γ4 + y, (5)

where y is the solution to the null propagation equations (2) when the origin is chosen at the
position γ4 of the emitter 4 (see figure 1(b)). Thus, y is submitted to

L4: (y − eA) · (y − eA) = 0, ∀A, (6)

where

eA = γA − γ4. (7)

Now, splitting these relations for A = 4 and A = a = 1, 2, 3, we have

e4 = 0, eA = ea (8)

and, for the null propagation equations (6),

y2 = 0, A = 4,

y2 − 2ea · y + (ea)
2 = 0, A = a.

(9)
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Noting that ea are the relative position vectors of the referred emitter A = a with respect to
the reference emitter A = 4, and that half of their squares, represent the world functions [13]
of the referred and reference emitters, we have the following.

Lemma 1. The null propagation equations (6) are equivalent to the main linear system

ea · y = �a, a = 1, 2, 3, (10)

and the main quadratic equation

y2 = 0, (11)

where the scalars �a , world functions of the endpoints of the vectors ea, are given by

�a ≡ 1
2 (ea)

2. (12)

In the study of the null propagation equations we suppose that the emitted times {τA}
received at x constitute the emission coordinates of x so that the coordinate inequality (4)
fulfils. From definitions (7), this condition writes

C4: χ · y �= 0, (13)

where χ is the configuration vector defined by

χ ≡ ∗(e1 ∧ e2 ∧ e3), (14)

with ‘∗’ being the Hodge dual operator. Note that, under the form C4 of C, χ is necessarily
non-vanishing:

χ �= 0, (15)

which means that the configuration {γA(τA)} determines a hyperplane. This configuration
hyperplane contains the four events {γA(τA)} and is orthogonal to the configuration vector
χ . The sign of χ2 provides the causal character (space-like, light-like or time-like) of this
hyperplane. Thus, in the emission coordinate region C one can distinguish three disjoint
regions:

the space-like configuration region Cs ≡ {x ∈ C | εχ2 < 0},
the null configuration region C
 ≡ {x ∈ C | χ2 = 0},
the time-like configuration region Ct ≡ {x ∈ C | εχ2 > 0}.

with C = Cs ∪ C
 ∪ Ct .
The ingredients �a and χ of the internal configuration of the emitters make use of the

relative position vectors ea and their double exterior product e1 ∧ e2 ∧ e3. Let us complete
them by introducing their simple exterior products in the form

Ea ≡ ∗(ea+1 ∧ ea+2), (16)

where the operations on the indices obviously have to be understood modulo 3.
In the search for the solutions to the null propagation equations (6), it is convenient to first

start solving the main linear system (10) in y and then constraint it to verify the main quadratic
equation (11). Then, the solution(s) y = ι(τA) so obtained, incremented by the position
γ4 of the reference emitter A = 4, will give by (5) the solution(s) to the null propagation
equations (2), x = κ(τA) = γ4 + ι(τA), i.e. the wanted coordinate transformation between
emission coordinates and inertial ones. The following section is devoted to solving the main
linear system (10).

4. The main linear system

The regularity condition (15) for the configuration vector χ means that the rank of the main
linear system (10) is exactly 3. As a consequence, its general solution y depends on a sole

6



Class. Quantum Grav. 27 (2010) 065013 B Coll et al

parameter, say λ, so that denoting by y∗ a particular solution, one has y = y∗ + λχ because,
by (14), χ is a vector such that ea · χ = 0. We can thus state.

Lemma 2. In the emission coordinate region C, the general solution to the main linear system
(10) is of the form

y = y∗ + λχ, (17)

where the parameter λ takes arbitrary values, χ is the configuration vector (14) and y∗ is a
particular solution.

