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Emission coordinates are those generated by positioning systems. Positioning systems are physical

systems constituted by four emitters broadcasting their respective times by means of sound or light

signals. We analyze the incidence of the space-time causal structure on the construction of emission

coordinates. The Newtonian case of four emitters at rest is analyzed and contrasted with the corresponding

situation in special relativity.
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I. INTRODUCTION

The study of space-time coordinate systems and the
different protocols associated with their physical construc-
tion is a broad and open field in current physics [1–10].
Here, we consider those coordinate systems constructed
from positioning systems that are basically defined by four
clocks (emitters) broadcasting their respective times by
means of some type of signal (electromagnetic, sonic).
At each space-time event reached by the signals, the re-
ceived 4 times define the emission coordinates of this event
(with respect to the given positioning system).

A complete description of any coordinate system must
mention the protocols for the physical construction of its
geometric elements (coordinate lines, coordinate surfaces,
and coordinate hypersurfaces) which may have associated
different causal characters (spacelike, timelike, null).
Thus, for example, these coordinate elements may be per-
formed, among other ways, by means of clocks for timelike
lines, laser pulses for null lines, rods or inextensible
threads for spacelike lines, laser beams for timelike sur-
faces, light-front signals for null hypersurfaces, and so on.

Positioning systems, and their emission coordinates,
may be constructed both in Newtonian and relativistic
physics and their definition does not involve the use of
any synchronization convention. The physical protocols
allowing the realization of emission coordinates involve
the velocity of the used signal and the configuration (kine-
matics) of the emitters. Thus, the coordinate hypersurfaces
of an emission coordinate system are the four families of
space-time cones with vertices on the events of the world
lines of the emitters, the emission cones generated by the
signals. For homogeneous and nondispersive media, the
emission cones are wholly determined by the speed of the
broadcast signals.

A coordinate system has associated 4 one-parametric
families of hypersurfaces, 6 two-parametric families of
surfaces, and 4 three-parametric families of lines. The set

of causal characters of these 14 geometric elements is said
the causal signature of the coordinate system. A causal
class is the set of all coordinate systems having same
causal signature.
The space-time coordinate systems have been classified

from the causal point of view, and the result is [11,12]: the
number of causal classes of Newtonian and relativistic
coordinate systems is 4 and 199, respectively.
The assignment of one specific causal class to a coor-

dinate system in a region of the space-time supposes that
the causal characters of all the geometric elements of the
coordinate system (lines, surfaces and hypersurfaces) are
the same at any point of the region or, in other words, that
the region under consideration is a causal homogeneous
region for the coordinate system in question. Therefore,
there are 4 or 199 causally different ways to parametrize
the events in a causal homogeneous region of the space-
time, according to the classical or relativistic description
that we want to make.
In dealing with evolution formalisms, one usually con-

siders standard coordinate systems which are adapted to a
3þ 1 splitting of the space-time in space plus time. The
space-time is thus represented as (absolutely or relatively)
foliated by a one-parametric family of spacelike hyper-
surfaces (instants of a synchronization). This provides the
standard space-time decomposition that, of course, is not
the only admissible one.1 As the causal classification of
space-time coordinate systems shows, other three causally
different decompositions exist in Newtonian physics, and
other 198 exist in relativity.2

Among these unusual space-time decompositions, those
associated with positioning systems deserve special atten-
tion. The corresponding four-dimensional region is sliced
by the histories (emission cones) of the broadcast signals.
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1See Ref. [11] in connection with the role that the synchroni-
zation group plays in the physical realization of unusual
Newtonian and relativistic space-time parametrizations.

2Remember that other formulations already exist in relativity
(different from the 3þ 1 one) offering complementary (or
alternative) advantages to solve Einstein equations (see also
footnote 5 below).
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The relativistic theory of positioning systems using elec-
tromagnetic signals has been analyzed elsewhere [4–6,13–
15], remarking their incidence in the current global navi-
gation systems. Of course, the corresponding theory with
subluminous signals deserves relevant interest in connec-
tion with sonic positioning systems, both in the Newtonian
and in the relativistic regimes.

Here, we analyze the causal properties of the emission
coordinates and, for the sake of simplicity, we consider the
case of four emitters at rest. Elsewhere, we have obtained
(in the Minkowski space-time) the transformation between
inertial and light emission coordinates for arbitrary mo-
tions of the emitters [16,17].

The results reported in this paper lay the foundations for
a Newtonian theory of positioning systems, an issue with
potential applications. Indeed, nowadays there is an in-
creasing interest in the study and development of indoor
and ultrasonic positioning systems (see, for instance, [18]).

