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199 Causal Classes of Space-Time Frames 

Bartolom~ Coi l  ~ and Juan Antonio Morales  2 

Received July 7, 1991 

It is shown that from the causal point of view Minkowskian space-time admits 
199, and only 199, different classes of frames. 

1. I N T R O D U C T I O N  

Space - t ime  is usua l ly  de sc r ibed  as a f o u r - d i m e n s i o n a l  Loren tz i an  man i -  
fold.  Its t opo logy ,  its d i f fe ren t iab le  a n d  met r ic  s t ructures ,  and  its a symp to t i c  
p rope r t i e s  have  been  the ob jec t  o f  m a n y  s tudies ;  f rom the fo rmal  p o i n t  o f  

view there  is no  d o u b t  tha t  the  no t i on  o f  space - t ime  is at  p resen t  well  def ined.  
In  spi te  o f  this  fact ,  a g o o d  phys ica l  c o m p r e h e n s i o n  o f  this  no t ion  has  

no t  ye t  been  a t ta ined .  A p o i n t  tha t  con t r ibu tes  to this  s i tua t ion  is ou r  inab i l i ty  
to conce ive  directly 3 loca l  d o m a i n s  o f  space- t ime .  The  i m p o r t a n c e  o f  this  

def ic iency  m a y  be c lar i f ied by  c o m p a r i n g  the evo lu t ion  o f  the  no t ion  o f  
space - t ime  u p  to  now to the  anc ien t  e l a b o r a t i o n  o f  the  no t ion  o f  space. 

F o r  ou r  pu rposes ,  this  e l a b o r a t i o n  m a y  be  cons ide red  as hav ing  been  
ach ieved  af te r  the  work  o f  Ar i s ta rchus  o f  Samos.  The  ear l ie r  h i s tory  o f  the  
no t i on  o f  space  can be  ske tched  success ive ly  as follows4: F o r  the  Egyp t i ans  5 

1Laboratoire de Physique Th6orique, Institut Henri Poincar6, F-75231 Paris Cedex 05, France. 
2Departament de Fisica Tebrica, Universitat de Valencia, E-46100 Burjassot, Valencia, Spain. 
3"Directly" means here "without decomposing the local domain into its classical constituents 
space and time." 

4"I'he variety of mythologies, theologies, and theories among Egyptians and Greeks concerning 
space is so immense that, obviously, we do not pretend to summarize them in a few lines. 
We have stripped these sketches from the abundant cosmogonic content in which the 
corresponding descriptions appear naturally immersed, and we present only those elements 
attached to the notion of space which have manifestly changed during the period concerned. 

5We start from Egyptian rather than from Mesopotamian cosmologies because, for our 
purposes, they do not differ essentially (Eliade, 1976; Roux, 1985; Kramer, 1975). 
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at  a b o u t  2500-2300 B.C., the  ea r th  is a flat d i sk  c rossed  by  the Ni le  and  
s u r r o u n d e d  b y  the sea,  a n d  the  heaven ,  s e p a r a t e d  f rom the  ear th  by  the 
a t m o s p h e r e ,  is s u p p o r t e d  by  e ight  columns6;  a t  2300-1500 B.C., the  scenar io  
is qui te  s imi lar ,  bu t  the  heaven  is s u p p o r t e d  by  four  co lumns .  7 F o r  the  
Greeks ,  long  be fo re  600 B.C., the  ea r th  is a flat d i sk  s u r r o u n d e d  by  the  r iver  
Ocean ,  a n d  the  heaven  is s u p p o r t e d ,  in the  west ,  b y  two co lumns .  8 By a b o u t  
600 B.C., the re  a re  no  c o l u m n s  at  all ,  a n d  heaven  leans  u p o n  the  f iver  
Ocean ,  fo rming  the vau l t  o f  heaven9;  A n a x i m a n d e r ,  a b o u t  570 B.C., t rans-  
forms the  vau l t  to  a ce les t ia l  sphere  and  reduces  the  ea r th  to  a re la t ive ly  
smal l  cylinder~~ Ar i s t a rchus  o f  Samos ,  a b o u t  270 B.C.,  affirms tha t  the  ea r th  
is sphe r i ca l  and  turns  a r o u n d  the s u n )  1 

The  i m p o r t a n t  heur i s t i c  po in t  here  is tha t  du r ing  the  first s teps,  space  
is cons t ruc ted  by  e leva t ion  o f  the  heaven  over the  ear th ,  a n d  so it a p p e a r s  
as a ground ~) height c o m p o s e d  not ion .  This  no t i on  begins  to change  
asymptotical ly  with the  Vaul t  o f  Heaven ,  loses  its global cha rac t e r  wi th  the  
cy l inde r  o f  A n a x i m a n d e r ,  and  t r ans fo rms  its bas ic  ingredients ( g r o u n d  and  
he ight )  in to  s imple  loca l  f r ame  parameters  with Ar i s t a rchus  o f  S a m o s )  2 It  

is on ly  af ter  these  changes  tha t  the  c o m p r e h e n s i o n  o f  the  no t i on  o f  space  
is a t t a ined .  Spa t ia l  ob jec t s  a re  then  t hough t  per se, wi thou t  re fe rence  to  any  

6These columns, although they frequently appear as divinities (for example, Saumeron et al., 
1959), suggest strongly that the heaven is, like the earth from which it has been separated, a 
flat disc. 

7The collapse from eight to four columns seems related theologically to the association into 
pairs of the eight divinities (Grimal, 1988; Grigorieff, 1987) and related visually to the 
representations of the heaven by the trunk of the goddess Nut (Greenfield Papyrus, British 
Museum, London; Sarcophagus of Butehamon, Egyptian Museum, Turin) or of the Heavenly 
Cow (Anthes, 1961); in these last cases, there is no doubt about the identity of the four columns. 