A tentative study of explicit expressions of the particular solution y∗ shows that, for every
emission coordinate domain, there is not a sole analytical function, depending exclusively
on the elements of the configuration {γA(τA)} of the emitters, that is valid throughout the
domain. This is why it is necessary to introduce an external element to obtain a sole analytical
expression. We shall see that it is sufficient for this external element to be a vector field ξ

transversal to the configuration, i.e. such that

ξ · χ �= 0, (18)

and otherwise arbitrary. Denoting by i( ) the interior product, it may then be shown (see
appendix A for the proof).

Proposition 1. In all the emission coordinate region C, the general solution to the main
linear system (10),

ea · y = �a, a = 1, 2, 3,

is of the form

y = y∗ + λχ, (19)

where the parameter λ takes arbitrary values, χ is the configuration vector

χ ≡ ∗(e1 ∧ e2 ∧ e3),

and y∗ is the particular solution orthogonal to a chosen transversal vector ξ, ξ · χ �= 0, given
by

y∗ ≡ 1

ξ · χ
i(ξ)H, (20)

where the bivector H is, like the vector χ , a function of the configuration of the emitters,

H ≡ �aE
a, Ea ≡ ∗(ea+1 ∧ ea+2). (21)

The direct and simple discussion that has enabled us to reach proposition 1 is the result
of a careful search in order to find, in every coordinate domain, a sole, general and covariant
expression for the coordinate transformation between emission coordinates {τA} and inertial
ones {xα}.

The last two requirements of generality and covariance enable us to find once and for
all and for any inertial system (and in compact form due to the intrinsic vector formalism)
the coordinate transformation in question. But they do not suffice to lead by themselves to a
sole expression valid for all the configurations, i.e. valid at all the events of every emission
coordinate domain. For example, if we were to work directly on the main linear system in the
cases of a configuration generating a non-null vector χ , we would find the solution

y = 1

χ2
i(χ)H + λχ, (22)

7
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as now directly follows from (20) and (19) for the choice ξ = χ . But, meanwhile in fact there
is neither physical nor mathematical reason for the solution to lose analyticity, this expression
(22) becomes manifestly undefined on the null configurations, χ2 = 0. This is why it is
necessary to introduce an external element to find the sole regularized analytical expression
above mentioned.

This external element, the transversal vector field ξ , independent of the configuration of
the emitters, is otherwise arbitrary. But, meanwhile due to lemma 2 we know that the main
linear system depends on a sole parameter λ, expressions (19) and (20) of y apparently seem
to indicate that it depends on the (4 + 1 =) 5 arbitrary parameters {ξ ; λ}. Thus, what is the
precise role played by this transversal field ξ?

From definition (21) of the bivector H it is clear that its dual ∗H is orthogonal to
χ, i(χ) ∗ H = 0, so that one has H = χ ∧ a for some vector a. With this expression of H
it is easy to prove from (19) and (20) that the variation of the solution y with respect to the
parameters ξ verifies

∂y

∂ξ
∧ χ = 0, (23)

which shows that the changes in ξ may be absorbed by λ, i.e. that the parameters ξα are not
essential in the Eisenhart sense [14]. Nevertheless, their elimination gives rise to different
expressions for the causally different regions that one can find in the whole emission coordinate
region.

5. The main quadratic equation

Obtaining the transformation xα = κα(τA) between emission coordinates {τA} and inertial
ones {xα} amounts to determine the intersection of the four future light cones emitted by the
emitters at the configuration {γA(τA)} or, in the dual interpretation, to determine the vertex of
the past light cone that contains the emitters in such a configuration.

According to proposition 1, the solutions y of the main linear system (10) depend linearly
on the parameter λ, and consequently, describe a straight line in M4. The vertex that we are
searching for is consequently on this straight line and, according to our choice of reference
emitter, is the point on it related to the emitter A = 4 by the null vector m4 = x −γ4 = y. This
is nothing more than what the main quadratic equation (11) expresses: y2 = 0. This cone,
whose vertex is the emitter A = 4, cuts the straight line (19) at a value of λ given implicitly by

χ2λ2 + 2(χ · y∗)λ + y2
∗ = 0, (24)

and it is this value of λ which, put in expression (19) of proposition 1, enables us to obtain the
coordinate transformation y = ι(τA) that we are searching for.

