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Positioning in a flat two-dimensional space-time: the delay master equation
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The basic theory on relativistic positioning systems in a two-dimensional space-time has been
presented in two previous papers [Phys. Rev. D 73, 084017 (2006); 74, 104003 (2006)], where the
possibility of making relativistic gravimetry with these systems has been analyzed by considering
specific examples. Here we study generic relativistic positioning systems in the Minkowski plane.
We analyze the information that can be obtained from the data received by a user of the positioning
system. We show that the accelerations of the emitters and of the user along their trajectories are
determined by the sole knowledge of the emitter positioning data and of the acceleration of only one
of the emitters. Moreover, as a consequence of the so called master delay equation, the knowledge
of this acceleration is only required during an echo interval, i.e., the interval between the emission
time of a signal by an emitter and its reception time after being reflected by the other emitter.
We illustrate these results with the obtention of the dynamics of the emitters and of the user from
specific sets of data received by the user.

PACS numbers: 04.20.-q, 95.10.Jk

I. INTRODUCTION

A relativistic positioning system is defined by four
clocks γA (emitters) in arbitrary motion broadcast-
ing their proper times τA in some region of a (four-
dimensional) space-time [1–5]. Then, every event reached
by the signals is naturally labeled by the four times {τA} :
the emission coordinates of this event.1 The first to pro-
pose such physical construction of emission coordinates
seem to have been B. Coll [7]. Up-to-date references on
this concept and its applications and a brief report on
relativistic positioning can be found in [8].

Although some explicit results have been obtained for
generic four-dimensional relativistic positioning [4, 5, 9–
12], a full development of the theory requires a previ-
ous training on simple and particular situations. A two-
dimensional approach to relativistic positioning systems
allows the use of precise and explicit diagrams which
improve the qualitative comprehension of general four-
dimensional positioning systems. The basic features of
this two-dimensional approach and the explicit relation
between emission coordinates and any given null coordi-
nate system has been presented in [2]. There, we have
also studied in detail the positioning system defined in
flat space-time by geodesic emitters.

In a subsequent work [3] we have studied the possibil-
ity of making relativistic gravimetry or, more generally,
the possibility of obtaining the dynamics of the emitters

∗Electronic address: bartolome.coll@obspm.fr
†Electronic address: joan.ferrando@uv.es
‡Electronic address: antonio.morales@uv.es
1 As a physical realization of a mathematical coordinate system,
the positioning system defined above presents interesting quali-
ties and, among them, those of being generic, (gravity-)free and
immediate [1, 2, 6, 7].

and/or of the user, as well as the detection of the absence
or presence of a gravitational field and its measure. This
possibility is examined by means of a (non geodesic) sta-
tionary positioning system constructed in two different
scenarios: Minkowski and Schwarzschild planes.

In this work we go further in the analysis of two-
dimensional positioning problems. Until now [3] we have
considered stationary or geodesic positioning systems in
which the user had, a priory, a partial or full information
about the gravitational field and a partial or full infor-
mation about the positioning system. Here we consider a
new situation: the user knows the space-time where he is
immersed (flat, Schwarzschild,...) but he has no informa-
tion about the positioning system. Can the data received
by the user determine the characteristics of the position-
ing system? Can the user obtain information on his local
units of time and distance and on his acceleration?

The answer to these questions is still an open problem
for a generic space-time, but in this work we undertake
this query for Minkowski plane and we analyze the min-
imum set of data that determine all the user and sys-
tem information. A remarkable result is that the data
received by a user of the positioning system are not in-
dependent quantities because of they are submitted to
what we call the public data constraints. A consequence
of these constraints is the delay master equation which
implies that the accelerations of the emitters and of the
user along their trajectories are determined by the sole
knowledge of the emitter positioning data and of the ac-
celeration of only one of the emitters and only during a
(causal) echo interval, i.e., the interval between the emis-
sion time of a signal by an emitter and its reception time
after being reflected by the other emitter.

In order to better understand our results we illustrate
them with two specific situations, the positioning sys-
tems defined, respectively, by two inertial emitters or
by two (stationary) uniformly accelerated emitters. In
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them, starting from a partial set of user data, we obtain
the proper time and acceleration of the user and we de-
termine the full dynamical properties of the positioning
system.
The work is organized as follows. In Sec. II we sum-

marize the basic concepts and notation about relativistic
positioning systems in a two-dimensional space-time. In
Sec. III we obtain some constraint conditions which re-
strict the user data and show that all the user and system
information can be obtained from the emitter position-
ing data and the acceleration of only one of the emitters.
Sec. IV and Sec. V are devoted to illustrate these general
results by considering the above mentioned particular sit-
uations. In Sec. VI we deduce stronger restrictions on
the user data, the delay master equation, and we clarify
the role that this equation plays by applying it to the
positioning systems considered before. We finish in Sec.
VII with a short discussion about the present results and
comments on prospective work.
A short communication of some results of this work

was presented in the Spanish Relativity meeting ERE-
2007 [13].

II. TWO-DIMENSIONAL APPROACH

In a two-dimensional space-time, a relativistic position-
ing system is defined by two clocks, with world lines γ1
and γ2 (emitters), broadcasting their proper times τ1 and
τ2 by mean of electromagnetic signals. In the region Ω
between both emitters, the past light cone of every event
cuts the emitter world lines at γ1(τ

1) and γ2(τ
2), respec-

tively. Then {τ1, τ2} are the emission coordinates of the
event: the two proper time signals received by any ob-
server at the event from the two clocks (see Fig. 1(a)).
Nevertheless, the signals τ1 and τ2 do not constitute co-
ordinates for the events in the outside region [2].
The plane {τ1} × {τ2} (τ1, τ2 ∈ R) in which the dif-

ferent data of the positioning system can be transcribed
is the grid of the positioning system. In this grid, the
trajectories of the two emitters define an interior region
and two exterior ones. This interior region in the grid
is in one-to-one correspondence with the interior region
in the space-time, i.e. with the set Ω of events that can
be distinguished by the pair of times (τ1, τ2) that reach
them. But the exterior regions in the grid have no phys-
ical meaning (see [3] for more details on the grid).
An observer γ, traveling throughout an emission coor-

dinate domain Ω and equipped with a receiver reading
the received proper times (τ1, τ2) at each point of his
trajectory, is called a user of the positioning system.
We consider in this work auto-locating positioning sys-

tems, which are systems in which every emitter clock not
only broadcasts its proper time but also the proper time
that it receives from the other. Thus, the physical com-
ponents of an auto-locating positioning system are [2]:

a spatial segment constituted by two emitters γ1, γ2
broadcasting their proper times τ1, τ2 and the

proper times τ̄2, τ̄1 that they receive each one from
the other, and

a user segment constituted by the set of all users trav-
eling in an internal domain Ω and receiving these
four broadcast times {τ1, τ2; τ̄1, τ̄2}.