The paper is organized as follows. In Sec. II we sum-
marize the main results on the causal classification of
Newtonian and relativistic space-time frames and coordi-
nate systems. For a more detailed discussion, see [11,12].
In Sec. III we analyze the causal properties of Newtonian
emission coordinates. Any emission coordinate domain
always presents three regions corresponding to the three
nonstandard Newtonian causal classes. The relativistic
situation is studied in Sec. IV, where one may distinguish
103 causal classes of emission coordinates. One causal
class corresponds to luminous signals and is always caus-
ally homogeneous. The remaining 102 causal classes may
be physically constructed using sound signals. Then, de-
pending on the velocity of the emitted signal and on the
configuration of the emitters, the domain of the emission
coordinates presents different causal homogeneous re-
gions. Finally, in Sec. V we present a discussion of our
results and some future perspectives.

II. THE CAUSAL CLASSIFICATION OF SPACE-
TIME COORDINATE SYSTEMS

In this section, we summarize the main results about the
causal classification of Newtonian and relativistic frames
and coordinate systems. The proof of these results has been
presented in Refs. [11,12].

A. Notion of causal class

In the four-dimensional space-time, the four vectors of a
frame fvAg4A¼1 also define six planes�AB generated by the
pairs fvA; vBg, A � B, and form hyperplanes �ABC gener-
ated by the triplets fvA; vB; vCg, A � B � C � A; these
last ones are biunivocally determined by the four orthogo-
nal one forms, �A, whose set constitutes the dual frame
f�Ag4A¼1 of fvAg4A¼1, �

AðvBÞ ¼ �A
B. The set of the causal

characters of these 14 geometric elements fvA;�AB; �
Ag is

called the causal signature of the frame and, in an abridged
form, it is denoted as fcA;CAB; cAg. Here, the symbol cA is

the causal character of the vectors vA; CAB, with A < B, is
the causal character of the plane generated by vA and vB;
and cA is the causal character of the covector �

A. Evidently,
cA also provides the causal character of the hyperplane
generated by the vectors vB, vC, and vD which are different
from vA.
By definition, the causal class of a frame is the set of all

the frames that have the same causal signature; and the
causal class of a coordinate system fx�g4�¼1 in a causal

homogeneous domain of the space-time is the causal class
fc�;C��; c�g of its associated natural (or coordinate) frame

at the events of the domain. The c�’s are the causal
characters of the vectors @� � @

@x� of the natural frame

f@�g itself, and the c�’s are the causal characters of the
1-forms dx� of the coframe fdx�g. Four families of coor-
dinate hypersurfaces are associated with this coframe, and
their mutual intersections give six families of coordinate
surfaces whose causal characters are precisely given by
C�� (of course, the mutual intersections of these surfaces

give the four congruences of coordinate lines of causal
character c�). We have chosen the following order for the
causal characters of a causal class: fc1c2c3c4;
C12C13C14C23C24C34; c1c2c3c4g.
We use the following notation. Roman letters (e, t, l)

denote the causal characters (spacelike, timelike, null) of
vectors and coordinate lines. Capital letters (E, T, L)
denote the causal characters (spacelike, timelike, null) of
the associated planes and coordinate surfaces. And Italic
letters (e, t, l) denote the causal characters (spacelike,
timelike, null) of covectors which also allows us to deter-
mine the causal characters (timelike, spacelike, null, re-
spectively) of the coordinate hypersurfaces.

B. 4 causal classes of Newtonian coordinate systems

The Newtonian causal structure admits only two causal
characters. Spacelike directions are those defined by any
pair of simultaneous events. Timelike directions are those
defined by pairs of nonsimultaneous events (there is no
absolute cone associated with light propagation or with any
other physical signal). Consequently, the study of the
causal classification of coordinate systems in the
Newtonian space-time is simpler than the relativistic one.3

The Newtonian causal structure is determined by an
exact 1-form � ¼ dt, called the time current and a rank
three contravariant positive space metric �� satisfying the
orthogonality condition ��ð�Þ ¼ 0. Each hypersurface t ¼
const is the loci or space of simultaneous events at the
instant t.
At every event, the causal character of directions, planes

and hyperplanes is given in terms of � and �� according to
the following definitions.

3To our knowledge, and in spite of its simplicity, the causal
classification of Newtonian coordinates has been first given in
[11].
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Avector v is spacelike if it is instantaneous with respect
to the time current �, i.e. if �ðvÞ ¼ 0. Otherwise, the vector
is timelike.

Correspondingly, a covector ! � 0 is timelike if it has
no instantaneous part with respect to the space metric ��,
i.e. if ��ð!Þ ¼ 0. Otherwise, the covector ! is spacelike.
The sole timelike codirection is that defined by the current
� at every event, because �� has rank 3.

A r-plane � is spacelike if every vector v in it is
spacelike. Otherwise,� is timelike, i.e. it contains timelike
vectors.

A r-coplane � is timelike if it contains the time current
�. Otherwise � is spacelike.