But before obtaining it, and in order to be sure of its real character, it is convenient to
observe that the sole assumption we have made so far to solve the null propagation equations
is that of the regularity of the configuration data {γA(τA)}, i.e. of the non-vanishing of
the configuration vector χ, χ �= 0. This assumption is only a strict part of the coordinate
condition C, as its form C4, χ · y �= 0, shows.

The study of degenerate configuration data χ = 0 and of the degenerate coordinate
condition χ · y = 0 is interesting to gain more in-depth knowledge of the physical conditions
leading to their presence in order to avoid, control or predict them. But we shall restrict
ourselves here, as already stated, to obtaining the coordinate transformation between emission
coordinates {τA} and inertial ones {xα}. For this purpose, from now on, we shall work under
the coordinate condition C.

8
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In fact, it is this condition that guarantees the real character of the solutions of the null
propagation system. To demonstrate this, we shall separately analyse the cases of null and
non-null configurations.

Null configurations. In the region where the configuration vector is null, χ2 = 0,

expression (19) for the solution y, y = y∗ + λχ, leads to χ · y = χ · y∗, so that the last
expression (13) for the coordinate condition C ensures the well-defined character of λ in (24),

λ = − y2
∗

2(χ · y∗)
, (25)

and we have

Proposition 2. Under the coordinate condition C, for null configurations, χ2 = 0, the null
propagation equations (6) admit a real and single solution y given by

y = y∗ − y2
∗

2(χ · y∗)
χ, (26)

where y∗ and χ are, respectively, given by (20) and (14).

Non-null configurations. In the regions where the configuration vector is non-null, χ2 �= 0,

(24) gives

λ± = 1

χ2
(−χ · y∗ ±

√
�), � ≡ (χ · y∗)2 − χ2y2

∗ . (27)

But for these non-null configurations, we can choose ξ = χ in expression (20) of the particular
solution y∗ to the main linear system (10). Let us denote by c the corresponding y∗:

c = 1

χ2
i(χ)H. (28)

Because H is antisymmetric, it is obvious that c is orthogonal to χ, so that, for the corresponding
value λc of λ, (27) takes the simple form

λc± = ±
√

�c

χ2
, �c ≡ −χ2c2. (29)

Now, expression (19) for the solution y, y = c + λcχ, leads, by product by χ , to y ·χ = λcχ
2.

Taking its square and substituting in it the value (29) of λc, one obtains

(y · χ)2 = �c, (30)

so that the form (13) of the coordinate condition C ensures the strict positiveness of the
discriminant �c. Then, for y∗ = c and the values (29) of λc, equations (19) lead, after a little
analysis, to the following result:

Proposition 3. Under the coordinate condition C, for non-null configurations χ2 �= 0, the
null propagation equations (6) admit two real solutions y± given by

y± = c ± |c|ν, ν ≡ χ2

|χ |3 χ, (31)

where c and χ are, respectively, given by (28) and (14).

In the above proposition and in what follows, we denote by |v| the modulus of a vector
v, |v| ≡

√
|v2|.

9
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We have seen that, for the particular solution y∗ = c, the discriminant � given by (27)
takes the value �c given by (29). To what extent the discriminant �, corresponding to other
particular solutions y∗ �= c, differs from the value �c?

The question is pertinent because we want to unify expressions (26) and (31) so as to
have a single expression for every coordinate domain, irrespective of the causal orientation of
the configuration vector χ . To answer this, note that c is the particular solution to the linear
system orthogonal to χ and that, from (19), any y∗ differs from c by a term of the form λχ .
More precisely, c = y∗ − y∗·χ

χ2 χ . Then, a straightforward calculation leads to

Lemma 3. Under the coordinate condition C, for non-null configurations χ2 �= 0, the
discriminant � and each one of the solutions y± of the quadratic equation (24), given in (27),
are independent of the particular solution chosen and, therefore, of the subsidiary vector ξ

too. The discriminant is positive and its invariant value is

� = �c = −χ2c2 > 0, (32)

where c is given by (28).