Any user receiving continuously the user positioning
data {τ1, τ2} can extract the equation F of his trajectory
in the grid (see Fig. 1(a)):

τ2 = F (τ1) . (1)

On the other hand, any user receiving continuously the
emitter positioning data {τ1, τ2; τ̄1, τ̄2} may extract from
them not only the equation (1) of his trajectory, but also
the equations of the trajectories of the emitters in the
grid (see Fig. 1(b)):

ϕ1(τ
1) = τ̄2 , ϕ2(τ

2) = τ̄1 . (2)

Eventually, the emitters γ1, γ2 could carry accelerom-
eters and broadcast their acceleration α1, α2, meanwhile
the users γ could be endowed with receivers able to read
the broadcast emitter accelerations {α1, α2}. These new
elements allow any user to know the acceleration scalar
of the emitters:

α1 = α1(τ
1) , α2 = α2(τ

2) . (3)

Users can also generate their own data, carrying a clock
to measure their proper time τ and/or an accelerometer
to measure their proper acceleration α. The user’s clock
allows any user to know his proper time function τ(τ1)
(or τ(τ2)) and, consequently by using (1), to obtain the
proper time parametrization of his trajectory:

γ ≡ { τ1 = ψ1(τ) ; τ2 = ψ2(τ)} . (4)

The user’s accelerometer allows any user to know his
proper acceleration scalar:

α = α(τ) .

Thus, a relativistic positioning system may generate
the user data:

{τ1, τ2; τ̄1, τ̄2;α1, α2; τ, α} . (5)

The emitter trajectories (2) and the emitter accelera-
tions (3) do not depend on the user that receives them.
Thus, among the user data (5) we can distinguish the
subsets:

(i) emitter positioning data {τ1, τ2; τ̄1, τ̄2},

(ii) public data {τ1, τ2; τ̄1, τ̄2;α1, α2},

(iii) user proper data {τ, α}.
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FIG. 1: (a) Geometric interpretation of the emission coordinates: the proper times {τ 1, τ 2} received by a user γ give his
emission coordinates. These user positioning data {τ 1, τ 2} allow the user to know his trajectory τ 2 = F (τ 1) in emission
coordinates and he can draw it in the grid {τ 1}×{τ 2}. (b) The emitter positioning data {τ 1, τ 2; τ̄ 1, τ̄ 2} allow the user to know
the emitter trajectories ϕ1(τ

1), ϕ2(τ
2) in emission coordinates.

The purpose of the (relativistic) theory of positioning
systems is to develop the techniques necessary to deter-
mine the space-time metric as well as the dynamics of
emitters and users from (a subset of) the user data.
In order to study specific positioning systems in known

space-times, it is useful to obtain the explicit expression
of the emission coordinates in terms of arbitrary null co-
ordinates {u, v}.2 The general method to obtain this
transformation has been exposed in [2] and, in next sec-
tion, we apply it to the inertial null coordinates in flat
space-time.3

III. POSITIONING IN FLAT SPACE-TIME

In the development of the two-dimensional approach
we have analyzed situations [2, 3] under the assumption
that the user has a priory information about the posi-
tioning system, that is, the user knows, at least partially,
the dynamics of the emitters. Now, we work under the
weaker assumption that the user knows the space-time
where he is immersed but he has no a priory information
about the positioning system. Then, we want to analyze
if the public data received by the user afford information
about: (i) his local unities of time (ii) his acceleration,
(iii) the metric in emission coordinates, (iv) the coordi-
nate transformation from emission coordinates to a char-
acteristic coordinate system of the given space-time, and
(v) his trajectory and emitter trajectories in this charac-
teristic coordinate system.

2 In a two-dimensional space-time, null coordinates {u, v} are those
whose gradients, du, dv, determine light-like directions.

3 In a flat two-dimensional space-time, for every inertial coordinate
system {t, x} we can define the inertial null coordinates {u, v}:
u = t+x , v = t−x. In this coordinates {u, v}, the metric tensor
takes the form: ds2 = dt2 − dx2 = du dv.

Although some results obtained elsewhere [3] for the
Schwarzschild plane suggest that many of the results that
we present here could be generalized to non-flat space-
times, from now on we focus on the flat case.

A. From emission to inertial coordinates

Let us consider the positioning system defined by the
emitters γ1 and γ2 in the Minkowski plane, and let us
assume for the moment that the proper time history of

the emitters is known in an inertial null coordinate system
{u, v}:

γ1 ≡
{

u = u1(τ
1)

v = v1(τ
1) ,

γ2 ≡
{

u = u2(τ
2)

v = v2(τ
2) .

(6)

The transformation from emission coordinates {τ1, τ2}
to the inertial null system {u, v} is given by [2]:

u = u1(τ
1)

v = v2(τ
2) ,

τ1 = u−1
1 (u) = τ1(u)

τ2 = v−1
2 (v) = τ2(v) .

(7)

Note that relations (7) define emission coordinates in
the emission coordinate domain Ω between both emit-
ters. But outside this region the transformation (7) also
determines null coordinates, but they are not emission
coordinates for our positioning system, i.e. they cannot
be constructed by means of signals broadcasted by its
two clocks [2].
In emission coordinates, the emitter trajectories take

the expression:

γ1 ≡
{

τ1 = τ1

τ2 = ϕ1(τ
1) ,

γ2 ≡
{

τ1 = ϕ2(τ
2)

τ2 = τ2 .
(8)

where, from (6) and (7), the functions ϕi are given by:

ϕ1 = v−1
2 ◦ v1 , ϕ2 = u−1

1 ◦ u2 . (9)
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Conversely, from this last formulas, we obtain:

v1 = v2 ◦ ϕ1 , u2 = u1 ◦ ϕ2 . (10)

As obtained in (2), the emitter positioning data deter-
mine the emitter trajectories ϕi(τ

i) in the grid. Then,
taking into account (6) and the expression of the trans-
formation (7), relations (10) give the precise expression
of the following simple fact:

Statement 1.– If one knows the transformation from emis-
sion to inertial coordinates, the emitter positioning data
{τ1, τ2; τ̄1, τ̄2} determine the proper time history of the
emitters in inertial coordinates.

B. Metric in emission coordinates

From the metric line element in inertial null coordi-
nates {u, v}, ds2 = du dv, and the coordinate transfor-
mation (7), we obtain that the metric tensor in emission
coordinates {τ1, τ2} takes the expression:

ds2 = m(τ1, τ2)dτ1dτ2 ,

m(τ1, τ2) = u′1(τ
1)v′2(τ

2) .
(11)

Can the functions u1(τ
1) and v2(τ

2) be determined
from the public data? Besides the emitter positioning
data {τ1, τ2; τ̄1, τ̄2}, the user needs dynamical informa-
tion of the system. Let us suppose, for the moment, that
he also receives the two emitter accelerations {α1, α2}.
Then, the acceleration scalar functions, αi(τ

i), i = 1, 2,
can be known from the public data, and the emitter shift
parameters si can be calculated by means of (see (A9)):

si(τ
i) = exp

(
∫

αi(τ
i) dτ i

)

. (12)

Now we particularize the dynamic equation (A8) for the
the emitter γ1 (resp., γ2) by taking τ = τ1, ψ1(τ

1) =
τ1, ψ2(τ

1) = ϕ1(τ
1) (resp., τ = τ2, ψ1(τ

2) = ϕ2(τ
2),

ψ2(τ
2) = τ2), and we obtain, respectively:

s1(τ
1) = u′1(τ

1) =
1

ϕ̇1(τ1)v′2(ϕ1(τ1))
,

s2(τ
2) =

1

v′2(τ
2)

= ϕ̇2(τ
2)u′1(ϕ2(τ

2)) .