8Of course, the central role played by the Nile is, for the Greeks, implicitly assumed by the 
Mediterranean Sea. The two columns indicated in this sketch condense a variety of descriptions 
involving Atlas and Heracles. Atlas appears bearing the heaven with the aid of columns or 
directly on his shoulders or on his neck or playing the role of a mountain or even of the 
Titan who separated the waters of the heaven from those of the earth. Heracles temporarily 
replaces Atlas in this task during Heracles' labor in the garden of Hesperides, or himself 
constructs two columns in commemoration of his capture of the oxen of Geryon (Graves, 
1967; Desautels, 1988; Ramin, 1979). Curiously, all these "devices" to maintain the heaven 
seem to be located in the west: Atlas' mountains, Hesperides' garden, Heracles' columns. 
The mythic and symbolic character of these pictures is magnifically analyzed in Ballabriga 
(1986). Their scientific absurdity and their lack of balance are, perhaps, at the basis of the 
conception of the vault of heaven. 

9This is the conception of the world known by Thales, philosophically modified by him, and 
transmitted to his pupil Anaximander. 

1~ is the first to speak about antipodes. 
HIn On the sizes and distances of the sun and moon; see Heath (1981). 
~2The vanishing of the central role played by the earth in the construction of space is a 

progressive development; thus, the earth turns around a central fire for Philolaus (about 
420 B.C.), and around its axis for Heraclides (about 320 B.C.). 
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support; this is the case, in particular, for the sphere, which is seen as a 
realization of  total symmetry. 13 

Let us now come back to the notion of  space-time. Once Copernicus 
vindicates the forgotten theory of  Aristarchus, 14 the space-time of  Galileo 
and Newton ~5 is constructed over space and so it appears as space~t ime,  
a composed notion. The absolute character of  its ingredients is lost in 
Einstein's special relativity, and their local character appears in the general 
theory. The Penrose conformal-infinity techniques allow us to construct 
asymptotically some intrinsic concepts not related directly to them, but any 
time we need a precise physical interpretation, we are still constrained to 
locally decompose space-time into its space~ t ime  form even though we 
do not conceive them as "ingredients" but rather as a sort of  "comfortable" 
parametrization. 

If  we try now to establish a parallel between the evolution of  the 
concepts of  space and space-time, it appears that we are at present at a 
moment analogous to someone situated after Anaximander, but before 
Aristarchus: we have not yet  attained the analog of  Aristarchus' develop- 
ment. This last moment would correspond to a direct comprehension of 
space-time, no matter what its decomposition might be. 

Is this analogy correct? In other words, is it true that we have not 
sufficiently integrated the spatial and temporal parts of  space-time? 16 

The decomposition of  the space-time into space ~) time is intimately 
related to the use of  three rods (space) and one clock (time) to locate 
space-time events. On the other hand, from a conceptual point of  view, 
clocks and rods are nothing but timelike and spacelike projections of  light 
beams,17 which can be locally represented respectively by timelike, spacelike, 
and null directions; thus, the frames associated to the above decomposition 
of space-time are constituted by one timelike and three spacelike directions. 
Clearly, they form a proper subset of the set of  all space-time frames, so 
that the fact that they are precisely the only frames usually called physically 
admissible is already a sign of  the correctness of  the above analogy. 

13It is interesting to note that, after Anaximander, the earth is thought of as a sphere because 
of a philosophical need for symmetry, not because of observational evidence. The role played 
by the concept of the sphere in the social structure is considered in Vernant (1988). 

laThe modesty of Copernicus is to his honor; in his De revolutionibus Caelestibus, he explicitly 
refers to Greek astronomers, and especially to Aristarchus (Bonnard, 1959). 

15We consider here only their kinematic aspects, so that they are identical. 
~6The "integration" we are speaking of here concerns the direct feeling of hyperbolic space-time. 

It has nothing to do with the ability to use covariant, intrinsic, or four-dimensional formalisms. 
These formalisms originate by a more or less direct transcription of the elliptic formalism 
of Riemannian geometry and, in spite of their unquestionable interest, mask (almost) 
completely the specific features of hyperbolicity. 

17Think of the present definitions of the units of time and length. 
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Apart from the physically admissible frames, how many classes of 
frames, causally different, does a space-time admit? The fact that such a 
natural question has not been asked up to now seems to reinforce our idea 
that we are still subject to the prejudice of the classical conception of 
space-time. But it is the absolute lack of intuition about the answer that 
shows, we believe, the correctness of our analogy: in 4-dimensional space- 
time there exist 199 causally different classes of  frames. 

What is the interest of such a result? 
We have chosen the above historical analogy because, we believe, at 

the same time it delimits the unripe aspect of the present notion of space-time 
and it shows intuitively the direction in which it would be developed, which 
points to the comprehension of every space-time object per se, without 
reference to any spatial support. In order to acquire such an ability, it seems 
worthwhile to try to develop the habit of regarding space-time objects 
from as many different viewpoints as possible. The table given below of 
the 199 different classes of frames thus appears as a basic device for this 
training. 

The possibility seems not too distant of using signals from satellites 
and planets to perform solar frames; this will constrain physicists to study 
in detail some frames not so "physically admissible" as they have done 
until now. Our causal classification of them will help this study. 

The analysis of the causal classes of frames may suggest new ways to 
measure the gravitational field. In this direction, among the unusual frames 
we have already considered, perhaps the more interesting ones are the 
natural frames attached to what we called light-coordinates (Coll, 1985). 
Roughly speaking, they are local charts such that their four coordinate lines 
are lightlike geodesics. In principle, they may be constructed in the domain 
of intersection of four beams of laser light; the four frequencies and the 
six relative angles between the beams constitute a set often quantities which 
may be related to the ten components of the metric tensor, allowing one to 
measure it. 