These notions are also naturally valid for vectors fields
and 1-forms in causal homogeneous regions, and so, they
are obviously extended for curves and surfaces.

The analysis presented in [11] shows that only the
following causal signatures

fteee;TTTEEE; teeeg fttee;TTTTTE; eeeeg
fttte;TTTTTT; eeeeg ftttt;TTTTTT; eeeeg

are admissible by the Newtonian causal structure.
Standard frames, i.e. those constructed with three rods

and one clock at rest with respect to the rods, belong to the
causal class fteee;TTTEEE; teeeg. The history of the clock
is a timelike coordinate line. The other coordinate lines are
spacelike straight lines tangent to the rods at every
(clock’s) instant.

Geometrically, this causal class may be visualized as
follows. The natural coframe is of causal type fteeeg. This
means that the family of (instantaneous) hyperplanes gen-
erated by the directions of the three rods is spacelike, and
the three families of hyperplanes (each one being the
history of the plane generated by two rods) are timelike.
Then, the mutual cuts of these coordinate hyperplanes give
the six families of coordinate planes, (three of them being
timelike and the other three being spacelike, fTTTEEEg).
The coordinate planes cut in four congruences of coordi-
nate lines (one being timelike and the others being space-
like, fteeeg).

In [11], we have considered the other three nonstandard
Newtonian frames, which may be physically constructed
from a lineal change of the standard inertial synchroniza-
tion. The Newtonian positioning systems and their associ-
ated emission coordinates provide another physical
example of frames with these, up to now, unusual causal
signatures (see Sec. III below).

It is to be remarked that the four Newtonian causal
signatures also exist in relativity, according with the causal
classification of the Lorentzian frames (see Fig. 1 in the
next subsection).

C. 199 causal classes of relativistic coordinate systems

The relativistic causal structure admits three causal
characters. Directions, planes or hyperplanes at a given
event are spacelike, null or timelike if they are, respec-
tively, exterior, tangent or secant to the light cone of this
event.
In Lorentzian geometry, and with the signature

(�þþþ), a vector a � 0 is spacelike, null or timelike
if a2 � a � a is, respectively, positive, zero or negative, a �
b standing for the Minkowski scalar product of a and b.
Also, the plane generated by the vectors a and b is space-
like, null or timelike if ða ^ bÞ2 ¼ a2b2 � ða � bÞ2 is posi-
tive, zero or negative. And finally, the hyperplane
generated by a, b and c is spacelike, null or timelike if ða ^
b ^ cÞ2 is positive, zero or negative, with

ða ^ b ^ cÞ2 ¼
�������������

a2 a � b a � c
a � b b2 b � c
a � c b � c c2

�������������:

Now, the space-time metric defines a one-to-one corre-
spondence between vectors and covectors at every event
that obviously allows us to define the causal character of
codirections and coplanes. Furthermore, all these pointlike
notions are naturally extended to tensor fields and r-forms
on homogeneous causal domains.
In [12] we have obtained the 199 causal signatures

compatible with a Lorentzian 4-dimensional space-time
structure. They are shown in Fig. 1 which provides the
causal classification of the relativistic coordinate systems.
The reading of Fig. 1 is as follows.4

(1) The first column shows the sets of causal characters
cA of the covectors of the coframe (that also gives
the sets of causal characters of the four hyperplanes
of the frame or of the four families of coordinate
hypersurfaces of a coordinate system). Only 15 sets
are possible, up to permutations [12].

(2) The first row shows the sets of causal characters cA
of the vectors of the frame (that also gives the sets of
causal characters of the congruences of coordinate
lines of a coordinate system). Only 16 sets are
possible, up to permutations [12].

(3) Each nonempty ðp; qÞ-cell (1 � p � 15, 1 � q �
16) shows the set of causal characters CAB of the
planes of vectors of the qth frame, which corre-
sponds to the pth coframe or, correspondingly, the
set of causal characters of the six coordinate sur-
faces of a coordinate system.

(4) Permutations of the vectors of the frame or of the
covectors of the coframe induce permutations of the

4The notation used in [12] is lightly different, but completely
equivalent, to the present notation. In [12], the signs ðþ;�; 0Þ
stand for the causal characters (spacelike, timelike, null) of the
associated planes and coordinate surfaces, while here they are
denoted by capital letters (E, T, L), respectively.
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FIG. 1 (color online). The 199 causal classes of relativistic frames and coordinates (cf. Ref. [12]).
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planes and hyperplanes, but do not alter their causal
class. Correspondingly, permutations of the lines or
hypersurfaces of a coordinate system induce permu-
tations of the coordinate surfaces of the system, but
do not alter its causal class.

Note that in Fig. 1 one must distinguish those coframes
of type fleeeg having dual frame of the type fleeeg from
those having dual frame of the type feleeg. These two cases
are not causally equivalent. When the frame is fleeeg, the
hyperplane generated by the three spacelike vectors is null,
and the null vector of the frame and the null covector of the
coframe have associated, by the metric, different null
directions. When the frame is feleeg, such a hyperplane is
timelike, and the null directions are metrically equivalent.