(13)

Then, from these equations and expression (11) of the
metric tensor, we obtain:

Statement 2.– In emission coordinates the metric function
m is given by the ratio between the shift of the emitters:

m(τ1, τ2) =
s1(τ

1)

s2(τ2)
. (14)

Note that the user data determine every shift (12) up
to a constant factor which is related to the chosen iner-
tial null system {u, v}. Of course, their ratio (14) that

gives the metric function in emission coordinates does not
depend on the inertial system. But, given the emitter ac-
celeration scalars, the constant factors which we take in
the two integrals (12) could correspond to two different
inertial systems. Nevertheless, we will see below that the
constraints on the public data allow to determine one
emitter shift in terms of the other emitter shift, both
with respect the same inertial system.

C. Public data: constraint equations

The emitter dynamic equations (13) contain essential
information on the positioning system that we will now
analyze. From these four equalities we can eliminate
u′1(τ

1) and v′2(τ
2) and obtain the constraint equations

for the emitter shifts:

s2(τ
2) = ϕ̇2(τ

2) s1(ϕ2(τ
2)) , (15)

s1(τ
1) ϕ̇1(τ

1) = s2(ϕ1(τ
1)) . (16)

Moreover, by differentiating with respect to the proper
time one obtains the public data constraint equations:

α2(τ
2) =

ϕ̈2(τ
2)

ϕ̇2(τ2)
+ ϕ̇2(τ

2)α1(ϕ2(τ
2)) , (17)

α1(τ
1) = − ϕ̈1(τ

1)

ϕ̇1(τ1)
+ ϕ̇1(τ

1)α2(ϕ1(τ
1)) . (18)

Equations (17) and (18) show that the public data
{τ1, τ2; τ̄1, τ̄2;α1, α2} are not independent quantities.
These constraints can be considered as differential equa-
tions on the emitter trajectories ϕi(τ

i) if the acceleration
scalars αi(τ

i) are known, an approach that we will con-
sider elsewhere. In the present work we are interested
in studying auto-locating positioning systems for which
the emitter positioning data {τ1, τ2; τ̄1, τ̄2} and, conse-
quently, the functions ϕi(τ

i) are known. From this point
of view the public data constraint equations (17) and (18)
state:

Statement 3.– If a user receives continuously the emitter
positioning data {τ1, τ2; τ̄1, τ̄2} and only the acceleration
of one of the emitters, then the user knows the accelera-
tion of the other emitter.

D. Public data: metric and system information

The constraint equations for the emitter shifts (15) and
(16) determine the shift of an emitter with respect to an
inertial system in terms of the shift of the other emitter
whit respect to the same inertial system and the emitter
positioning data {τ1, τ2; τ̄1, τ̄2}. Then, as a consequence
of statement 2, we have:

Statement 4.– If a user receives continuously the emit-
ter positioning data {τ1, τ2; τ̄1, τ̄2} and the acceleration
of one of the emitters, then the user knows the metric
function m(τ1, τ2) in emission coordinates.
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On the other hand, if one knows the emitter shifts
s1(τ

1) and s2(τ
2) with respect to an inertial system then,

as a consequence of (13), one knows the derivatives of the
transformation (7) from emission to these inertial null co-
ordinates. Thus, we can obtain this transformation up
to two additive constants depending on the origin of the
inertial null system. Moreover, taking into account state-
ment 1, we have:

Statement 5.– If a user receives continuously the emitter
positioning data {τ1, τ2; τ̄1, τ̄2} and the acceleration of
one of the emitters, then the user knows the transforma-
tion from emission to inertial coordinates and the proper
time history of the emitters in inertial coordinates.
The analytic expression of the results in statements

3, 4 and 5 depends on which of the two accelerations is
known. Now we explain the steps to be followed to obtain
all the system information when the emitter positioning
data {τ1, τ2; τ̄1, τ̄2} and one of the accelerations, say α1,
are known.

Received user data: {τ1, τ2; τ̄1, τ̄2, α1}.

Step s1: From the pairs {τ1; τ̄2} and {τ2; τ̄1}, determine
the emitter trajectory functions ϕ1(τ

1) and ϕ2(τ
2),

respectively.

Step s2: From the pair {τ1;α1}, determine the emitter
acceleration scalar α1(τ

1).

Step s3: From the acceleration scalar α1(τ
1) obtained

in step s2, determine the shift s1(τ
1) with respect

to an inertial system {u, v}:

s1(τ
1) = exp

(
∫

α1(τ
1) dτ1

)

.

Step s4: From the function ϕ2(τ
2) obtained in step s1

and the shift s1(τ
1) obtained in step s3, determine

the shift s2(τ
2) with respect to the inertial system

{u, v} and the acceleration scalar α2(τ
2):

s2(τ
2) = ϕ̇2(τ

2) s1(ϕ2(τ
2)) , α2(τ

2) =
ṡ2(τ2)

s2(τ2)
.

Step s5: From the shifts s1(τ
2) and s2(τ

1) obtained in
steps s3 and s4, determine the metric function in
emission coordinates:

m(τ1, τ2) =
s1(τ

1)

s2(τ2)
.

Step s6: From the shifts s1(τ
1) and s2(τ

2) obtained in
steps s3 and s4, determine the transformation from
emission to inertial null coordinates {u, v}:

u = u1(τ
1) =

∫

s1(τ
1) dτ1 ,

v = v2(τ
2) =

∫

1

s2(τ2)
dτ2 .

Step s7: From the functions ϕ1(τ
1) and ϕ2(τ

2) ob-
tained in step s1 and the coordinate transformation
{u1(τ1), v2(τ2)} obtained in steps s6, determine the
proper time history of the emitters in inertial null
coordinates {u, v}:

γ1 ≡
{

u = u1(τ
1)

v = v2(ϕ1(τ
1)) ,

γ2 ≡
{

u = u1(ϕ2(τ
2))

v = v2(τ
2) .

Note that the shift s1(τ
1) obtained in step s4 is fixed

up to a constant factor. Every choice of this constant
determines a different null inertial system {u, v} whose
origin depend on the choice of two additive constants
when obtaining u1(τ

1) and v2(τ
2) in step s6.

E. Public data: user information

Finally, we will see that the information provided by
the proper user data {τ, α} can also be obtained from the
emitter positioning data {τ1, τ2; τ̄1, τ̄2} and the acceler-
ation of one emitter.
As explained in statement 4, the metric function in

emission coordinates can be obtained from these data.
Moreover, from the user positioning data {τ1, τ2} we can
extract the trajectory of the user in the grid, τ2 = F (τ1).
Then, the proper time function τ(τ1) satisfies equation
(A4) which now becomes:

[τ ′(τ1)]2 =
s1(τ

1)

s2(F (τ1))
F ′(τ1) . (19)

From the trajectory τ2 = F (τ1) and the proper time
function τ(τ1) obtained from (19), we can get the proper
time history of the user in emission coordinates, τ1 =
ψ1(τ), τ

2 = ψ2(τ). Moreover, from (A8) and (A9) we
obtain the shift and the acceleration of the user as:

s(τ) = ψ̇1(τ)s1(ψ1(τ)) , α(τ) =
ṡ(τ)

s(τ)
. (20)

As the coordinate transformation is also known (state-
ment 5), we can obtain the user proper time history in
inertial coordinates. Thus, we have:

Statement 6.– If a user receives the emitter positioning
data {τ1, τ2; τ̄1, τ̄2} and the acceleration of an emitter,
then the user knows his local unities of proper time, his
acceleration and his proper time history in both emission
and inertial coordinates.
Equations (19) and (20) can be useful in obtaining sys-

tem information from the proper user data {τ, α}, a ques-
tion that we will consider elsewhere. Here we suppose
that the system information has been obtained, from the
emitter positioning data and one of the emitter acceler-
ations, following the steps s1-s7 presented in subsection
above. Then, we can obtain the user information enu-
merated in statement 6 in an alternative way that is well
adapted to the flat case. Indeed, from the user trajec-
tory in the grid and the coordinate transformation, we
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determine the user trajectory in inertial null coordinates.
Then, we determine the proper time history in these co-
ordinates, the user shift and the scalar acceleration.
Now we explain the steps to be followed to obtain all

these user information when the emitter positioning data
{τ1, τ2; τ̄1, τ̄2} and one of the accelerations, say α1, are
known.