Another domain in which the present causal analysis of frames is of 
interest is the classification of symmetric frames. The frames usually 
employed privilege some space-time directions (the timelike direction from 
the three spacelike ones in physically admissible frames, the two lightlike 
directions from the two spacelike ones in null frames). Nevertheless, the 
cosmological principle suggests in part 18 that some properties of space-time 
would be best described in such frames that no direction be privileged. Such 

lSThis is to approach to the Greek adoption of sphericity from symmetry considerations 
(Vernant, 1988). 
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frames, constituted by metrically indistinguishable vectors, are called sym- 
metric frames. They have been studied elsewhere from the points of  view 
both of  natural frames and of  metric-concomitant frames (Coil and Morales, 
1991). 

Also, a direct, practical application of  the present work is the taxonomy 
of  local charts. It allows us to label every local chart with a set of  three 
numbers characterizing the causal class of  its associated natural frame (we 
give examples in Section 4). 

Perhaps the more important utility of  the causal classification of  frames 
will be found in the study of  the deformation of  Lorentzian metrics. Indeed, 
when one performs an arbitrary metric deformation, one obtains a mixed 
result: a wanted variation of  the metric itself and a superflous variation of  
the field of  frames (gauge) with respect to which the metric is expressed. 
Our results allow us to reduce the group of  deformations by considering 
its "quot ient"  by the causal classes, that is to say, roughly speaking, by 
considering nothing but the "199th part of  the group" which transforms 
metrics but respects the causal class of  the field of  frames in which they 
are expressed. 

Anyway, the surprise that the richness of  the causal classes of  frames 
has produced in all o f  us shows certainly that we have not yet attained the 
intellectual fight to write the word space-time without its hyphen. 

The paper  is organized as follows: In Section 2 we consider, for the 
sake of  simplicity, some general notions in arbitrary dimensions. In Section 
3 we expose a set of  arguments allowing us to deduce the existence of  the 
199 classes announced. Finally, in Section 4 we present the corresponding 
table of  causal classes and comment on some applications. 

The table of  the causal classes of  frames was presented previously, 
without proof  (Coil and Morales, 1988, 1989). 

2. n -DIMENSIONAL ASPECTS 

(a) Let r denote a frame of  a linear space En, that is, an ordered basis 
of  vectors, r -  {e,,}, a e In - { 1 , . . . ,  n}, and let Jp be any of  the (~) combina- 
tions of  p elements of  In, 1 -< p < n. The p-planes l I ,  o f  En generated by p 
elements of  r, lIp --- {Aheh [h ~ Jp}, A h ~ R, are the adjoint p-planes of  r. Let 
Ar be a homothetic deformation of  r, Ar--  {e" le" - A,~e,,}, X~ ~ R -{0}, and 
Or a permutation of  r, O r - - {e~ , l a '=  0(a)},  O(a) being a permutation of  
In. Two frames r and r' have the same adjoint p-planes, for any p, if and 
only if r' = OAr. 

Let I-Is and II's be two s-planes corresponding, respectively, to the 
combinations Js = {o '1 , . . . ,  ~s} and ' - . . . ,  �9 �9 �9 Js - {try, o"s}, where o" 1 < < tr s 
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and o-~ < .  �9 �9 < or'. We shall say that IIs precedes II'~ if there exists t such 
that trl = o ' ~ , . . . ,  trt_ 1 = o"t-~, o', < o",. Thus, the adjointset of  all the s-planes 
of  r, 

n--1 

n(r)- U Ns 
s = l  

is an ordered set of  2 n -  2 elements. 

(b) Suppose now E,  is endowed with a hyperbolic metric g of  arbitrary 
signature. The causal type of  an s-plane is timelike, null, or spacelike if the 
restriction of  g to it is respectively hyperbolic,  degenerate, or elliptic. The 
causal character of the adjoint set II(r)  is the ordered sequence of  the causal 
types of  the adjoint s-planes of  r. Let r and r'  be two frames with adjoint 
sets H(r) and II(r ' ) ,  respectively. 

Definition. The frames r and r' belong to the same causal class if  there 
exists a permutat ion | such that H(r) and H( |  have the same causal 
character. 

Denote by [r] the causal class of  r, let {0 ~} be the algebraic dual 
coframe of  r = { e~ }, 0 ~ (e~) = ~ ,  and let 0~ - g(0  ~) be the vectors associated 
to 0 4 by g. The causal class [r*] of  the frame r*-={0~} is called the dual 
causal class of  [r]. I f  [r*] = [r], [r] is said to be self-dual. 

The adjoint s-plane of  r* associated to the combination Js= 
{o-1, . . . ,  o-s} is orthogonal to the (n - s ) -p lane  associated to the combinat ion 
Jn-s -= In - Js and we have: 

Proposition 1. The causal class [r] of  a frame r is determined by the 
sequence of  the causal types of  the adjoint s-planes of  r and of  the causal 
types of  the adjoint s ' -p lanes  of  r* where l < - s < - n - k  and s'<_k-1 for 
any integer k <- n - 1. 

(c) It  is known that the hyperbolic type (p, q) of  a metric g, p + q = n, 
is determined by its signature, or(g) --- p - q. In a similar way, we can associate 
to every frame r a causal signature tr(r) which determines the number  of  
vectors of  the frame which are timelike, null, or spacelike. 