For example, a coordinate system whose causal class is
felee;TEELLE; leeeg has associated a family of null coor-
dinate hypersurfaces and three families of timelike hyper-
surfaces. Their mutual cuts give one family of timelike
surfaces, two families of null surfaces, and three families
of spacelike surfaces. The intersections of these surfaces
give a congruence of null lines and three congruences of
spacelike lines. In this case, the null vector and the null
covector are metrically identified. This class includes some
particular types of generalized Bondi-Sachs coordinates.5

According to this example, the above distinction is very
relevant to obtain the complete classification of the gener-
alized Bondi-Sachs coordinates in 13 causal classes [22].

Relativistic standard frames have the causal signature
fteee;TTTEEE; teeeg. Other familiar relativistic frames
are those constituted by two null vectors and two spacelike
ones. Among them, the more popular are those that belong
to the causal class fllee;TLLLLE; lleeg (that allows us to
define the complex Newman-Penrose tetrads). Usually,
such frames are constructed by taking advanced and re-
tarded null coordinates ðu; vÞ on a family of timelike
surfaces and two angular coordinates ð�;�Þ on the or-
thogonal (spacelike) surfaces.6

On the other hand, the causal signature of the real null
frames (those constituted by four independent real null
vectors) is fllll;TTTTTT; eeeeg. Some time ago, Zeeman
[23] considered real null frames as a useful tool to deter-
mine the causality group of the Minkowski space-time.7

The causal signature associated with real null frames may
be seen as the algebraic dual of the causal signature of the
light emission coordinate systems, feeee;EEEEEE; llllg,
that will be considered in detail in subsection IVB below.
Of course, we can also consider Lorentzian frames con-
stituted by four timelike or four spacelike vectors.8

These examples show the role that the causal classifica-
tion of relativistic frames plays in the physical construction
of admissible space-time coordinates. However, it becomes
apparent that only a few of the causal classes have been
commonly employed until now. In fact, the overwhelming
majority of the relativistic causal classes, explicitly given
in Fig. 1, remains vastly unexplored. This paper may be
seen as a piece to induce the study and physical construc-
tion of these other space-time coordinate systems.

III. NEWTONIAN EMISSION COORDINATES

In this section we deal with the three nonstandard pa-
rametrizations of Newtonian space-time domains and we
show that they may be physically constructed by means of
emission coordinates. The corresponding relativistic situ-
ation is addressed in the next section.

A. Emission-inertial coordinate transformation

Suppose an inertial medium in which a class of signals
(sound, light) propagates at constant velocity v. Let �ðtÞ be
the space-time pointlike trajectory of an emitter clock that
uses such signals to continuously broadcast its time t. In
the space-time, the front waves describe thus sound-cones
or light-cones carrying the value t ¼ const. Four such
emitters �AðtÞ (A ¼ 1, 2, 3, 4) fill the space-time with
four (one-parameter) families of cones tA ¼ const which
generically define a space-time system of emission
coordinates.
Let us take every event as the vertex of the past cone of

velocity v corresponding to the signals in question. This
cone cuts the four histories �AðtÞ of the clocks at the clock
times tA. Then, the set ftAg constitutes the four emission
coordinates of the event.
Here we will consider the simple case of four emitters at

rest with respect to the inertial medium referred to a
standard coordinate system ft; xig ¼ ft; ~rg, of world lines

�AðtÞ ¼ ðt; ~cAÞ: (1)

Then, the signal emitted by the clock �A at the instant tA at
velocity v describes in the space-time a cone of equation

5The Bondi-Sachs coordinates [19,20] were introduced to split
Einstein equations in characteristic form using null hypersurfa-
ces, in connection with astrophysical scenarios described by
bounded radiating systems and asymptotic flatness. These coor-
dinate systems and their generalizations [21] are very appropri-
ate for investigating certain global properties at null infinity.

6Notice that, starting from two null families of coordinate
hypersurfaces and two timelike ones, that is, from a coframe of
the type flleeg, there exist 14 causal classes of coordinate
systems, different from fllee;TLLLLE; lleeg, requiring different
physical constructions (see Fig. 1).

7Light coordinates [3], those that are built from the intersec-
tion of four beams of light, provide a physical realization of the
causal class fllll;TTTTTT; eeeeg.

8The interest of the wholly symmetric realizations of these
frames was stressed by Derrick [7] and also by Finkelstein and
Gibbs [24]. The causal classification of Lorentzian symmetric
frames in seven causal classes was studied in [8]. More recently,
Rovelli [9] and Blagojević et al. [10] have considered physical
constructions of null symmetric coframes in the context of
positioning systems.
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vðt� tAÞ ¼ j~r� ~cAj; (2)

so that the emission coordinates ftAg are related to the
inertial ones ft; ~rg by

tA ¼ t� 1

v
j~r� ~cAj: (3)

To know the causal class of the emission coordinates ftAg
it is convenient to consider the coordinate r-forms.