Received user data: {τ1, τ2; τ̄1, τ̄2, α1}.

Step u1: From these data, and following steps s1, s2,
s3, s4 and s6, determine the coordinate transfor-
mation {u1(τ1), v2(τ2)} from emission to inertial
coordinates {u, v}.

Step u2: From the pair {τ1; τ2}, determine the user
trajectory in the grid, τ2 = F (τ1).

Step u3: From the user trajectory τ2 = F (τ1) ob-
tained in step u2 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step u1, determine
the user world line v = f(u) in the inertial system
{u, v}:

v = f(u) , f = v2 ◦ F ◦ u−1
1 .

Step u4: From the user world line v = f(u) obtained in
step u3, determine the user proper time function
τ = T (u):

τ = T (u) =

∫

√

f ′(u) du .

Step u5: From the user proper time function τ = T (u)
obtained in step u4 and the user world line v =
f(u) obtained in step u3, determine the proper time
history of the user in the inertial null coordinates
{u, v}:

γ ≡
{

u = u(τ) , T (u(τ)) = τ

v = v(τ) = f(u(τ)) .

Step u6: From the proper time history of the user in
the inertial null coordinates {u = u(τ), v = v(τ)}
obtained in step u5, determine the shift s(τ) of the
user with respect the inertial system {u, v}, and the
user acceleration α(τ):

s(τ) = u̇(τ) , α(τ) =
ü(τ)

u̇(τ)
.

Step u7: From the proper time history of the user in the
inertial null coordinates {u = u(τ), v = v(τ)} ob-
tained in step u5 and the coordinate transformation
{u1(τ1), v2(τ2)} obtained in step u1, determine the
proper time history of the user in emission coordi-
nates:

γ ≡
{

τ1 = ψ1(τ) = u−1
1 (u(τ)) ,

τ2 = ψ2(τ) = v−1
2 (v(τ)) ,

and the proper time functions τ(τ1) and τ(τ2) of
the user:

τ(τ1) = ψ−1
1 (τ1) , τ(τ2) = ψ−1

2 (τ2) .

Let us note that the proper time function obtained in
step u4 depends on an additive constant which fixes the
origin of the user proper time.

IV. INFORMATION PROVIDED BY THE USER
DATA: THE CASE OF INERTIAL EMITTERS

The positioning system defined in Minkowski plane by
two inertial emitters has been analyzed in a previous pa-
per [2]. There we started from the proper time history of
the emitters in an inertial null coordinate system and we
studied what would be the data that a user of the posi-
tioning system would receive. Here we want to use this
positioning system to illustrate the results presented in
the above section. Thus, now we will start, on one hand,
from the data received by an arbitrary user to obtain in-
formation on the (positioning) system following the steps
of subsection III D and, on the other hand, from the data
received by a specific user to obtain information about
himself following the steps of subsection III E.

A. System information

Assumption S: The data I ≡ {τ1, τ2; τ̄1, τ̄2, α1} received
by any user in the emission coordinate domain is such
that:

- the pairs of data {τ1; τ̄2} and {τ2; τ̄1} show a linear
relation with the same slope,

τ̄1 = τ20 + λ τ1 , τ̄2 = τ10 + λ τ2 ,

i.e., complementary slope in the grid {τ1, τ2} (see
Fig. 2(a)),

- the acceleration α1 identically vanishes, α1 = 0, ∀ τ1.

Step s1: From the first item of this assumption S, any
user obtains that the emitter trajectory functions
ϕ1(τ

1) and ϕ2(τ
2) are, respectively:

ϕ1(τ
1) = τ20 + λ τ1 , ϕ2(τ

2) = τ10 + λ τ2 . (21)

Step s2: From the second item, any user obtains that
the emitter acceleration scalar α1(τ

1) is:

α1(τ
1) = 0 .

Step s3: From the acceleration scalar α1(τ
1) obtained

in step s2 any user obtains that the shift s1(τ
1)

with respect to any inertial system is constant. Let
{u, v} be an inertial system such that:

s1(τ
1) = 1 .
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FIG. 2: (a) Emitter positioning data {τ 1, τ 2; τ̄ 1, τ̄ 2} allowing the user γ to find that, in the grid, (i) the trajectories of the
two emitters γ1, γ2 are two straight lines with complementary slope, (ii) his own trajectory is a straight line parallel to the
bisector. (b) If the user also receives an identically vanishing acceleration of an emitter, say α1 = 0, he obtains that he and the
emitters have an inertial motion, and that his relative velocity with respect to every emitter is the same. Here we have drawn
the trajectories in an inertial system at rest with respect to γ1.

Step s4: From the function ϕ2(τ
2) obtained in step s1

and the shift s1(τ
1) obtained in step s3 any user

obtains that the shift s2(τ
2) with respect to the

inertial system {u, v}, and the acceleration α2(τ
2)

are, respectively:

s2(τ
2) = λ , α2(τ

2) = 0 .

Step s5: From the shifts s1(τ
1) and s2(τ

2) obtained in
steps s3 and s4 any user obtains that the metric
function in emission coordinates is:

m(τ1, τ2) =
1

λ
.

Step s6: From the shifts s1(τ
1) and s2(τ

2) obtained in
steps s3 and s4 any user obtains that the trans-
formation from emission to the inertial null system
{u, v} (for a choice of the origin) is:

u = u1(τ
1) = τ1 ,

v = v2(τ
2) =

1

λ
(τ2 − τ20 ) .

Step s7: From the functions ϕ1(τ
1) and ϕ2(τ

2) ob-
tained in step s1 and the coordinate transformation
{u1(τ1), v2(τ2)} obtained in step s6 any user ob-
tains that the proper time history of the emitters
in the inertial null coordinates {u, v} are, respec-
tively:

γ1 ≡
{

u = τ1

v = τ1 ,
γ2 ≡

{

u = τ10 + λ τ2

v = 1
λ
(τ2 − τ20 ) .

Steps s2 and s4 show that a user can receive the as-

sumed set of data I only if the positioning system is de-
fined by two inertial emitters. In step 3, the arbitrary

constant factor has been chosen so that emitter γ1 is
at rest with respect the inertial system {u, v} (see Fig.
2(b)). Moreover, from step s6 we obtain that, in the or-
thonormal coordinate system {t, x} associated with the
null one {u, v}, the proper time history of the emitter γ1
is {t = τ1; x = 0}. This means that we have chosen the
additive constants in step s6 so that the origin of the in-
ertial system is at the event which the emitter γ1 reaches
when his proper time clock watches zero.

B. User information

Now we will illustrate how a specific user, receiving
the emitter positioning data and the acceleration of one
of the emitters, can determine his time and his dynamics.

Assumption U: The specific user in question receives the
user data I ≡ {τ1, τ2; τ̄1, τ̄2, α1} of the above assumption
S and, in addition:

- the data {τ1; τ2} show a linear relation with slope 1
(see Fig. 2(a)).