Let r be a frame constituted by p timelike, q null, and r spacelike 
vectors, p + q + r = n; the triplet (p, q, r) is called the causal type of  r. On 
the set of  causal types, we define the following order: (p, q, r) precedes 
(p ' ,  q', r ') if  r >  r '  or r =  r' and q >  q'. The ordinal of  the causal type will 
be called the causal signature o" of r. We have: 

Proposition 2. The causal signature tr of  a frame r of  causal type (p, q, r) 
is given by 

1 tr=~(p+ q)(p+ q+ l)+ p+ l 
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Conversely, the causal type can be obtained from the causal signature. 
Taking into account that, for a given o-, s - p  + q is the highest integer 
satisfying s2+ s + 2 ( 1 -  or)_< 0, we obtain the following: 

Proposition 3. Let o" be the causal signature of  a frame; its causal type 
(p, q, r) is given by p = o r -  1 - s(s + 1)/2, q = s - p ,  r = n - s, where 

s = E(�89 1/2-1])  

[ is the integral part  function. 
It  is clear that cr is an integer which satisfies 1 -< or_< (,~-2). In particular, 

the causal signatures o- = 1, o- = 1 + n(n + 1)/2, and o, = (n + 1)(n + 2 ) / 2  cor- 
respond to frames whose vectors are, respectively, spacelike, null, and 
timelike, that is, of  causal types (0, 0, n), (0, n, 0), and (n, 0, 0), respectively. 
The normal frames of  causal type (1, 0, n - 1), which are the generalization 
to n dimensions of  the physically admissible frames of  the space-time, 
have causal signature ~r = 3, and the null frames of  causal type (0, 2, n - 2 )  
have o" = 4. 

Let us note that the order we have assigned to the causal types induces 
an interesting property of  dimensional invarianee: as shown by Proposition 
2, the causal signature of  a frame of  causal type (p, q, �9 ) is independent  of  
the dimension n of  the space. 

(d) From now on, we consider E,  endowed with a Lorentzian metric 
g; we have the following simple lemmas: 

Lernrna 1. Let us consider s linearly independent  directions. (i) I f  they 
are spacelike, they generate an s-plane that can be spacelike, null, or 
timelike. (ii) I f  one of  them is null and the others are spacelike, they generate 
an s-plane that can be null or timelike. (iii) I f  one direction is timelike or 
two of  them are null, they generate a timelike s-plane. 

Lernnrna 2. The null direction of  a Lorentzian frame of causal signature 
o-= 2 cannot be orthogonal to the other n -  1 spacelike directions. 

Consider now the dual frame r* = {0~} o f t ;  for every a, 0~ is orthogonal 
to the adjoint ( n - 1 ) - p l a n e  I I ,_ l  of  r corresponding to the combination 
In - { a } .  Because the preceding lemmas and the fact that 06 is respectively 
spacelike, null, or timelike according to the timelike, null, or spacelike 
character of  I I , _ l ,  the causal type of r* is partially related to the causal 
type of  r. Thus, if ~r(r) = 1, all the adjoint hyperplanes of  r are generated 
by spacelike vectors and r* may have any causal character. I f  o-(r) = 2, only 
one adjoint hyperplane is generated by spacelike vectors; the others are 
generated by n - 2  spacelike vectors and one null vector and, from Lemma 
2, these n - 1  hyperplanes are either one null and the others timelike, or 
they are all timelike. I f  or(r) = 3, there are n - 1 timelike adjoint hyperplanes; 
the other one is generated by spacelike vectors. I f  or(r) = 4, all the adjoint 
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hyperplanes are nonspacelike and at most two of  them are null. I f  o'(r) = 5, 
the causal type of  r is (1, 1, n - 2 )  and, consequently, there are n - 1 timelike 
adjoint hyperplanes; the other one is either timelike or null. If  o ' ( r )=  6, 
there are two timelike vectors; and if or( r )> 6, at least three vectors are 
nonspacelike. Consequently, for or(r)> 5 all the adjoint hyperplanes are 
timelike and hence or(r*) = 1. We have thus shown: 

Proposition 4. Let r be a Lorentzian frame in dimension n. 
then o'(r*) = 1, 2 , . . . ,  (n + 1)(n +2) /2 .  I f  o'(r) = 1, 

If  o'(r) = 2, then (r(r*) = 1, 2, 3, 4, 5. 
If  (r(r) = 3, then (r(r*) = 1, 2, 3. 
If  o'(r) = 4, then (r(r*) = 1, 2, 4. 
I f  o'(r) = 5, then o-(r*) = 1, 2. 
I f  o-(r) > 5, then q(r*)  = 1. 

(e) When o-(r)= o ' ( r*)= 2 the frames are of  causal type (0, 1, n -  1), 
but they may present different properties: 

(a )  Their  spacelike vectors generate a null hyperplane, all the others 
being timelike; in this case the null vectors of  r and r* cannot be collinear. 

(/3) Their spacelike vectors generate a timelike hyperplane in such a 
way that n -  2 of these vectors are orthogonal to the null vector of  the 
frame; in this case the null vectors of  r and r* are necessarily collinear. 

Except for these two cases, all causal properties of  the vectors and 
adjoint hyperplanes of  r are completely determined by o-(r) and (r(r*). 

It is clear that two frames r and r', which differ by a permutation O, 
r ' =  Or, belong to the same causal class. Let us denote by t, i, and e, 
respectively, timelike, null, and spacelike vectors; by a permutation, we 
may associate, to every frame r of  causal character (p, q, r), an ordered 
frame o ( r ) - { t l , . . . , t , , i l , . . . , i q ,  e l , . . . , e r } ,  t~, ij, ek belonging to r. 
Obviously, the ordered frames associated to the frame r are determinated 
up to a permutation O of  the form O = 0p x 0q x 0r, where 0i denotes a 
permutation of  i elements. In general, the dual o*(r) of  an ordered frame 
o(r) is not an ordered frame: o*(r) ~ o(r*). But one can show that, apart 
from the frames belonging to the above case fl, there exist ordered frames, 
which will be noted by c(r), such that c*(r) = c(r*). In the exceptional case 
fl, one can always find ordered frames such that their duals are of  the form 
{el,i ,  e 2 , . . . ,  e,_~}: they will also be denoted by c(r) and, like the ones 
satisfying c*( r )=  c(r*), will he called canonically ordered frames. 