Unified expression for any configuration. As already stated, we want to find, for every
coordinate domain, a sole expression valid for the whole domain, i.e. valid for all the
configurations {γA(τA)} that could correspond to the events of the domain. Nevertheless,
in principle, by continuously changing of events in the coordinate domain, we can make these
configurations to have a vanishing, positive or negative value of χ2. When this is the case,
none of the two standard expressions (27) of λ for χ2 �= 0 comes down to the sole solution
(25) for χ2 = 0 and, consequently, none of the expressions (31) reduces to expression (26);
both of them becoming degenerate. To correct this degeneration, it is sufficient to multiply
numerator and denominator of the second member of (27) by the conjugate of the numerator.
Once this is done, taking into account proposition 1 one has the following result.

Theorem 1. In all the emission coordinate region C, the solutions to the null propagation
equations (6) are real and admit the expression

y± = y∗ + λ±χ, λ± ≡ − y2
∗

(χ · y∗) ± √
�

, � ≡ (χ · y∗)2 − χ2y2
∗, (33)

where y∗ and χ are respectively given by (20) and (14). For null configurations χ2 = 0, the
sole solution is given by one of these expressions, the other becoming degenerate.

6. The emission conditions E

Expressions (33) of theorem 1 give the Minkowski events y that can be related to the
configuration events {γA(τA)} by means of emission or reception of null signals. But we want
y to be the events reached by null signals emitted from the configuration events. Thus, we have
to impose on y the emission conditions E. This will select a special class of configurations,
which will be called emission configurations.

In a first step, we shall impose the intermediate emission–reception condition E–R,
guaranteeing that either all the signals at y have been emitted by the configuration, or all
the signals at y will be received by the configuration; such a configuration will be called an
emission–reception configuration, and in a second step we shall choose with E the first of
these two cases.

As we have seen in section 2, the emission–reception condition, E–R, states that all the
null vectors mA joining γA and y,mA ≡ y−γA, must have the same (past or future) orientation,

10
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i.e. εmA · mB < 0,∀A,B. In terms of the relative position vectors ea of the configuration
{γA(τA)} given by (7) and (8), one has

m4 − ma = γa − γ4 = ea

ma − mb = γb − γa = eb − ea,
(34)

so that, because (mA − mB)2 = −2mA · mB, we have

Proposition 4. For a regular configuration {γA(τA)} to be an emission–reception
configuration, it is necessary and sufficient that all their relative positions be space-like.
In other words, the null directions mA verify the emission–reception condition, E–R, iff

(E-R)4 : ε (ea)
2 > 0, ε (ea − eb)

2 > 0. (35)

Let us note that, in particular, this proposition tells us that, in the grid T ≈ R
4 of the

τ ’s, the domains of emission coordinates {τA} are in the interior of the region determined by
(35), so that the points of the grid T in the complementary region certainly have no physical
meaning.

Equations (33) of theorem 1 show us that, under the coordinate condition C, two real
and definite solutions to the null propagation system may correspond to every configuration
{γA(τA)}. Now under the additional emission–reception condition, E–R, one of these definite
solutions may be that of emission and the other of reception. This last one finally has to be
detected and discarded by means of the emission condition E, which, under the E–R one,
reduces to

E4: εy · u < 0, (36)

where u is any given, everywhere non-vanishing, future pointing time-like vector.
For non-null configurations, χ2 �= 0, the general expression (33) gives the two admissible

solutions under the coordinate condition C. These solutions also admit the non-unified
expression given in proposition 3. From it, we obtain

y+ · y− = 2c2. (37)

Then, (32) implies that if εχ2 > 0 (respectively, εχ2 < 0) then εc2 < 0 (respectively,
εc2 > 0) and, as a consequence of (37), y+ is future pointing iff y− is future pointing
(respectively, past-pointing). Thus, we have

Lemma 4. If χ is a time-like vector, εχ2 < 0, then only one of the solutions (33) corresponds
to an emission configuration.