Step u1: From these data, and following steps s1, s2, s3,
s4 and s6 above, the user has obtained the coordi-
nate transformation {u1(τ1), v2(τ2)} from emission
to inertial coordinates {u, v}.

Step u2: From the above assumption U the user obtains
that his trajectory in the grid is:

τ2 = F (τ1) = τ1 + C .

Step u3: From this user trajectory τ2 = F (τ1) ob-
tained in step u2 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step u1 the user
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obtains that his world line v = f(u) in the inertial
system {u, v} is:

v = f(u) =
1

λ
(u+ C − τ20 ) .

Step u4: From the user world line v = f(u) obtained
in step u3 the user can obtain that his proper time
function τ = T (u) is:

τ = T (u) =
1√
λ
u .

Step u5: From the user proper time function τ = T (u)
obtained in step u4 and the user world line v = f(u)
obtained in step u3 the user obtains that his proper
time history in the inertial null coordinates {u, v}
is:

γ ≡







u = u(τ) =
√
λ τ

v = v(τ) =
1√
λ
τ +

1

λ
(C − τ20 ) .

Step u6: From the proper time history of the user in
the inertial null coordinates {u = u(τ), v = v(τ)}
obtained in step u5 the user obtains that his shift
s(τ) with respect the inertial system {u, v}, and his
acceleration α(τ):

s(τ) =
√
λ , α(τ) = 0 .

Step u7: From the proper time history of the user in
the inertial null coordinates {u = u(τ), v = v(τ)}
obtained in step u5 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step u1 the user
obtains that his proper time history in emission co-
ordinates is:

γ ≡
{

τ1 = ψ1(τ) =
√
λ τ ,

τ2 = ψ2(τ) =
√
λ τ + C .

and the user proper time lapse ∆τ is:

∆τ =
1√
λ
∆τ1 =

1√
λ
∆τ2 .

Let us note that the hyperbolic angle between the tra-
jectories of the user and the emitter γ1 is φ = ln s(τ) =
1
2 lnλ, and the hyperbolic angle between the trajectories

of the emitters γ2 and γ1 is φ2 = ln s2(τ
2) = lnλ = 2φ.

Consequently, the user has the same relative velocity with
respect to both emitters. (see Fig. 2(b)). On the other
hand, in the proper time function obtained in step u4 we
have chosen the additive constant so that the user proper
time clock watches zero when time τ1 = 0 is received by
the user.

V. INFORMATION PROVIDED BY THE USER
DATA: THE CASE OF STATIONARY EMITTERS

The positioning system defined in Minkowski plane by
two (stationary) uniformly accelerated emitters has been
analyzed in a previous paper [3]. There we supposed that
the user knew, a priory, that the system was stationary.
Here we start from the emitter positioning data and the
acceleration of an emitter and, following the steps pre-
sented in subsections IIID and III E, we obtain all the
system and user information.

A. System information

Assumption S: The data A ≡ {τ1, τ2; τ̄1, τ̄2, α1} received
by any user in the emission coordinate domain is such
that:

- the pairs of data {τ1; τ̄2} and {τ2; τ̄1} show linear re-
lations with inverse slopes,

τ̄1 =
1

ω
(τ1 − q − σ) , τ̄2 = ωτ2 − q + σ ,

with ω > 1 and q > 0, i.e., parallel straight lines in
the grid {τ1, τ2} (see Fig. 3(a)),

- the acceleration α1 takes the constant value α1 =
1
q
lnω, ∀ τ1.

Step s1: From the first item of this assumption S, any
user obtains that the emitter trajectory functions
ϕ1(τ

1) and ϕ2(τ
2) are, respectively:

ϕ1(τ
1) =

1

ω
(τ1 − q − σ) ,

ϕ2(τ
2) = ωτ2 − q + σ .

(22)

Step s2: From the second item any user obtains that the
emitter acceleration scalar α1(τ

1) is:

α1(τ
1) =

1

q
lnω ≡ α1 .

Step s3: From the acceleration scalar α1(τ
1) obtained in

step s2 any user obtains that the shift s1(τ
1) with

respect to an inertial system {u, v} (fixed up to a
choice of the origin) is:

s1(τ
1) = exp(α1τ

1) .

Step s4: From the function ϕ2(τ
2) obtained in step s1

and the shift s1(τ
1) obtained in step s3 any user

obtains that the shift s2(τ
2) with respect to the

inertial system {u, v}, and the acceleration α2(τ
2)

are:

s2(τ
2) = exp(α2(τ

2 − τ20 )) , α2(τ
2) = α2 ,

where α2 ≡ ωα1, and τ
2
0 ≡ − σ

ω
.
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FIG. 3: (a) Emitter positioning data {τ 1, τ 2; τ̄ 1, τ̄ 2} allowing the user γ to find that, in the grid, (i) the trajectories of the two
emitters γ1, γ2 are two parallel straight lines, (ii) his own trajectory is a straight line parallel to the emitters. Here we have
plotted the case c = 0 and we have stressed the user when receiving vanishing emitter coordinates. (b) If the user also receives
the acceleration of the emitter γ1 with the constant value α1 = 1

q
lnω, where ω is the slope parameter and q is the separation

parameter, he obtains that he and the emitters have a non inertial stationary motion, and he can determine their constant
accelerations and their synchronization. Here we have drawn the trajectories when the synchronization parameter σ = 0. In
green we have drawn the locus of simultaneous events for the stationary congruence.

Step s5: From the shifts s1(τ
1) and s2(τ

1) obtained in
steps s3 and s4 any user obtains that the metric
function in emission coordinates is:

m(τ1, τ2) = ω
1

q
(τ1−ωτ2−σ) .

Step s6: From the shifts s1(τ
1) and s2(τ

2) obtained in
steps s3 and s4 any user obtains that the trans-
formation from emission to the inertial null system
{u, v} (for a choice of the origin) is:

u = u1(τ
1) =

1

α1
exp(α1τ

1) ,

v = v2(τ
2) = − 1

α2
exp(−α2(τ

2 − τ20 )) .

Step s7: From the functions ϕ1(τ
1) and ϕ2(τ

2) ob-
tained in step s1 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step s6 any user
obtains that the proper time history of the emitters
in inertial null coordinates {u, v} is:

γ1≡











u =
1

α1
exp(α1τ

1)

v = − 1

α1
exp(−α1τ

1) ,

γ2≡











u =
1

α2
exp(α2(τ

2 − τ20 ))

v = − 1

α2
exp(−α2(τ

2 − τ20 )) .

Steps s2 and s4 show that a user receiving the set of
data A is, necessarily, in the coordinate domain of a posi-

tioning system defined by two uniformly accelerated emit-
ters with constant acceleration scalars α1(τ1) =

1
q
lnω ≡

α1 and α2(τ2) = ωα1 > α1. In step s3, the arbitrary con-
stant factor has been chosen so that emitter γ1 is at rest

with respect the inertial system {u, v} when his proper
time clock watches zero.
From step s7, we have that the emitter trajectories in

the inertial system are α2
i uv = −1. This means that

in step s6 we could choose the additive constants (i.e.,
the origin of the inertial coordinate system) so that the
coordinate bisectors are the asymptotes of both emitter
trajectories (see Fig. 3(b)). Thus, the emitters maintain
a constant radar distance and, consequently, they belong
to a congruence of stationary observers. On the other
hand, τ20 ≡ − σ

ω
gives the time which watches the proper

time clock of γ2 at the event simultaneous to the event
where the proper time clock of γ1 watches zero. This fact
shows that in relativistic positioning the synchronization
between the emitter clocks is not necessary, but it can be
extracted from the emitter data.