From these considerations and Proposition 4, we can show the 
following: 

Proposition 5. For an n-dimensional Lorentzian metric, the number N 
of  pairs of  canonically ordered frames {c(r), c(r*)} having different causal 
characters is given by N = (n + 1)(n +2)  +9.  
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Table I. 

1 
2 
3 
4 
5 
6 

/ n  

. ~  

Correspondence  Between the Causal  Character  of  n-Dimensional  Lorentzian Frames 
and Their  Duals.  ~ 

1" 2* 2~ 3* 4* 5* 6* . . .  1" . . .  

o o ~  

aThe frames are ordered according to their causal signature ~r. The ~r~' s tand for the sets of  
adjoint  s-planes  o f  the frame, 1 < s < n - 1, and  the co lumn 2~ corresponds to the exceptional 
/3 case ment ioned  in the text. 

(f) Denoting, for brevity by cr* the causal signature of r*, o-* -= o~(r*), 
we have that the table of  the N different pairs {c(r), c(r*)} adopts the aspect 
indicated in Table I. In it, one has l, m -  (,~-2), and 7r7' denotes the set of 
causal types of s-planes, 1 < s < n - 1. The table follows from Propositions 
1, 4, and 5. The above-mentioned property of dimensional invariance 
induced by the chosen order is here clearly apparent: for increasing n, the 
occupied cases remain occupied, and the only occupied cases to be added 
are of the form 7r~ and 7r7. Of course, the number of s-planes contained 
in every case depends, in general, on the dimension n. Its evaluation for 
n = 4 will be our task in the next section. 

Remembering Proposition 1, we have that the next result follows 
directly from Proposition 5: 

Corollary. In dimension 3, there exist 29 causal classes of Lorentzian 
frames. 

3. THE CAUSAL CLASSIFICATION OF SPACE-TIME FRAMES 

(a) For n = 4, we can distinguish N---39 causally different pairs {c(r), 
c*(r)}. From Proposition 1, a complete causal study of the space-time frames 
still requires us to specify the causal types of  the adjoint 2-planes correspond- 
ing to every one of these 39 pairs. 

Let us consider the 2-plane ~xy generated by the vectors x and y. The 
sign e of  the quantity g(x, x )g (y , y ) - [g (x , y ) ]  2 depends neither on the 
choice of the basis on ~rxy nor on the sign of  the signature of the Lorentzian 
metric g. It will be called the causal sign of the 2-plane ~'xr since we have 
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e = + ,  8 =0, or e = - ,  depending on whether wxy is spacelike, null, or 
timelike. 

Let r be the adjoint 2-plane of the frame r = {e~} generated by e~ 
and %, and let 8,~ be its causal sign. Denoting by 8"~ the causal sign of 
the adjoint 2-plane r generated by the vectors 0~ and 0~ of r*, we obtain 
the following result: 

Proposition 6. For any distinct values of the indices a, fl, % and 8, the 
causal signs e~  and e*~ are related by 8~ = -8*8. 

Thus, if {812 813 814 823 824 834} is the ordered set of causal signs of the 
set II of the adjoints 2-planes of r, the corresponding set of r* is given by 
{--834 --824 --823 --814 --813 --812)o 

The invariance group, say Oc, of the pair {c(r), c*(r)} does not respect, 
in general, the order of the causal characters of the adjoint 2-planes; that 
is, the whole class of frames c(r) is too large to be used to distinguish causal 
classes. From now on, we shall restrict c(r) in such a way that those of the 
causal signs that are not invariant by the action of Oc are ordered nonde- 
creasingly (i.e., - ,  0, +). The set of adjoint 2-planes of c(r) so ordered will 
be denoted by c(r 

Now, we are able to study the different causal classes of frames. The 
method works in two steps: first, one obtains the sets c(Tr) associated to a 
given c(r), and second, one checks the sets c*(Tr) corresponding to all the 
possible c*(r). 

(b) Causal classes with or(r)= 1. Since c(r)= {eeee}, the adjoint 2- 
planes of r may have any causal type. If or(r*) = 1, all the causal characters 
of c(r) may be permuted: | ~ 04. Therefore, all the signs of any c(~r) may 
be ordered in a non-decreasing way. The c(~'), considered as frames of the 
6-dimensional bivector space, may be ordered by their causal signs; the 
result is 

{++++++} ,  { o + + + + + } ,  { - + + + + + } ,  { o o + + + + } ,  

{ - o + + + + } ,  { - - + + + + } ,  { o o o + + + } ,  { - o o + + + } ,  

{ - - o + + + } ,  { - - - + + + } ,  { o o o o + + } ,  { - o o o + + } ,  

{ - - o o + + } ,  { - - - o + + } ,  { . . . .  ++}, { o o o o o + } ,  

{ - o o o o + } ,  { - - o o o + } ,  { - - - o o + } ,  { . . . .  o+}, 

{ . . . . .  +}, { o o o o o o } ,  { - o o o o o } ,  { - - o o o o } ,  

{ - - - o o o } ,  { . . . .  oo}, { . . . . .  o}, { } 

Thus, there are 28 causal classes with o-(r)= o-(r*)= 1. For o-(r)= 1 and 
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or(r*) _> 2, the corresponding causal classes are the dual of  the causal classes 
with or(r) - 2 and or(r*) = 1. These will be obtained below. 

