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ABSTRACT
An increasing number of psycholinguistic studies have adopted a megastudy approach to explore
the role that different variables play in the speed and/or accuracy with which words are recognised
and/or pronounced in different languages. However, despite evidence for deep and shallow
orthographies, little is known about the role that several orthographic, phonological and
semantic variables play in visual word recognition and word production of words from
intermediate-depth languages, as European Portuguese (EP). The current study aimed to
overcome this gap, by collecting lexical decision and naming data for a large pool of words
selected to closely represent the diversity of the EP language. Results from multiple regression
analyses conducted on the latency data from both tasks place EP in-between the results
previously observed in other deep- and shallow-orthographies. These findings indicate that EP
represents a pivotal language to study the universality of the processes/mechanisms involved in
skilled reading across languages.
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Introduction

Recent studies have provided new insights into the role
played by different psycholinguistic variables in the
speed and accuracy with which words are recognised
and/or pronounced in different languages by adopting
a megastudy approach. This approach presents several
advantages over the classic factorial designs (e.g. see
Balota, Yap, Hutchison, & Cortese, 2012; or Keuleers &
Balota, 2015; for recent reviews). Indeed, since it involves
the collection of reaction times and accuracy responses
for a large amount of words using standard psycholin-
guistic tasks such as lexical decision and/or word
naming (e.g. Balota et al., 2007; Ferrand et al., 2010; Keul-
eers, Diependaele, & Brysbaert, 2010; Keuleers, Lacey,
Rastle, & Brysbaert, 2012; Yap, Liow, Jalil, & Faizal,
2010), experimenters do not need to match experimental
stimuli on each of the potential variables that may affect
the results (e.g. word frequency, word length, neighbour-
hood size). Instead, the influence of each word feature
can be entered into the analyses (typically regression
analysis) as predictors. Moreover, the variables under
study do not need to be categorically classified (e.g.
high vs. low frequency words and/or as short vs. long
length words), as they can assume, in the statistical ana-
lyses, the “real” values that has been assigned to them

based on the information provided in lexical databases
(e.g. per million word frequency, number of letters or syl-
lables). These options increase the statistical power of
the analyses to be conducted and the reliability of the
results obtained as the effects observed are less depen-
dent on the characteristics of the pool of stimuli
(usually small) used, which often present extreme
values in the dimensions under manipulation. Indeed,
to maximise the odds of obtaining significant effects in
factorial designs, researchers usually select the items
that present the highest and the lowest values on a
given dimension (e.g. word frequency, word length,
neighbourhood size), which contributes to an over-rep-
resentation of unusual items in the experimental list.
Working with a large amount of items from a wide
range of characteristics avoids this bias. Moreover, the
megastudy approach also allows researchers to explore
nonlinear effects on word processing (see, for instance,
Baayen, Feldman, & Schreuder, 2006; Balota, Cortese,
Sergent-Marshall, Spieler, & Yap, 2004; or New, Ferrand,
Pallier, & Brysbaert, 2006) and to reduce the influence
of the experimenter in stimuli selection (see Forster,
2000).