B. User information

Now we will illustrate how a specific user, receiving
the emitter positioning data and the acceleration of one
of the emitters, can determine his time and his dynamics.

Assumption U: The specific user in question receives the
user data A ≡ {τ1, τ2; τ̄1, τ̄2, α1} of the above assump-
tion S and, in addition:

- the data {τ1; τ2} show a linear relation with the same
slope than the emitters (parallel to the emitter tra-
jectories in the grid {τ1, τ2}; see Fig. 3(a)).

Step u1: From these data, and following steps s1, s2, s3,
s4 and s6 above, the user has obtained the coordi-
nate transformation {u1(τ1), v2(τ2)} from emission
to inertial coordinates {u, v}.
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FIG. 4: Geometric interpretation of the constraint equations: (a) If a user receives the trajectory τ̄ 1 = ϕ2(τ
2) in the vicinity

of time τ 2 and the shift s1(τ̄
1) at time τ̄ 1, then he can obtain the shift s2(τ

2) at time τ 2. (b) If a user receives the trajectory
τ̄ 2 = ϕ1(τ

1) in the vicinity of time τ 1 and the shift s2(τ̄
2) at time τ̄ 2, then he can obtain the shift s1(τ

1) at time τ 1.

Step u2: From the above assumption U the user can
obtain that his trajectory in the grid is:

τ2 = F (τ1) =
1

ω
(τ1 − c) , q < c− σ < q .

Step u3: From the user trajectory τ2 = F (τ1) ob-
tained in step u2 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step u1 the user
obtains that his world line v = f(u) in the inertial
system {u, v} is:

v = f(u) = − 1

α2
u

, u v = − 1

α2
,

α ≡ lnω

q
ω

1

2q
(q+σ−c) = α

1

2q
(q−σ+c)

1 α
1

2q
(q+σ−c)

2 .

Step u4: From the user world line v = f(u) obtained
in step u3 the user obtains that his proper time
function τ = T (u) is:

τ = T (u) =
1

α
ln(αu) .

Step u5: From the user proper time function τ = T ((u)
obtained in step u4 and the user world line v = f(u)
obtained in step u3 the user obtains that his proper
time history in the inertial null coordinates {u, v}
is:

γ ≡











u = u(τ) =
1

α
exp(ατ)

v = v(τ) = − 1

α
exp(−ατ) .

Step u6: From the proper time history of the user in
the inertial null coordinates {u = u(τ), v = v(τ)}
obtained in step u5 the user obtains that his shift
s(τ) with respect the inertial system {u, v}, and his
acceleration α(τ) are, respectively:

s(τ) = exp(ατ) , α(τ) = α .

Step u7: From the proper time history of the user in
the inertial null coordinates {u = u(τ), v = v(τ)}
obtained in step u5 and the coordinate transforma-
tion {u1(τ1), v2(τ2)} obtained in step u1 the user
obtains that his proper time history in emission co-
ordinates is:

γ ≡











τ1 =
α

α1
τ − 1

2
(q + σ − c) ,

τ2 =
α

α2
τ − 1

2ω
(q + σ + c) .

and his proper time lapse ∆τ is:

∆τ =
α1

α
∆τ1 =

α2

α
∆τ2 ,

where α
α1

≡ ω
1

2q
(q+σ−c) and α

α2

≡ ω− 1

2q
(q−σ+c).

Step u3 shows that the user also follows a stationary
motion that keep a constant radar distance with respect
the two emitters (see Fig. 3(b)). Moreover, the constant
value of the acceleration of the user is the weighted geo-
metric mean of the emitters’ accelerations. In the proper
time function obtained in step u4 we have chosen the ad-
ditive constant so that the events, where the proper time
clocks of the user and of the emitter γ1 watch zero, are
simultaneous.

VI. THE DELAY MASTER EQUATION

In Sec. III we have shown that, as a consequence of
the public data constraint equations (17) and (18), the
emitter positioning data an the acceleration of an emitter
determine the acceleration of the other emitter. Never-
theless, in the steps given in subsections III D and III E,
which allow to obtain all the system and user informa-
tion, we only used one of these two restrictions or, more
precisely only one of the two constraint equations for the
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shift (15) and (16). Do these equations impose stronger
restrictions on the public data?
In this section we will see that the answer is affirma-

tive by obtaining the precise restrictions that the emitter
positioning data impose on the dynamics of the emitters.
This study requires to consider the shift constraint equa-
tions (15) and (16), not as two independent equations,
but as a constraint system:

s2(τ
2) = ϕ̇2(τ

2) s1(ϕ2(τ
2)) , (23)

s1(τ
1) ϕ̇1(τ

1) = s2(ϕ1(τ
1)) . (24)

A. The (past) echo functions and the delay master
equation

In Secs. III, IV and V, when we obtained an emitter
acceleration from the emitter positioning data and the
acceleration of the other emitter, we supposed that the
user received continuously these data. Now, in order to
better understand the constraints on the public data, it
is useful to analyze its local behavior. In this sense, the
constraint system (23)-(24) can be read as follows (see
Fig. 4):

Statement 7.– (i) If a user receives the trajectory τ̄1 =
ϕ2(τ

2) in the vicinity of time τ2 and the shift s1(τ̄
1) at

time τ̄1, then he can obtain the shift s2(τ
2) at time τ2.

(ii) If a user receives the trajectory τ̄2 = ϕ1(τ
1) in the

vicinity of time τ1 and the shift s2(τ̄
2) at time τ̄2, then

he can obtain the shift s1(τ
1) at time τ1.

This interpretation of the constraint system has impor-
tant consequences. Let us define the past echo functions
εi as follows:

ε1 = ϕ2 ◦ ϕ1 , ε2 = ϕ1 ◦ ϕ2 . (25)

These (past) echo functions have the following geometric
interpretation (see Fig. 5):

(i) If γ1 receives at time τ1 a signal after being echoed
by γ2, it must be emitted at time ε1(τ

1).

(ii) If γ2 receives at time τ2 a signal after being echoed
by γ1, it must be emitted at time ε2(τ

2).

The proper time intervals [ε1(τ
1), τ1] and [ε2(τ

2), τ2]
are named (causal) echo intervals, i.e., an echo interval is
the interval between the emission of a signal by an emit-
ter and its reception after being reflected by the other
emitter (see Fig. 5).
Let us suppose that a user receives the emitter acceler-

ation α1 (and so he knows the shift s1) in the echo interval
[ε1(τ

1), τ1], and that he also receives the emitter position-
ing data {τ1, τ2; τ̄1, τ̄2} along the arc [ϕ1(τ

1), ϕ−1
2 (τ1)]

that is, he knows the emitter trajectories ϕi(τ
i) along

this arc. Then the user knows the shift s2 along the arc
[ϕ1(τ

1), ϕ−1
2 (τ1)] as a consequence of (23) (see Fig. 6(a)).