(c) Causal classes with or(r) = 2. Now c(r) = {ieleze3} and, from Lemma 
2, the three adjoint 2-planes (iel), (ie2), (ie3) cannot be null at once. Either 
(1) they are timelike or (2) two of them are timelike and the other one is 
null, or (3) only one is timelike and the others are null. Denoting by A any 
causal character (that is, A = t, i, e for vectors, and A = - ,  0, + for 2-planes), 
we have that the cases 1 and 2 correspond to c*(r) = {Aeee} since the adjoint 
hyperplanes ~ -= (ie2e3), Yg2- (iele3), and ~3-= (iele2) are timelike. For them 
we have Oc = 03. Let us choose el and e2 in such a way that the first and 
the second adjoint 2-planes of  r are timelike. We have then { - - - A A  A} 
for case 1 and { - - 0 A A A }  for case 2. 

For case 1, no spacelike vector of  r has been privileged, so that we can 
take the 2-planes [(ele2)(ele3)(e2e3)] of  the hyperplane Y(4-= (ele2e3) with 
their causal signs in a nondecreasing order: 

[ - - - ]  [ - -o ]  [ - -+]  [--oo] [-o+] 

[-++] [ooo] [0o+] [o++] [+++] 

For case 2, the vector e3 remains privileged with respect to el and e2~ 
which are still interchangeable. For every causal type of  the 2-plane (ele2), 
we can take the two 2-planes (ele3) and (eze3) with their causal signs in a 
nondecreasing order. Now, in terms of  their signs, the adjoint 2-planes of  
~a 4 are 

[zx--] [A-o] [zx-+] [aoo] [A0+] [a++] 

For cases 1 and 2, there are 28 different sets c(~r). The corresponding 
dual sets e*(cr) are obtained from Proposition 6. Now, taking into account 
Lemma 1, it remains to check the sets c*(~-) that are compatible with every 
one of  the three sets c*(r) = {Aeee}. Of course, if c*(r) = {eeee} there are no 
additional restrictions. 

If  c*(r) = {teee}, the first three signs in c*(Tr) are negative. So, the last 
three signs in c(~)  are positive. The possible sets c(~-) are { - - - + + + }  and 
{--o+++}. 

If  c*(r)={ieee}, the first three signs in c*(zr) are nonpositive and 
simultaneously nonzero; this implies the following possibilities for c*(Tr): 
{- o o +++}, {--  o +++}, {---+++}, {- oo o ++}, { - -  oo ++}, {oo-o++h 
{ -  0 - 0 + + } ,  and { - - -  0 ++}. But { -  00 +++}  and { -  000 ++} are forbidden 
by the following simple lemma. 

Lemma 3. If  c*(r) = {ieee} and c*(~r) = {--00AA+}, then c(r) = {Aiee}. 
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Now c*( r  is not compatible with c*(r): since the first 
two adjoint 2-planes are null, the fourth must be spacelike. In consequence, 
if c(r)= {ieee} and c*(r) = {ieee}, then 

c(~r): {---0++} {---+++} {--00++) {--0+0+} {--0+++} 

Finally, let us consider case 3, that is, the case when one of the adjoint 
hyperplanes ~1, ~2, ~3 is null (the others being necessarily timelike). The 
frame r* also contains the null direction of r. Suppose ~3 = (ie2e3) is the 
null hyperplane; this fixes the first spacelike vector of r: the adjoint 2-plane 
(iel) is timelike. Since the adjoint 2-plane (e2e3) is spacelike, we have 
c(~r) = {-00AA+}.  The fourth and the fifth signs of c(~r) are interchange- 
able, that is, Oc ~ 02; setting them in a nondecreasing order, we have 

c(~): {-oo--+} (-oo-o+} {-oo'++} 

{-oooo+} {-ooo++} {-oo+++} 

From Proposition 6 it then follows that 

c*(~-): (-++oo+) {-o+oo+} {--+oo+} 

{-oooo+} {--ooo+} {---oo+} 

which are all compatible with c*(r)= {eiee}. If c*(r)= {flee}, only c*(1r)= 
{ - - - 0 0 + }  is possible. If c*(r)= {iiee}, the sets c*(~r) neither contain the 
sign plus in the first three places nor are of the form c(~r*)={-0000+},  
because then the second vector of r would be null, in contradiction with 
c(r)={ieee}. Consequently, the only possible c*(~-) are { - - 0 0 0 + }  and 
{---oo+}. 

(d) Causal classes with or(r)=3. We have c(r)={teee} and c(1r)= 
{ - - - A A A } .  From Proposition 4, one has or(r*)= 1, 2, 3, that is, c*(r)= 
{Aeee} and consequently Oc ~ 03. Thus, the signs [AAA] can always be 
ordered in a nondecreasing way, 

c(~):~{ } { . . . . .  o} ( ~} ( oo} { . . . .  o+}~ 
L { . . . .  ++} {---ooo} {---oo+} {---o++} {---+++}J 

and their respective duals are 

~{++++++} {o+++++~ {-+++++~ {oo++++} {-o++++}~ 
c*(~):t{--++++} {ooo+++} {-oo+++} {--o+++} {---+++}j 

If c*(r)={eeee}, all the above c*(Tr) are possible by Lemma 1. If 
c*(r) = {teee}, only c * ( ~ r ) = { - - - + + + }  is possible. And, if c*(r)= {ieee}, 
the possible c*(~r) are { - - - + + + }  and { - - 0 + + + } .  In fact, the three first 
adjoint 2-planes of c*(r) are simply restricted to be not spacelike, but 
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c*(r = {000+++} is forbidden by Lemma 2 and c*(~r) = { - 0 0 + + + }  can- 
not occur by Lemma 3. 