B. Emission coordinate hypersurfaces

From (3), the coframe of 1-forms fdtAg may be written

dtA ¼ dtþ!A; !A � � 1

v
uA; (4)

where uA is the 1-form associated to the generically unit
spacelike vector ~uA, given by

~u A � ~r� ~cA

j~r� ~cAj ; (5)

uA ¼ �ð ~uAÞ, � being the 3-dimensional inverse of the
structure metric �� associated to the inertial observers @t,
�:�� ¼ I � � � @t, and � being the time current.9 The
Jacobian matrix of the transformation (3) is not defined
at the events ðt; ~rÞ where ~r ¼ ~cA, that is to say, along the
clock world lines �A. Below we shall see other events
where the Jacobian matrix is not defined. Out of these
world lines one has !A � 0 and thus dtA is spacelike (it
is not collinear to the time current). Consequently, it
follows.

Proposition 1. The coframe of the Newtonian emission
coordinate system is of causal type feeeeg.

C. Emission coordinate surfaces

The coplanes of the coordinate system are determined
by the 2-forms

dtA ^ dtB ¼ dt ^ ð!B �!AÞ þ!A ^!B; (6)

so that the coplane AB is generically spacelike, and can be
timelike only when !A ^!B ¼ 0, that is to say on the
timelike plane of events �AB that contains the world lines
of �A and �B. Because the clocks are at rest with respect to
the starting inertial system, at any t ¼ const their positions
�AðtÞ � Awill generically define the four vertices (A, B,C,
D) (all � ) of a 3-dimensional tetrahedron (see Fig. 2).
Denote by ‘AB the straight line passing through A and B

and, in it, by iAB the corresponding open edge of the
tetrahedron and by sAB (resp. sBA) the other open segment
contiguous to A (respect. contiguous to B). It is then clear
that the timelike plane �AB is the history of the straight
line ‘AB, and we will denote by IAB the history of iAB, the
(timelike) open strip of �AB whose boundaries are �A and
�B. Similarly, SAB (resp. SBA) will denote the (timelike)
open strip of �AB contiguous to �A (resp. contiguous to
�B). Now we see that the condition !A ^!B ¼ 0 takes
place along ‘AB, thus on the events of �AB. In addition,
because from (4) all the !A have same length, one has
!A ¼ �!B on iAB, thus on the events of IAB, and !A ¼
!B on the two other open segments sAB and sBA, thus on
the events of SAB and SBA, where one has

dtA ^ dtB ¼ 0; (7)

and the coordinate system degenerates. These open strips
of �AB, SAB, and SBA, are also the half-planes describing
the history of the shadows that the clocks A and B make,
respectively, to the signals of the clocks B and A. These
considerations on expressions (6) and (7) show that either
all the coordinate coplanes are spacelike, or one of them is
timelike, so that, on account of a general algebraic prop-
erty10 stated in [11], the following result occurs.
Proposition 2. Generically the type of the coordinate

planes of the Newtonian emission coordinates is
fTTTTTTg but on the events of the six timelike strips
IAB, and only on them, the type is fTTTTTEg, the coor-
dinate system being degenerate on the shadows SAB and
SBA and undetermined on the world lines �A.

A

D

C

B

sAB

sBA

iAB

FIG. 2 (color online). At any instant t ¼ const, the positions
�AðtÞ � A (A ¼ 1, 2, 3, 4) of the four clocks generically define
the four vertices A, B, C, D (all � ) of a 3-dimensional
tetrahedron. If the clocks are at rest in an inertial system, the
outer open segments sAB and sBA of the straight line ‘AB con-
taining the edge iAB between the vertices A and B represent the
shadows of the signals B and A produced by A and B, respec-
tively.

9Note that, while �� is an intrinsic element of the geometry of
Newtonian space-time, its ‘three-dimensional inverse’ � is an
observer-dependent quantity, given by �:�� ¼ I � � � u, where
u is the unit velocity of the chosen observer. Two different
observers have associated two different degenerate four-
dimensional covariant metrics � of rank three, although their
induced spatial components on the instantaneous space take the
same value, as it is well experienced in the usual Newtonian
three-dimensional formalism.