If χ is a space-like vector, εχ2 > 0, then the two solutions of (33) correspond to either
two emission configurations or two reception configurations.

When χ is a time-like vector, can we detect the solution which corresponds to an emission
configuration? The answer is affirmative. Indeed, as a consequence of lemma 3, each one of
the solutions y± is independent of ξ . Thus, taking for them the non-unified expression given
in proposition 3, we obtain (when εχ2 < 0)

ε(εχ) · y± = χ · y± = ±|c||χ |,
and, consequently, we can state

Proposition 5. For a space-like emission configuration, εχ2 < 0, the sole emission solution
is y+ (respectively, y−) if εχ is past pointing (respectively, future pointing).

When χ is a space-like vector, we can know a priori whether the two solutions y±
correspond to emission configurations. Indeed, in this case, c is a time-like vector. Then,

11
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again making use of the non-unified expression for y± given in proposition 3, we obtain

εc · y± = εc2 < 0,

and, consequently, we can state

Proposition 6. For a time-like emission configuration, εχ2 > 0, the solutions y± correspond
to emission (respectively, reception) configurations if c is future pointing (respectively, past
pointing).

Finally, for a null configuration, χ2 = 0, proposition 2 gives the sole admissible solution
under the coordinate condition C, which of course also reduces to one of the solutions of the
general expression (33). In this case, � = (y∗ · χ)2 and, consequently, the non-degenerate
solution in (33) is y+ (respectively, y−) if ε(εχ) · y∗ = χ · y∗ > 0 (respectively, < 0). Thus,
we can state

Proposition 7. For a null emission configuration, χ2 = 0, the non-degenerate solution is y+

(respectively, y−) if εχ is past pointing (respectively, future pointing).

It is worth remarking the attachment between the results stated in propositions 5 and
7. If we continuously change to a null configuration coming from a space-like one, the
configuration vector χ keeps its future or past orientation. If χ is past pointing (respectively,
future pointing), we must take the (continuous) expression y+ (respectively, y−) in both the
null and space-like regions.

7. The coordinate transformation from emission to inertial coordinates

7.1. Front and back emission coordinate domains

Theorem 1 shows that the emission coordinate region C is mapped with two local charts and
gives analytical expressions for the transformation between emission and inertial coordinates
for the two corresponding coordinate domains.

These expressions of the coordinate transformation and the study of the emission
conditions in section 6 show that the causal character of the configuration of the emitters
differs for the two emission coordinate domains. Space-like and null configurations only
admit one of the solutions given in theorem 1 as the emission solution, and of course the
coordinate domain of this solution contains by continuity a time-like configuration region.
The coordinate domain of the other solution only contains a time-like configuration region.

We see that the two coordinate domains differ enough in the causal character of their
emitter configurations. We shall call front emission coordinate domain CF the coordinate
domain that contains events with the three possible causal configurations. More precisely, CF

contains all the space-like configuration region Cs , all the null configuration region C
 and a part
CF

t of the time-like configuration region Ct . We shall call back emission coordinate domain
CB the other coordinate domain that only contains events with time-like configurations.1 In
fact, CB = Ct − CF

t .
Moreover, the two time-like regions have the same co-domain in the grid, namely,

�
(
CF

t

) = �(CB). This relation is very important. It says that, whatever be the four values

1 Let us remember that it is usual to call coordinate domain the open set U of any local chart (U, φ) of the atlas
defining a differentiable manifold. This appellation requires attention because a coordinate domain is not necessarily
a domain, but simply a (not necessarily connected) topological open set. In fact, meanwhile the front emission
coordinate domain CF is generically connected, the back emission coordinate domain CB is generically the disjoint
union of four connected components [5].