(e) Causal classes with or(r)= 4. Now, c( r )=  {ili2ele2} and the causal 
types of the adjoint 2-planes are of the form { . . . . .  a}, where o stands for 
- or 0. There are the following possibilities: 

1. { . . . . .  A} 
2. { . . . .  Oa}, {-----O-A} (0o), {---O--A} (0,), {-O------A} (Ol• 
3. { - - - 0 - 0 a } ,  ( - 0 - 0 - A }  (0.) 
4. {----0 0 -  A}, { - o - - o a }  (0,) or (0~) 
5. { - - - 0 0 + } ,  { - 0 0 - - + }  (03 
6. { - -ooo+} ,  { - o - o  o+} (o,), ( -o  o-o+} (o0, {-o o o-+} (o, xoo) 
7. { -oooo+}  

Every one of these rows corresponds, for every value of A, to the same 
causal class. The first term on every row has already the correct order, so 
that it is the causal sign representation of  the corresponding c(zr). Also, 
we write the permutation going from every causal configuration of  adjoint 
2-planes to the ordered set c(~r); thus, 01 (resp. 0e) is the transposition of 
the null (resp. spacelike) vectors of r. In 5-7 the adjoint 2-plane (e#2) is 
spacelike since both vectors el and e2 are orthogonal to the same null 
direction. If  c*(r) = {eeee}, the adjoint hyperplanes ~ a  1 ~--" (i2ele2) and ~a  2 

(i~ele2) are both timelike, and the adjoint 2-planes are { . . . . .  a}, 
{ . . . .  0 a}, { - -  0 - 0 a}, and { - -  0 0 - a}. I f  c*(r) = {i2eee}, then ~1 is null 
and ~2 is timelike. In this case, there are two possibilities for 
c ( z r ) : { - - - 0 0 + }  and { - - 0 0 0 + } .  If  c*(r)={i2i#e}, then c(Tr)= 
{ - 0 0 0 0 + }  due to the fact that ~ and ~2 are null. Note that the null 
directions of r and r* are the same, but their order is interchanged. 

(f) Causal classes with ~r(r) = 5. Now, c(r) = {tiene2} and the three first 
adjoint 2-planes of r are timelike. The adjoint hyperplane ~ = (iele2) is 
null or timelike. If  ~ is null, then c(~r)= { - - - 0 0 + }  and c(r*)= {ieee} 
(with the same null direction as r). If  ~ is timelike, that is, c(r*) = {eeee}, 
then the causal characters of  the adjoint 2-planes [ (ie~) (ie2) (ele2) ] are [ - -  a]  
or [ -  0 a].  In the latter case we can set the two first signs in increasing order 
due to the fact that | is now the transposition of el and e2. 

(g) Causal classes with t r(r)> 5. From Proposition 4, c(r*)= {eeee}, 
and these causal classes are obtained directly as follows. If  tr(r) = 6, then 
c(r) = {tree} and c(w) = { . . . . .  A}. If o'(r) = 7, then c(r) = {iiie} and c(ar) = 
{ . . . . . .  }. Because ofOc ~ 03 the signs [o o o] can be placed in nondecreasing 
order. This gives four causal classes. If  t r (r)= 8, then c(r)= {tile}, c(zr)= 
{ . . . . . .  }, and there are three causal classes. If  t r (r)= 9, then c(r)= {ttie} 
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and c(~) = { . . . . . .  }. I f  tr(r) = 10, 11, 12, 13, 14, or 15, then all the adjoint 
2-planes of  r are timelike, that is, c(r { }. 

(h) Using the preceding results and counting the different possibilities, 
we have the following result. 

Theorem. Space-time admits 199, and only 199, causal classes of frames. 

4. DISCUSSION AND COMMENTS 

(a) The considerations of the preceding section not only lead to the 
above theorem, but also allow us to construct explicitly the characterization 
of all the causal classes. This characterization is given in Table II. Table II 
differs from Table I in that it is a particularization to dimension n = 4; in 
that it makes explicit the notation of the causal character of  the frames r 
and r* (remember that, as shown by Proposition 3, there is a bijection 
between the causal character of r and its causal signature); in that it splits 
the cases corresponding to the pairs {r, r*} [by giving them in convenient 
order we may identify r and c(r)]; and in that it makes explicit the notation 
of the causal character of the adjoint 2-planes. 

The natural reading of  Table II begins from the left. For example, let 
us be given a frame of causal type {iiee}; the corresponding row of the table 
indicates that it may belong to 3 x 4+ 2+ 1 = 15 causal classes. If, in addition, 
we know that its dual is of causal type {ieee}, the intersection of the row 
with the corresponding column of duals restricts the number of classes to 
two. They correspond to the only possibilities, for the adjoint 2-plane of 
the first and last vectors of r, of being timelike or null. 

(b) Thus, we can see some simple properties: (i) There are impossible 
Lorentzianframes (blank cases of the table); for example, there is no frame 
{teee} having as dual a coframe {eiee}. (ii) There exist only six causal classes 
which may be univocally determined by the causal character of the frame 
(the six last classes of the first column). (iii) Only the frames of causal 
character {eeee) with dual {eeee} can admit any of the 28 possible causal 
configurations of adjoint 2-planes. (iv) The frames {ieee} with dual {eeee}, 
or conversely, may belong also to 28 causal classes, but they do not 
correspond to the 28 causal configurations of adjoint 2-planes; the number 
28 is attained by different permutations of some configurations: for example, 
for the first of these frames the first eight configurations as well as the 1 lth, 
12th, 16th, 17th, 22nd, and 23rd are absent (this arrangement corresponds 
to that induced by the causal signature, and coincides with the arrangement 
shown in the first case); in fact, among the 28 causal classes, one half are 
permutations of the configurations of the other half. 
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(c) As shown by Table II, a causal class is, generically, given by the 
triplet (r, ~r, r*) involving 4 + 6 + 4 = 14 symbols. The causal signature allows 
us to condense them: or(r), the ordinal integer of the first column, stands 
for the four first causal symbols; and this similarly works tr(r*), except for 
r* = {eiee}, for which o'(r*) is denoted 2t3 (see Table II). Due to the features 
indicated in property (iv) above, a set of indices (say, a, b, c , . . . )  is needed 
to indicate permutations of  the same causal configurations of 2-planes. The 
notation we have adopted is given in Table III. A causal class may thus be 
indicated by three numbers, a sort of causal coordinates; for example, 
(4:26a:1) stands for r = {iiee}, r = { - - 0 - 0 - } ,  r* = {eeee}. 