10This property says that a r-plane � is spacelike (resp. time-
like) iff the annihilator coplane �� � f!j!ðvÞ ¼ 0 8 v 2 �g
is timelike (resp. spacelike).
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D. Emission coordinate lines

To analyze the coordinate lines of a Newtonian emission
coordinate system, let us consider the dual 3-forms:

dtA ^ dtB ^ dtC ¼ !A ^!B ^!C þ dt ^ ð!A ^!B

þ!B ^!C þ!C ^!AÞ: (8)

The hyperplane of covectors ABC is generically spacelike,
and can be timelike only when !A ^!B ^!C ¼ 0, which
happens on the events of the timelike hyperplane �ABC

that contains the world lines �A, �B, �C. In the stationary 3-
dimensional sections t ¼ constant, these events corre-
spond to the planes ‘ABC that contain the three clocks A,
B, C, and thus the three lines ‘AB, ‘BC, ‘CA, including the
tetrahedral faces iABC that their edges iAB, iBC, and iCA
delimit, and the six strips sAB, sBA, sBC, sCB, sCA, sAC. We
already know that, apart from on the clocks A, B, C
themselves, on these last six strips the coordinate coplanes
degenerate; are there any other events in which the coor-
dinate hyperplanes of covectors are degenerate? In other
words, there where !A ^!B ^!C ¼ 0 out of the edges,
can the other term in (8) also vanish? We have

!C ¼ �!A þ �!B; (9)

so that (8) becomes

dtA ^ dtB ^ dtC ¼ ð1� �� �Þdt ^!A ^!B; (10)

which cannot degenerate, being !A ^!B � 0, unless �þ
� ¼ 1. But

1 ¼ ð!CÞ2 ¼ �2 þ �2 þ 2��ð!A �!BÞ
¼ 1þ 2��ð!A �!B � 1Þ;

admits no solution, because � � 0 � � and necessarily
!A �!B < 1. The tangent vectors to the coordinate lines
being at every event causally related to the hyperplanes by
the aforementioned property11 gives the following result.

Proposition 3. The coordinate lines of the emission
coordinates in Newtonian space-times are generically of
type fttttg, but on the events of the timelike hyperplanes
�ABC containing three emitters they are generically of type
fttteg, and are of type ftteeg on the events of the timelike
strips IAB generated by every pair of clocks.

It is pertinent here to note that, in Newtonian space-time,
the emission coordinate system generated by a positioning
system is never everywhere causally homogeneous, but
always has three regions corresponding to the nonstandard
three causal classes. Only the emission coordinate systems
generated by relativistic positioning systems based on light
signals are always causally homogeneous, as we will see in
the next section.

The geometry of the coordinate surfaces and coordinate
lines of the emission coordinates is simple. Because gen-

erated by the two by two or three by three intersections of
the coordinate hypersurfaces, which are isotropic cones of
parallel axes, the coordinate surfaces and coordinate lines
of the emission coordinates are hyperboloids and hyper-
bolas, respectively. As already seen, these hyperbolas are
generically timelike lines, up to at their base point, where
they become spacelike.

E. Coordinate volume element and Jacobian

As we have seen, the transformation (3) from a standard
inertial coordinate system ft; xig ¼ ft; ~rg to an emission
coordinate system ftAg is degenerate on the clock shadows
SAB, timelike space-time surfaces generated by every clock
for the signals coming to it from the others. Thus the
question: is transformation (3) degenerate at other events
than those of the shadows SAB? To see it, let us consider the
emission coordinate volume element, �e:

�e � dtA ^ dtB ^ dtC ^ dtD

¼ dt ^ ½�!A ^!B ^!C þ!B ^!C ^!D �!C

^!D ^!A þ!D ^!A ^!B�
¼ �dt ^ ½ð!A �!DÞ ^ ð!B �!DÞ ^ ð!C �!DÞ�:

It is then evident that the Jacobian is degenerate, as we
already know, there where !A ¼ !B, that is to say, on the
clock shadows SAB, for any pair A � B. But, as the above
expression for �e shows, the Jacobian can be also degen-
erate there where the three vectors !A �!D are linearly
dependent. It can be seen (for example in [25]), that this
happens on the events where the signals coming from the
four clocks are seen or heard as coming from four points
located on a circle of the celestial sphere of the event
(quotient of the instantaneous space of the event by the
radial distance to the event).

IV. RELATIVISTIC EMISSION COORDINATES

Let us consider now the relativistic analog of the emis-
sion coordinates of the above section. Now, every emitter
�A is supposed to continuously broadcast, in an inertial
nondispersive medium, their proper time 	A by means of
sound or light signals that propagate in the medium at
constant velocity v � 1.
It is to be stressed that, in a flat metric, the coordinate

transformation between inertial and light emission coordi-
nates may be obtained for any arbitrarily prescribed kine-
matics of the emitters [16,17]. However, here we are
interested in the study of causal properties and, as in
Sec. III, the four emitters will be considered at rest with
respect to the medium referred to a standard coordinate
system ft; xig ¼ ft; ~rg. The inertial time t is also the proper
time of the four emitters and their world lines take the
expression (1): �AðtÞ ¼ ðt; ~cAÞ. Then, the equation of the
cones that describe the signals is (2), and the emission
coordinates ftAg are related to the inertial ones ft; ~rg by (3).11See footnote 10.
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A. Coordinate hypersurfaces, surfaces and lines