12
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{τA} received by a user in the coordinate region CF
t (resp. CB), another user in the coordinate

region CB (resp. CF
t ) may receive the same values {τA}. In other words, a user that only

receives four times {τA} defining a time-like configuration of the emitters is unable to detect
in what part of the region Ct , in CF

t or in CB he is.

7.2. Orientation of a positioning system

To be able to detect in which of these regions a user is, a notion of the orientation of a
positioning system is necessary. We give the following one.

Definition 1. The orientation of a positioning system with respect to an event of its emission
coordinate region C is the sign ε̂ of the coordinate condition scalar:

ε̂ ≡ sgn ∗ (m1 ∧ m2 ∧ m3 ∧ m4). (38)

We have seen in section 2.2 that, in the emission region R, the hypersurface J separates
the emission coordinate region C in two open sets. We can now identify them with the above
front and back coordinate domains CF and CB , respectively. Because J is the hypersurface
where the coordinate condition C is not verified (vanishing Jacobian j�(x) = 0), the non-
vanishing member of its inequality has a constant sign in every coordinate domain CF and CB ,
so that we have the simple but important result.

Proposition 8. The orientation ε̂ of a positioning system is constant in every one of the
coordinate domains CF and CB .

The same way that leads to the form (13) of the coordinate condition C shows that
ε̂ = sgn (y · χ). Because y is the necessarily future pointing vector for an emitted signal, if
χ is time-like or null we can be sure that the sign of (y · χ) is the same as that of the sign of
(u ·χ) for any non-vanishing future pointing time-like vector u. This last sign is plus or minus
according to the past or future pointing character of εχ . Taking into account propositions 5
and 7, one has the following.

Proposition 9. In the regions Cs and C
, the orientation ε̂ of a positioning system is given by

ε̂ = sgn (u · χ) (39)

for any future pointing time-like vector u.

7.3. Explicit expression of the coordinate transformation from emission to inertial
coordinates

We shall comment below in section 8 that for users in the region Ct the determination of
the orientation needs additional information. But for the moment, theorem 1 and the above
propositions lead us to the following result.

Theorem 2. Let γA be the position vectors of the world line equations γA(τA) of the four
emitters of a positioning system with respect to an inertial coordinate system {xα}, and {τA}
their emission coordinates. In all the emission coordinate region C = CF ∪ CB , the coordinate
transformation x = κ(τA) is given by

x = γ4 + y∗ − y2
∗χ

(y∗ · χ) + ε̂
√

(y∗ · χ)2 − y2∗χ2
, (40)

where y∗ is the quantity given by (20), χ is the configuration vector (14) and ε̂ is the orientation
(38) of the positioning system with respect to the event that receives the data {τA}.
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This is the main result reached in this paper. It rests to analyse now to what extent this
expression (40) may be determined by a user from the data received by him.

8. The central region of a positioning system. Computational and observational
orientation

The world lines γA(τA) of the emitters in an inertial system {xα}, as well as the spacetime
metric in it, are here supposed known ‘background’ data for any user of the positioning system
(the world lines can be pre-determined initially or broadcast in real time). Thus, any user who
receives only the emission data {τA} is able to compute the quantities γ4, y∗, χ appearing in
(40). He has to follow the four steps as follows.

Step 1. Compute the four position vectors of the emitters, γA = OγA(τA), for the received
values {τA}.
Step 2. Choose a reference emitter, say γ4, and compute the position vector of the three
referred emitters ea = γa(τ

a) − γ4(τ
4).

Step 3. Compute the configuration scalars �a ≡ 1
2e2

a , the configuration vector χ ≡
∗(e1 ∧ e2 ∧ e3), and the configuration bivectors Ea ≡ ∗(ea+1 ∧ ea+2) and H ≡ �aE

a .