Due to these advantages, it is not surprising that word
processing times and accuracy rates have been collected
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from an increasing number of large-scale studies
conducted in different languages, such as English (e.g.
Balota et al., 2004, 2007; Goh, Yap, Lau, Ng, & Tan,
2016; Keuleers et al., 2012; Yap & Balota, 2009), Italian
(e.g. Barca, Burani, & Arduino, 2002; Burani, Arduino, &
Barca, 2007), French (e.g. Ferrand et al., 2010, 2011,
2017), Dutch (e.g. Brysbaert, Stevens, Mandera, &
Keuleers, 2016; Ernestus & Cutler, 2015; Keuleers et al.,
2010), Spanish (e.g. Cuetos, Glez-Nosti, Barbon, &
Brysbaert, 2011; Davies, Barbón, & Cuetos, 2013;
González-Nosti, Barbón, Rodríguez-Ferreiro, & Cuetos,
2014; Wilson, Cuetos, Davies, & Burani, 2013), Malay
(e.g. Yap et al., 2010), or Chinese (e.g. Sze, Rickard Liow,
& Yap, 2014; Sze, Yap, & Rickard Liow, 2015; Tsang
et al., 2017; Tse et al., 2017). Nonetheless, it is important
to note that despite the renewed interest that conduct-
ing large-scale studies has been gathering in the scien-
tific community in recent years, studies aiming to test
which variables impacted strongly word processing
from a large pool of items are not entirely new. In
1989, Seidenberg and Waters collected naming latencies
for 2,897 monosyllabic English words. This study was fol-
lowed by other works in English as well as in other alpha-
betic and non-alphabetic languages (e.g. Balota et al.,
2004; Barca et al., 2002; Chateau & Jared, 2003; Cortese
& Khanna, 2007; Cuetos & Barbón, 2006; Spieler &
Balota, 2000; Treiman, Mullennix, Bijeljac-Babic, & Rich-
mond-Welty, 1995). Nevertheless, this approach was
taken much further when Balota et al. (2007) published
a chronometric database providing lexical decision and
naming latencies for over 40,000 words and 40,000 non-
words from American adult skilled readers, in what
become known as the English Lexicon Project, then
extended to other languages such as French (Ferrand
et al., 2010), Dutch (Keuleers et al., 2010; see also Brys-
baert et al., 2016 for an extension), Malay (Yap et al.,
2010), English-British (Keuleers et al., 2012), and
Chinese (Sze et al., 2014; see also Tsang et al., 2017; Tse
et al., 2017).

Based on these chronometric datasets, several papers
have been published revisiting factors that are known to
affect word processing in different languages (e.g. word
frequency, word length, syllables and morphemes, ima-
geability and concreteness, Age-of-Acquisition [AoA],
words’ affective content – e.g. Bonin, Méot, & Bugaiska,
2018; Brysbaert et al., 2011; Cortese & Schock, 2013;
Ferrand et al., 2010; Gimenes, Brysbaert, & New, 2016;
Keuleers et al., 2010; Kousta, Vigliocco, Vinson,
Andrews, & Del Campo, 2011; Kuperman, 2015; Kuper-
man, Stadthagen-Gonzalez, & Brysbaert, 2012; New
et al., 2006; Yap, Tan, Pexman, & Hargreaves, 2011).
Other studies tested the role that new variables
assume in word recognition as, for instance, the

Orthographic Levensthein Distance (OLD20) measure
proposed by Yarkoni, Balota, and Yap (2008), or the
word prevalence measure proposed recently by
Brysbaert et al. (2016). Additionally, these datasets have
also been used to compare the predictive power of
different measures of the same variable (e.g. word fre-
quency drawn from subtitles or from written-texts) on
word processing (e.g. see Soares, Machado, et al., 2015
for a recent review), and/or to analyze the role that the
same variables (e.g. word frequency, word length)
played in visual word recognition and/or pronunciation
of words from different languages (e.g. Ferrand et al.,
2010; Gimenes et al., 2016; Keuleers et al., 2010, 2012;
Yap et al., 2010).

This latter line of studies is particularly relevant as
recent studies suggest that the processes and mechan-
isms involved in skilled reading are shaped by language
characteristics. For instance, Sze et al. (2015), in a recent
study aimed to analyzed the role that different variables
play in the speed with Chinese characters were recog-
nised taking advantage of the lexical decision latencies
provided by the Chinese Lexicon Project (Sze et al.,
2014), showed that in a logographic language such as
Chinese, the semantic and orthographic variables
accounted for the highest percentage of variance,
whereas the phonological variables contributed only
for a modest percentage of variance (see Sze et al.,
2015 for details). These results are remarkable not only
because they shed light on the variables that affect
word processing in a non-alphabetic language, but,
importantly, because they challenged the accepted
view that phonology is inevitable in reading, even in
languages with a lack of correspondence between ortho-
graphy and phonology such as Chinese (see Frost, 1998;
Perfetti, Zhang, & Berent, 1992; Ziegler, Tan, Perry, &
Montant, 2000). Hence, using chronometric datasets to
explore the impact of the same variables across
languages can be highly advantageous. It allows
testing the universality of the processes/mechanisms
involved in skilled reading across languages.