To know the causal class of the emission coordinate
system ftAg we can start from the coframe of 1-forms
fdtAg given in (4) and (5), that provide the causal character
of the coordinate hypersurfaces tA ¼ const. Out of the
clock world lines �A, where the transformation (3) is not
defined, dtA is spacelike or null because:

ðdtAÞ2 ¼ �1þ 1

v2
� 0 (11)

Consequently, we have this statement.
Proposition 4. The coframe of the relativistic emission

coordinate system with v < 1 is of causal type feeeeg.
When v ¼ 1, the coframe has causal type fllllg.

In other words, all the coordinate hypersurfaces of the
relativistic emission coordinates are timelike when v < 1,
and null when v ¼ 1.

The coplanes of the coordinate system are determined
by the 2-forms (6) that satisfy

ðdtA ^ dtBÞ2 ¼ � 1

v4
ð
2

AB � 2v2
AB þ 2v2 � 1Þ; (12)

where


AB � uA � uB: (13)

Note that
AB is the cosine of the angle between the signals
coming from the emitters A and B. The study of the
polynomial (12) in 
AB leads to the following:

Proposition 5. The coplane AB of a relativistic emission
coordinate system is spacelike, null, or timelike according
as 
AB is greater, equal or smaller than 2v2 � 1.

The causal character of the planes may be directly
obtained from the dual version of the above statement.
Consequently, the emission coordinate surfaces defined
by constant tA and tB are spacelike, null, or timelike
according to whether 
CD is smaller, equal to, or greater
than 2v2 � 1. Now, it is understood that the pairs of
indexes AB andCD are constrained to take complementary
pairs of values (for instance, A ¼ 2, B ¼ 3 and C ¼ 1,
D ¼ 4).

To analyze the coordinate lines, let us consider the dual
3-forms (8). We have

ðdtA ^ dtB ^ dtCÞ2 ¼ 1

v4

�
1� v2

v2
�D ��D

�
;

D � A; B; C;

where �D and �D depend on 
AB as

�D � ðuA ^ uB ^ uCÞ2
¼ 1þ 2
AB
BC
CA � ð
2

AB þ
2
BC þ
2

CAÞ
�D � 2ð1�
ABÞð1�
BCÞð1�
CAÞ:

From them, we arrive to the following result.
Proposition 6. The hyperplane of covectors ABC of a

relativistic emission coordinate system is spacelike, null,

or timelike according as �D=�D is smaller, equal to, or
greater than ð1� v2Þ=v2.
As a consequence, the dual version of this result says

that the emission congruence of coordinate lines defined by
variable tA and constant tB (with B � A) is timelike, null,
or spacelike according to whether �A=�A is smaller, equal
to, or greater than ð1� v2Þ=v2.

B. The 103 causal classes of relativistic emission
coordinates

First, let us consider the light case v ¼ 1. It is clear that,
from (11), we have ðdtAÞ2 ¼ 0 so that the coframe of the
relativistic emission coordinate systems with v ¼ 1 is of
causal type fllllg. Because the
AB are all smaller than 1, it
follows from Proposition 5 that all the coplanes are time-
like, and consequently all the planes are spacelike, that is
CAB ¼ E. On the other hand, �A and �A are both positive
and then, from proposition 6, all the hyperplanes of cov-
ectors are timelike, and the cA cannot but be spacelike,
cA ¼ e. This result, obtained for an inertial homogeneous
medium and four static clocks, may be shown true also for
arbitrary clocks in general space-times [5]. We have thus:
Proposition 7. All the relativistic positioning systems

with light signals define in their whole domains a sole
causal class, of causal signature

feeee;EEEEEE; llllg:
These relativistic positioning systems, of great interest for
future space research and navigation, have been considered
elsewhere [4–6,13–16]. On the other hand, in order to
construct the theory of the current sonic positioning sys-
tems, it is reasonable to think that a Newtonian approach
suffices (see, for instance, [18]). However, as we are going
to show, the relativistic approach offers considerable con-
ceptual advantages over the Newtonian one providing, in
addition, new examples of relativistic causal classes that
might be physically constructed.
Now, let us consider the sonic case v < 1. Taking into

consideration the results of subsection IVA (propositions 4,
5, and 6) we arrive to the following statement.
Proposition 8. The causal classes of the relativistic

emission coordinate systems with v < 1 are of the form:

fc1c2c3c4;C12C13C14C23C24C34; eeeeg
where the causal characters, cA, CAB depend on the cosines

AB of the angles between the signals coming from the
emitters A and B as

c A ¼
8><
>:
t �A

�A
< 1�v2

v2

l �A

�A
¼ 1�v2

v2

e �A

�A
> 1�v2

v2

(14)

C AB ¼
8><
>:
T 
CD > 2v2 � 1
L 
CD ¼ 2v2 � 1
E 
CD < 2v2 � 1

(15)

with C, D � A, B.
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A detailed analysis of the compatible characters of the
geometric elements leads us to the following result:

Proposition 9.Depending on the different configurations
of the stationary emitters and/or of the different values of
the velocity v < 1, the relativistic emission coordinate
systems may present space-time regions of 102 different
causal classes.