Therefore the user knows the shift s1 in the echo interval
[τ1, ε−1

1 (τ1)] as a consequence of (24). And so on (see
Fig. 6(b)).
We can obtain the analytical expression of this fact by

replacing τ2 by ϕ1(τ
1) in equation (23) and substituting

in (24). Then we arrive to the delay master equation:

s1(τ
1) =

ϕ̇2(ϕ1(τ
1))

ϕ̇1(τ1)
s1(ε1(τ

1)) . (26)

In a similar way, by replacing τ1 with ϕ2(τ
2) in equation

(24) and substituting in (23), we obtain:

s2(τ
2) =

ϕ̇2(τ
2)

ϕ̇1(ϕ2(τ2))
s2(ε2(τ

2)) . (27)

The delay master equations (26) and (27) can be writ-
ten in terms of the echo operators Qi(τ

i) as:

s1(τ
1) = Q1(τ

1)s1(ε1(τ
1)), Q1(τ

1) ≡ ϕ̇2(ϕ1(τ
1))

ϕ̇1(τ1)
, (28)

s2(τ
2) =

1

Q2(τ2)
s2(ε2(τ

2)), Q2(τ
2) ≡ ϕ̇1(ϕ2(τ

2))

ϕ̇2(τ2)
. (29)
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FIG. 6: Geometric interpretation of the master delay equation: (a) If a user receives the emitter positioning data {τ 1, τ 2; τ̄ 1, τ̄ 2}
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2
(τ 1)] and the emitter shift s1 in the echo interval [ε1(τ

1), τ 1], then the user knows the shift s2 in
the arc [ϕ1(τ
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2
(τ 1)] as a consequence of (23). Therefore the user knows the shift s1 in the echo interval [τ 1, ε−1

1
(τ 1)] as a

consequence of (24). (b) The delay master equations can be applied repeatedly in order to obtain an emitter shift further from
an echo interval.

Evidently, we can obtain the emitter shifts further from
an echo interval by applying the delay master equation
repeatedly. This fact can be expressed by using the n-
echo operators Qn

i (τ
i) (see Fig. 6(b)):

s1(τ
1) = Qn

1 (τ
1)s1(ε

n
1 (τ

1)) , (30)

s2(τ
2) =

1

Qn
2 (τ

2)
s2(ε

n
2 (τ

2)) , (31)

Qn
i (τ

i)≡
n−1
∏

r=0

Qi(ε
r
i (τ

i)) . (32)

These equations allow to state:

Statement 8.– A user may know the shift of an emitter
along his trajectory provided that he receives the shift
during a sole echo interval and the emitter positioning
data along his trajectory.

B. Getting the dynamics by means of the delay
master equation

Now, we can use the delay master equation to improve
the results in Sec. III. Indeed, if we take into account
these results and statement 8, we arrive to:

Statement 9.– If a user receives the emitter positioning
data {τ1, τ2; τ̄1, τ̄2} along his trajectory and the acceler-
ation of one of the emitters during a sole echo interval,
then this user can obtain a full information about his
dynamics and the dynamics of the emitters.
In order to obtain all this information in a specific sit-

uation it is worth analyzing what is the minimum set
of equations which are necessary. We have obtained the
master delay equations (26) and (27) from the constraint
system (23)-(24), and a straightforward calculation al-
lows to show:

Statement 10.- If the emitter trajectories in the grid

ϕ1(τ
1) and ϕ2(τ

2) are known, then one of the constraint
equations (23)-(24) and one of the master delay equations
(26)-(27) imply the full constraint system (23)-(24).
Then, we can slightly modify the steps given in sub-

sections IIID and III E in order to obtain all the system
and user information from a minimal set of public data.

Received user data: the emitter positioning data
{τ1, τ2; τ̄1, τ̄2} along the user trajectory and the
acceleration of an emitter, say α1, in an echo inter-
val.

Step s1: From the pairs {τ1; τ̄2} and {τ2; τ̄1}, determine
the emitter trajectory functions ϕ1(τ

1) and ϕ2(τ
2),

respectively.

Step s2′: From the pair {τ1;α1}, determine the emitter
acceleration scalar α1(τ

1) in the echo interval.

Step s3′: From the acceleration scalar α1(τ
1) obtained

in step s2′, determine the shift s1(τ
1) with respect

to an inertial system {u, v} in the echo interval.

Step s3′′: From the shift s1(τ
1) in the echo interval ob-

tained in step s3′, determine the shift s1(τ
1) with

respect to an inertial system {u, v} along the user
trajectory:

s1(τ
1) =

ϕ̇2(ϕ1(τ
1))

ϕ̇1(τ1)
s1(ε1(τ

1)) , ε1 = ϕ2 ◦ ϕ1 .

Steps s4-s7: From the function ϕ2(τ
2) obtained in step

s1 and the shift s1(τ
1) obtained in step s3′′, deter-

mine: the shift s2(τ
2) with respect to the inertial

system {u, v} and the acceleration scalar α2(τ
2),

the metric function in emission coordinates, the
transformation from emission to inertial null co-
ordinates {u, v}, and the proper time history of
the emitters in these inertial coordinates along the
whole emitter world lines.
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Steps u1-u7: From the steps s1, s2, s3′′, s4 and s6 and
the pair {τ1; τ2}, determine: the user trajectory in
the grid, the user world line in the inertial system
{u, v}, the user proper time function τ = T (u),
the proper time history of the user in the inertial
null coordinates {u, v}, the shift s(τ) of the user
with respect the inertial system {u, v} and the user
acceleration α(τ), and the proper time history of
the user in emission coordinates.

C. The delay master equation in positioning with
inertial emitters

Let us suppose that the user receives along his tra-
jectory a set of emitter positioning data {τ1, τ2; τ̄1, τ̄2}
that leads, following step s1, to the emitter trajectories
(21) in the grid. Thus, the echo function ε1 and the echo
operator Q1 are, respectively,

ε1(τ
1) = λ2τ1 + p , Q1(τ

1) = 1 , (33)

where p ≡ λτ20 + τ
1
0 . Then, the delay master equation for

the shift s1(τ
1) takes the expression:

s1(τ
1) = s1(λτ

1 + p) . (34)

Let us suppose moreover that, following step s2′, the
data {τ1;α1} determine that the acceleration scalar iden-
tically vanishes in an echo interval, α1(τ

1) = 0. Then,
following step s3′, a null inertial system {u, v} exists such
that the shift in this echo interval is s1(τ

1) = 1. Now, in
step s3′′, we apply the delay master equation (34) and ob-
tain s1(τ

1) = 1 along the user trajectory. At this point,
following the steps s4-s7 and u1-u7 we obtain all the sys-
tem and user information as we did in Sec. IV.

D. The delay master equation in positioning with
stationary emitters

Let us suppose that the user receives along his tra-
jectory a set of emitter positioning data {τ1, τ2; τ̄1, τ̄2}
that leads, following step s1, to the emitter trajectories
(22) in the grid. Thus, the echo function ε1 and the echo
operator Q1 are, respectively,

ε1(τ
1) = τ1 − 2q , Q1(τ

1) = ω2 . (35)

Then, the delay master equation for the shift s1(τ
1) takes

the expression:

s1(τ
1) = ω2s1(τ

1 − 2q) . (36)

Let us suppose moreover that, following step s2′, the
data {τ1;α1} determine that the acceleration scalar takes
the constant value α1(τ

1) = 1
q
lnω in an echo inter-

val. Then, following step s3′, a null inertial system
{u, v} exists such that the shift in this echo interval is

s1(τ
1) = exp(α1τ

1). Now, in step s3′′ we apply the mas-
ter delay equation (36) and obtain s1(τ

1) = exp(α1τ
1)

along the user trajectory. At this point, following the
steps s4-s7 and u1-u7 we obtain all the system and user
information as we did in Sec. V.