Step 4. Choose a transversal vector ξ, ξ · χ �= 0 and compute y∗ ≡ 1
ξ ·χ i(ξ)H .

At this level, the user has computed the quantities γ4, y∗, and χ . But he is also able to
compute in what of the coordinate regions, Ct , C
 or Cs of the positioning system he is; for this,
one additional step is sufficient.

Step 5. Determine the sign of εχ2. Then, according to their definitions, the user is in Ct , C
 or
Cs if this sign of εχ2 is > 0,= 0 or < 0, respectively.

Now, suppose that the user is in C
 or Cs . Another step allows him to compute the
orientation ε̂:

Step 6. Determine the sign of u · χ for a future pointing time-like vector u, arbitrarily chosen.
Then, according to proposition 9, ε̂ = sgn (u · χ).
We shall call the central region of a positioning system the region CC ≡ Cs ∪ C
. A part

of theorem 2 may be then stated as follows.

Proposition 10. Let γA be the position vectors of the known world line equations γA(τA) of
the four emitters with respect to an inertial coordinate system. Then the users of the central
region CC of the positioning system can obtain their position {xα} in the inertial system by
computation from their sole emission coordinates {τA}.

What about the users in Ct , i.e. out of the central region CC? We have seen that everywhere
ε̂ = sgn (y · χ). Nevertheless, the null vector y involves not only the initial data γA(τA) and
the received data τA, but is the solution we are looking for, so that the quantity y · χ cannot
be computed before itself. For this reason, proposition 9 is exclusive: only the users of the
central region CC are able to compute the orientation ε̂ of the positioning system.

Can the users in Ct know the orientation of the positioning system? It is possible to show
that all the users of the coordinate region C, be them in the central region CC or not, can
determine the orientation of the positioning system if, in addition to the reception of the {τA},
they are able to observe the emitters in their celestial sphere. But this fact will be analysed in
a forthcoming paper.
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9. Discussion and work in progress

In this paper, we have obtained the coordinate transformation (40) between emission
coordinates and inertial coordinates in Minkowski spacetime. We use the intrinsic vector
formalism to express the position vector, x ≡ (xα), of every event in the emitter
coordinate region as a function f of the emitter world lines γA(τA) : x = f (OγA(τA)) ≡
κ(τA).

This general and compact expression of the coordinate transformation will be a powerful
tool for subsequent applications. For example, we can particularize it for different choices of
the emitter world lines which model specific physical situations. In doing so, a previous
basic task appears to be convenient in many cases: to write our covariant expressions
in a 3+1 formalism with respect to an arbitrary inertial observer, which is the goal of
another work [15]. Moreover, from the expression of the coordinate transformation, we
can easily obtain the components of the metric tensor in emission coordinates, and we can
study the region where the emission coordinates are more efficient than the inertial ones
[16].

In section 6, we have studied the emission conditions in order to distinguish between
emission and reception or mixed configurations. These results are a necessary tool to carry
out more in-depth analysis of the domains and co-domains of the emission coordinates. This
task will be tackled in another paper [17], where we will also study the geometry of the
emitter configurations attending to their different causal character, and we will analyse how
this geometry influences the solutions to the null propagation equations. Some preliminary
results on this question have been presented in [7].

The orientation ε̂ of a positioning system with respect to an event (see section 7) is a
concept which has allowed us to give an explicit expression of the coordinate transformation
in theorem 2. In section 8, we have pointed out that this orientation ε̂ may be computed
from the emission data {τA} in the so-called central region. Nevertheless, out of this
region, the determination of ε̂ demands an observational method which will be analysed
elsewhere.