(d) In paragraph (b) of Section 2 we defined self-dual causal classes. 
We see now, from Table II, that space-time admits 11 self-dual classes; in 
causal signature notation they are (1:10:1), (1:13:1), (1:17:1), (1:22:1), 
(2:10:2), (2:13:2), (2:13b:2), (2:13d:2,), (2:17:2,), (3:10:3), and (4:17:4). 

(e) As was indicated in the introduction, we are now able to label 
coordinate systems from the causal point of  view. For example, the coordin- 
ates (t, x, y, z) for the metric 

ds  2 = dt2 + 1 e 2y d x  2 - d y  2 -  d z 2 + 2  e y dt dx 

(homothetic to the Gfde l  solution) are not physically admissible; its natural 
frame {0t, 0x,0y, Oz} belongs to the causal class (6:21:1). Similarly, for 
coordinates (u, r, 0, ~b) for the metric 

d$ 2 = A d u 2 + 2  d u  dr  - r E ( d 0 2 +  s in  2 0 d~b 2) 

Table IlL Relation Between the Causal Signature and the Causal Character of the 
Adjoint Planes. ~ 

1 = { + + + + + + } ,  2a={O+++++} ,  2~ = { + + + 0 + + } ,  2~={+0++++} ,  
3 = { - + + + + + } ,  4 ~ = { 0 0 + + + + } ,  4 b = { 0 + + 0 + + } ,  4 ~ = { + + 0 0 + + } ,  
4a = {+0+0++} ,  5~ = { - 0 + + + + } ,  5b = { - + + 0 + + } ,  5~ = { + + - 0 + + } ,  
6 = { - - + + + + } ,  7~ = { 0 0 0 + + + } ,  7 b = { 0 0 + 0 + + } ,  7 ~ = { 0 + 0 0 + + } ,  
8~={-00+++}, %={-0+0++}, 8~={-+00++}, 8a={O+-O++}, 
9~={--0+++}, 9b={----+O++}, 9~={--+--0++}, 10 ={------+++}, 

11 ={0000++}, 12~={--000++}, 12b={00--0++}, 13a={----00++}, 
13b={----O+O+}, 13~={--0--0++}, 13a={--00--++}, 14~={------0++}, 
14b----{----0--++}, 14~-----{----0+--+}, 15 ={ . . . .  ++}, 16 ={00000+}, 
17 = { - 0 0 0 0 + } ,  lSa = { - - 0 0 0 + } ,  lSb ={-- - -0+00},  18c = {--00--0-F}, 
19a={---oo+}, 1%={--0-0+}, 19c={--00-+}, 19d={----0+-0}, 
19e={--00----+}, 20~={ . . . .  0+}, 20b={----0----+}, 20c=(----0+----}, 
21 ={ . . . . .  +}, 22 = { 0 0 0 0 0 0 } ,  23 = { - 0 0 0 0 0 } ,  24 = { - - 0 0 0 0 } ,  
2 5 a = { - - - 0 0 0 } ,  2 5 b = { - - 0 - 0 0 } ,  2 5 c = { - - 0 0 - 0 } ,  26~={ . . . .  00}, 
2 6 b = { - - 0 - - 0 } ,  2 6 c = { - - 0 0 - - } ,  26d={----0--0--}, 274={ . . . . .  0}, 
2 7 b = { - - 0 - - - } ,  27~--{ . . . .  0-} ,  28 ={ . . . . . .  } 

aThe indices differentiate the permutations of the adjoint planes that appear in Table II. 
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the natural f rame {au, ar, oo, a~,} belongs to the causal classes (5:19:2), 
(4:17:4), or (2:8:5), depending on whether A > 0 ,  A = 0 ,  or A < 0  [the 
well-known Vaidya solution corresponds to A = 1 - 2 m ( u ) / r ] .  This shows 
that the unusual  character of  a coordinate system may be quantitatively 
characterized. 

(f) Table I I  may be considered as a sort of  graphic representation of  
a theorem o f  signature. The  hyperbolic character and the sign of  signature 
of  a regular matrix can be obtained from the table by analyzing the sign of  
the second-order  principal minors (they are nothing but the causal signs) 
and their compatibili ty with the signs of  the terms of  the principal diagonals 
of  the matrix and its inverse. For example,  if a matrix having a ~  = 0 is to 
be hyperbolic,  the second-order  principal minors must all be strictly negative 
and then we know that all the elements a ~ of  its inverse will have the 
same sign e; it follows that the signature of  the metric is ( - e ,  e, e, e), as 
corresponds to the case {iiii, , eeee} of  the table. 

(g) Let us note that, except for the cases (3:10:3) and (4:17:4), the 
boundary  of  the impossible Lorentzian frames is a "convex"  stair; these 
two distinct cases correspond to the physically admissible and null frames. 
What  is the role of  this "peninsular"  isolation in our inertia to conceive 
physically other different frames? 
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