E. The delay equations for the emitter
accelerations

In statement 7 we can replace the shifts s1 and s2 with
the accelerations α1 and α2 as a consequence of the pub-
lic data constraint equations (17) and (18). Then, from
these equations or from the delay master equations (28)-
(29), we can obtain the delay equations for the emitter
acceleration scalars:

α1(τ
1) =

Q̇1(τ
1)

Q1(τ1)
+ α1(ε1(τ

1))ε̇1(τ
1) , (37)

α2(τ
2) = − Q̇2(τ

2)

Q2(τ2)
+ α2(ε2(τ

2))ε̇2(τ
2) . (38)

Moreover, we can also obtain a restriction on the emit-
ter accelerations further from an echo interval:

α1(τ
1) =

Q̇n
1 (τ

1)

Qn
1 (τ

1)
+ α1(ε1(τ

1))ε̇n1 (τ
1) , (39)

α2(τ
2) = − Q̇

n
2 (τ

2)

Qn
2 (τ

2)
+ α2(ε2(τ

2))ε̇n2 (τ
2) . (40)

Thus, as a consequence of these equations we can replace
in statement 8 the emitter shift with the emitter acceler-
ation.
The delay equations (37)-(38) for the emitter accelera-

tions follow from the master equations (28)-(29) but they
are not sufficient conditions.
Thus, if we know the acceleration of an emitter in an

echo interval we must: firstly, obtain the shift and, sec-
ondly, apply the master equation, as explained in steps
presented in section VIB. If, on the contrary, we first
apply the delay equation for the acceleration and, sec-
ondly, we determine the shift, we could lost a part of the
information that the master equation provides.
We can better understand this point with an example.

Let us suppose that the user receives along his trajec-
tory a set of emitter positioning data that leads to the
emitter trajectories (22) in the grid. And let us also sup-
pose that he receives the acceleration of the emitter γ1 in
an echo interval with a constant value α1. Then, we can
obtain the shift in this echo interval and the master equa-
tion (which takes the expression (36)) implies that, under
a continuity assumption for the shifts, the accelerations
takes, necessarily, the constant value α1(τ

1) = 1
q
lnω.

Nevertheless, if we apply first the delay equation for
the accelerations, α1(τ

1) = α1(τ
1 − 2q), we obtain

α1(τ
1) = α1 independently of the value of α1. This ap-

parent no constraint on α1 is deceptive: if we apply the
steps s1-s7 presented in section III D for a value of the
acceleration α1 6= 1

q
lnω, we arrive to an inconsistency.
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VII. DISCUSSION AND WORK IN PROGRESS

In this work we have analyzed the constraints on the
data received by a user of a relativistic positioning sys-
tem, and how these data can afford information on the
dynamics of the user and of the emitters. We have shown
that the user can obtain his acceleration and the accelera-
tion of the emitters provided that he receives the emitter
positioning data along his trajectory and the acceleration
of only one of the emitters and only during a (causal) echo
interval.
We have presented a protocol organized in steps which

allows to obtain, from the minimal set of data, all the
system and user information, namely, the acceleration of
the emitters and of the user, the transformation from
the emission to inertial null coordinates, and the proper
time history of the emitters and of the user in this inertial
system.
Our study shows that the delay master equation plays

an essential role in the internal behavior of a position-
ing system built in a flat two-dimensional space-time. A
forthcoming work should deal with looking for a similar
constraint in a four-dimensional space-time and in pres-
ence of a gravitational field.
In a future extension to the four-dimensional case of

the two-dimensional methods used here we should take
into account the role that the angle between pairs of ar-
rival signals could play in obtaining information on the
metric tensor and on the positioning system.
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Appendix A: Two-dimensional kinematics in null
coordinates

In a null coordinate system {τ1, τ2} the space-time
metric depends on a sole metric function m:

ds2 = m(τ1, τ2)dτ1dτ2 . (A1)

The proper time history of an observer γ is:

τ1 = ψ1(τ), τ2 = ψ2(τ) , (A2)

and its tangent vector is:

T (τ) = (ψ̇1(τ), ψ̇2(τ)) ,

where a dot means derivative with respect proper time.
The unit condition for T becomes:

m(ψ1(τ), ψ2(τ)) =
1

ψ̇1(τ)ψ̇2(τ)
. (A3)

This relation implies that when the unit tangent vector
of an observer is known in terms of his proper time, the
metric on the trajectory of this observer is also known.
The proper time parameterized trajectory (A2) is tan-

tamount to a (geometric) trajectory τ2 = F (τ1) and a
proper time function τ = τ(τ1) related and restricted by
the unit condition. Indeed, from one of the expressions
(A2) we can obtain the proper time of the observer γ,
say:

τ = τ(τ1) = ψ−1
1 (τ1) .

Then, the trajectory is given by:

τ2 = F (τ1) = ψ2(ψ
−1
1 (τ1)) ,

and, in terms of τ2 = F (τ1) and τ = τ(τ1), the unit
condition (A3) becomes:

[τ ′(τ1)]2 = m(τ1, F (τ1))F ′(τ1) . (A4)

From equation (A4) it follows: if the the metric function
is known, (i) there always exists a congruence of users
having a prescribed proper time function, and (ii) the
geometric trajectory of a observer determines his local
unit of time.
The acceleration of the observer (A2) in null coordi-

nates {τ1, τ2} takes the expression:

a(τ) =
(

ψ̈1 + (lnm),1 ψ̇
2
1 , ψ̈2 + (lnm),2 ψ̇

2
2

)

, (A5)

and the acceleration scalar α(τ) ≡ ±
√

−a2(τ) is:

α(τ) =
ψ̈1

ψ̇1

+ (lnm),1 ψ̇1 = − ψ̈2

ψ̇2

− (lnm),2 ψ̇2 . (A6)

The dynamic equation, i.e. the equation for the world
lines with a known acceleration α, and consequently the
geodesic equation (when α = 0), can be written as two
coupled equations for the proper time functions ψ1(τ)
and ψ2(τ):

ψ̈1

ψ̇1

+ (lnm),1 ψ̇1 = α(τ) , mψ̇1ψ̇2 = 1 (A7)

In (A7) the metric function m(τ1, τ2) is known, and m
stands for m(τ1(τ), τ2(τ)); therefore, it is a coupled sys-
tem.

Dynamic equation in flat metric

In a two-dimensional flat space-time the metric func-
tion m in null coordinates {τ1, τ2} factorizes:

m(τ1, τ2) = u′(τ1)v′(τ2) ,

where u = u(τ1) and v = v(τ2) give the transformation
to an inertial coordinate system {u, v}.
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As a consequence of this factorization, the dynamic
equation (A7) can be partially integrate and it becomes:

ψ̇1(τ)u
′(ψ1(τ)) =

1

ψ̇2(τ)v′(ψ2(τ))
= s(τ) , (A8)

where the shift parameter s(τ) is defined as:

s(τ) ≡ exp

(
∫

α(τ)dτ

)

. (A9)

Note that s(τ) is, actually, a shift parameter since it could
be obtained as:

s(τ) =

√

1 + β(τ)

1− β(τ)
(A10)

where β(τ) is the relative velocity between the given ob-
server and an inertial one. The hyperbolic angle between
both observers is φ(τ) = ln s(τ).
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