The development of all this theoretical work paves the way to the study of more realistic,
gravitationally influenced and positioning systems. For example, those defined by emitter
world lines modelling a satellite constellation around the Earth in a weak gravitational field.
It is worth remarking that for the use and smooth running of a positioning system, one needs
not only the coordinate transformation to emission coordinates but also a good understanding
of the domains in the spacetime and co-domains in the grid. The analysis of the degenerate
configuration data, χ = 0, and of the hypersurfaces of the emission region R where the
Jacobian j�(x) vanishes must also be well understood. We already know that the events of
vanishing Jacobian are, and only are, those for which any user in them can see the four emitters
on a circle in his celestial sphere [5]. This includes the possibility for the user seeing less than
four satellites, when some of them are in the shadows of the others.

Obviously, in realistic situations, the inertial coordinate system considered here must give
rise to more useful ones, namely, the International Celestial Reference System (ICRS) for the
positioning system based on 4 ms pulsars, valid for the solar system, as proposed in [18];
the Barycentric Celestial Reference System (BCRS) to compare the planet trajectories (Earth
at least and already) obtained in this millisecond pulsar system with the ones obtained by
standard astronomical observations; the Geocentric Celestial Reference System (GCRS) or
related World Geodetic System 84 (WGS84) or International Earth Reference System (ITRS)
for the applications of relativistic positioning systems to the Global Navigation Satellite
Systems (GNSS).
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Appendix. Proof of proposition 1

From lemma 2, to prove proposition 1, we must obtain a particular solution of the main linear
system (10). More precisely, we must obtain the particular solution y∗ which is orthogonal to
a chosen transversal vector ξ, ξ · χ �= 0.

In order to obtain such a solution in a covariant way, we begin by studying a regular linear
system φA · z = �A. In this case, the vectors {φA} define a base, that is, φ1 ∧φ2 ∧φ3 ∧φ4 �= 0.
Then the sole solution to the system takes the expression z = �AφA, with {φA} being the dual
base. More explicitly, we have

Lemma 5. The solution z to the regular linear system

φA · z = �A , A = 1, 2, 3, 4, (A.1)

is given by

z = �AφA. (A.2)

where

φA ≡ 1

3!D
εAPQR ∗ (φP ∧ φQ ∧ φR), D ≡ ∗(φ1 ∧ φ2 ∧ φ3 ∧ φ4). (A.3)

Now, we regularize the main linear system (10) by adding a new equation as follows.
Given a vector ξ such that ξ · χ �= 0, let us consider a linear system of the form (A.1) for the
unknown z, with

φA = ea, �A = �a, A = 1, 2, 3; (A.4)

φ4 = ξ, �4 = 0. (A.5)

This linear system is regular since

D ≡ ∗(φ1 ∧ φ2 ∧ φ3 ∧ φ4) = ∗(e1 ∧ e2 ∧ e3 ∧ ξ)

= − ∗ (ξ ∧ e1 ∧ e2 ∧ e3) = −i(ξ) ∗ (e1 ∧ e2 ∧ e3) = −ξ · χ �= 0. (A.6)

Consequently, the sole solution to this system may be obtained as stated in lemma 5. Now
�4 = 0, and then we only need to calculate the vectors φa, a = 1, 2, 3, of the dual basis given
in (A.3). They take, in this case, the expression

φa ≡ 1

3!D
εaPQR ∗ (φP ∧ φQ ∧ φR) = 1

2 D
εabc4 ∗ (eb ∧ ec ∧ ξ)

= 1

2 D
εabc ∗ (ξ ∧ eb ∧ ec) = − 1

2 D
εabci(ξ) ∗ (eb ∧ ec) = 1

ξ · χ
i(ξ)Ea, (A.7)

where

Ea ≡ ∗(ea+1 ∧ ea+2). (A.8)
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Then, solution (A.2) becomes now

z = 1

ξ · χ
i(ξ)H, H ≡ �aE

a. (A.9)

Finally, note that this vector z is a solution to the main linear system and is orthogonal to ξ .
Thus, it is the particular solution y∗ that we are looking for.
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