However, despite these datasets are available from a
growing number of languages, they are still lacking for
European Portuguese (EP). This is an important limitation
since EP presents several orthographic and phonological
characteristics that are distinct from deep and shallow
orthographies. For example, EP presents an orthographic
system that is more opaque than Spanish or Italian,
though less opaque than English or French. It is therefore
considered an intermediate-depth language which has
been shown to have an important impact on reading
acquisition (e.g. Fernandes, Ventura, Querido, & Morais,
2008; Seymour, Aro, & Erskine, 2003). Moreover, differ-
ently from Spanish, French or Italian, but similarly to
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English, in EP, syllables tend not to follow each other at
regular intervals, which might contribute to attenuate
the role that syllables assume as a perceptual unit in
word recognition. Indeed in EP, syllabic boundaries are
less clearly defined than in the above cited languages,
as they are blurred by phenomena such as vowel
reduction (i.e. in spoken language, many vowels are
not pronounced, causing mismatches between syllable
divisions in speech and in print – for instance, the final
vowel in the word leite[milk] is not pronounced,
making leite to be a monosyllable in speech [ˈlɐjtɨ] and
a dissyllable in print <lei-te>) and ambisyllabicity (i.e. a
given consonant may work both as the coda of one syl-
lable or the onset of the following syllable giving rise to
different syllable divisions as in the word acne[acne] that
can be divided both as /a.cne/ or /ac.ne/) (see Campos,
Oliveira, & Soares, 2018; for more details). Furthermore,
EP is also considered one of the Indo-European
languages with higher syllabic and morphological com-
plexity. In EP words can be created not only through
the addition of prefixes and/or suffixes as in English,
but also by compounding two or more morphemes
into one single word. Consequently, words are longer
in EP than in other Romance languages. According to
the Procura-PALavras lexical database (P-PAL; Soares,
Iriarte, et al., 2018; available at http://p-pal.di.uminho.
pt/tools), three- to five-syllables are the most common
EP words that, in addition, present more than 40 permiss-
ible first-syllable structures (see Soares, Iriarte, et al.,
2018; see also Campos, Soares, & Oliveira, 2018; for
further details). Together, these characteristics make EP
a pivotal language to study not only the processes and
mechanisms involved in reading acquisition as was the
case hitherto (e.g. Fernandes et al., 2008; Seymour
et al., 2003), but also the processes and mechanisms
involved in skilled reading. However, to date, no
studies have analyzed how these features impact the rec-
ognition and the pronunciation of EP words, by adopting
a megastudy approach.

The current study

The current study aimed to overcome this gap by using
the megastudy approach and a series of regression ana-
lyses to explore the relative contribution that different
orthographic, phonological and semantic variables play
in the visual recognition and pronunciation of EP
words. The collection of behavioural responses (reaction
times and accuracy rates) from these tasks, considered
the standard tasks to study processes of lexical access
and word production, also allowed us to examine the
similarities and the differences between the regressions
models obtained from each task, as in previous

megastudies (e.g. Balota et al., 2004; Cortese & Khanna,
2007; Ferrand et al., 2011, 2017). In the regression ana-
lyses conducted, the orthographic, phonological and
semantic variables shown to account for the highest per-
centages of variance in previous megastudies (e.g. Balota
et al., 2004, 2007; Barca et al., 2002; Burani et al., 2007;
Chateau & Jared, 2003; Cortese & Khanna, 2007; Cuetos
& Barbón, 2006; Davies et al., 2013; Ferrand et al., 2010,
2011, 2017; González-Nosti et al., 2014; Keuleers et al.,
2010, 2012; Wilson et al., 2013; Yap et al., 2010) were
included as predictors.

Specifically, the standard measure of per million word
frequency obtained both from EP written-texts (P-PAL
database, Soares, Iriarte, et al., 2018) and EP subtitle
corpora (SUBTLEX-PT database, Soares, Machado, et al.,
2015) were used as orthographic predictors due to the
relevance that word frequency plays in all research
using verbal stimuli (see Brysbaert et al., 2011; and also
Soares, Iriarte, et al., 2014; Soares, Machado, et al.,
2015; for recent reviews). Note, that even though
SUBTLEX-PT word counts were shown to represent a
better determinant of EP lexical decision than P-PAL
word counts (see Soares, Machado, et al., 2015), we
decided to use both word frequency measures in the
current study to further examine if the subtitle advan-
tage observed by Soares, Machado, et al. (2015) in the
visual word recognition of EP words is also observed in
EP word pronunciation. Since subtitle word counts
approach the day-to-day use of language more closely
than written-texts, we expected the SUBTLEX-PT not
only to outperform P-PAL word counts in naming per-
formance as observed in other languages (e.g. Cai & Brys-
baert, 2010; Cuetos et al., 2011), but also that the
difference in the percentage of variance accounted for
by each of these measures to be greater in naming
than in lexical decision performance. Cuetos et al.
(2011) and Cai and Brysbaert (2010) found that the
advantage of subtitles over written-texts counts was
greater in lexical decision than in naming performance
in Spanish and Chinese, respectively. However, in these
countries most films and TV series are dubbed and not
subtitled. This is not the case of Portugal, where EP
skilled readers are very used to read subtitles. Hence,
this difference could lead to a different result in the EP
language.