In fact, the result follows by taking into account the
causal classification of Fig. 1. The compatible causal char-
acters CAB are explicitly given in the ð1; qÞ-cells with q �
3. In fact, the (1, 3)-cell is empty. The potential sets CAB in
this cell may be (and has been) counted in the (1, 2)-cell, by
virtue of the permutation freedom of the coframe spacelike
characters feeeeg. For this reason, both cells in Fig. 1 are
separated by a dashed vertical segment.

For same reasons as in the Newtonian case, the coordi-
nate lines of emission coordinates are also hyperbolas here.
Nevertheless, their causal types differ: in the Newtonian
case every hyperbola is everywhere timelike except at its
base point, where it is spacelike; in the relativistic case
with v < 1 the corresponding point becomes enlarged to a
whole spacelike interval, bounded by two points where it is
null, the rest of the branches being timelike. In the relativ-
istic case v ¼ 1 the hyperbolas are spacelike everywhere.
Obviously, this fact is on the basis of the richness (103
causal classes) of the relativistic positioning systems.

C. Causal signatures with Newtonian analogous

Finally, it is worth mentioning that some emitters con-
figurations and sound velocities v < 1 generate space-time
regions of the same causal signatures that the three
Newtonian ones analyzed in Sec. III. More specifically,
we have this result.

Proposition 10. There are three relativistic causal classes
of emission coordinates with v < 1 which have Newtonian
causal signatures. They are related to how the events
receive the sound signals, according to the following three
sets of conditions:

ftttt;TTTTTT; eeeeg if 8 A;
�A

�A

<
1� v2

v2

fttte;TTTTTT; eeeeg if

(9!A; �A

�A
> 1�v2

v2

8B � A; �B

�B
< 1�v2

v2

fttee;TTTTTE; eeeeg if

8><
>:
for I ¼ A; B; �I

�I
< 1�v2

v2

8 C � A; B; �C

�C
> 1�v2

v2


AB < 2v2 � 1

It is easy to find (in Fig. 1) the above causal classes and
also the standard one fteee;TTTEEE; teeeg. Of course, the
signatures of these relativistic causal classes are those of
the Newtonian case.

V. COMMENTS AND WORK IN PROGRESS

We have analyzed positioning systems and their associ-
ated emission coordinates from the causal point of view.
Positioning systems in relativity may be of 103 causal
classes. Three of them correspond to the three Newtonian
causal classes, and only one of them, the
feeee;EEEEEE; llllg, corresponds to relativistic position-
ing systems based on light signals.
Thus, the causal classes associated with emission coor-

dinates constitute a broad, but strict, subset of the set of the
199 causal classes of relativistic coordinates systems
whose main aspects have been summarized.
A point of interest is that the use of emission coordinates

shows that one can locate events in the space-time without
any use of the concept of synchronization. Furthermore,
positioning systems allow their users to know their own
coordinates (emission coordinates) without delay. From
laboratory domains, Earth surface physics or global navi-
gation systems to space physics, solar system or celestial
astronomy, positioning systems allow the explicit construc-
tion of the correspondence between the events of the ob-
servable physical world and the points of its mathematical
space-time model in the physical theory in use.
The ability to take hold of Newtonian space-time with-

out the use of the simultaneity foliation, or any other
synchronization, may seem rather academic. But such
ability in the relativistic space-time seems urgent. Simply
because, in relativity, relative simultaneity synchroniza-
tions, be they introduced as an approximate concept or as
an exact one, have neither more nor less physical reality
than the celestial crystal spheres of the Ptolemaic epicyclic
theory.
Such synchronizations are conventional constructions

whose realization in fact demands the a priori knowledge
of (a good number of) the physical quantities that one
usually wants to know. As such constructions, they can
play a role in the ‘‘a posteriori’’ physical interpretation of
some physical quantities, but are unusable as a starting
basis for referring physical observations of an unknown
environment.
The direct confrontation of physicists with their environ-

ment in order to understand it gravitationally is a basic
problem yet unsolved in relativity. Such a confrontation
needs a locating structure that, in order to not to chase its
own tail, should be constructed before the gravitational
properties are measured. As analyzed elsewhere (see, for
example, [4–6,13–17]) this locating structure is constituted
by the relativistic positioning systems broadcasting light
signals in vacuum.
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