In addition, the Contextual Diversity (CD) measure
obtained from the SUBTLEX-PT (Soares, Machado, et al.,
2015), and the Zipf scale measure obtained both from
the P-PAL (Soares, Iriarte, et al., 2018) and the SUBTLEX-
PT (Soares, Machado, et al., 2015), were included in the
analyses as orthographic predictors. CD is a more
refined measure of word frequency that indexes the
number of different contexts in which a word appears
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and not simply the number of times a word appears
regardless of the contexts of occurrence, as in the case
of the standard per million word frequency (see
Adelman, Brown, & Quesada, 2006; see also Soares,
Machado, et al., 2015; for a discussion). The Zipf scale is
another word frequency measure proposed recently by
Van Heuven, Mandera, Keuleers, and Brysbaert (2014)
that depicts word frequency in a 7-point logarithmic
scale. Since it is a much easier and intuitive way to under-
stand word frequency distribution (see Van Heuven et al.,
2014), it has been increasingly used in experimental
research (see Soares, Oliveira, Comesaña, & Costa, 2018;
or Soares, Oliveira, Ferreira, et al., 2018; for recent
examples). However, despite its usefulness, the empirical
validation of the Zipf measure against other word fre-
quency measures, namely the CD measure shown to
be the best determinant of reading performance both
in skilled and developing readers (e.g. Adelman et al.,
2006; Brysbaert et al., 2011; Brysbaert & New, 2009; Keul-
eers et al., 2010; Perea, Soares, & Comesaña, 2013; Soares,
Machado, et al., 2015; Van Heuven et al., 2014; see also
Parmentier, Comesaña, & Soares, 2017; for evidence in
serial recall tasks), has not been demonstrated.

Furthermore, since previous studies have shown that
the phonetic features of words’ accounted for a signifi-
cant percentage of variance in speeded pronunciation
(e.g. Balota et al., 2004; Chateau & Jared, 2003; Cortese
& Khanna, 2007; Davies et al., 2013; Ferrand et al., 2011;
Spieler & Balota, 2000; Treiman et al., 1995; Yap &
Balota, 2009), we examined the role that words’ first-
phoneme and words’ stress pattern play in EP word pro-
cessing. Note that although the abovementioned studies
showed that words’ first-phoneme and words’ stress
pattern impact strongly word pronunciation than word
visual recognition, the fact that in EP the vast amount
of orthography-phonology inconsistencies are contex-
tually resolved (for instance the letter “s” at first position
as in selo[stamp] is always pronounced [s], while when it
appears at the middle position between vowels, as in
casa[house], it is always pronounced [z]) might affect
lexical decision in a greater extent than observed in
these studies, particularly those conducted in deep
languages (e.g. Balota et al., 2004; Chateau & Jared,
2003; Cortese & Khanna, 2007; Spieler & Balota, 2000;
Treiman et al., 1995; Yap & Balota, 2009).

Likewise, word length, measured in number of letters,
phonemes, and syllables (orthographic and phonologi-
cal) were also added to the analyses as predictors. Even
though reliable word length effects were not consistently
observed across-languages and tasks (see New et al.,
2006; for a review), the length of a printed word is a criti-
cal parameter in most models of visual word recognition
(see Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;

Frost, 1998; Goswami & Ziegler, 2006; Perfetti et al.,
1992; Ziegler & Goswami, 2005). Larger word length
effects have been observed in naming than in lexical
decision performance and also in languages with
shallow than deep orthographies (e.g. Baayen et al.,
2006; Balota et al., 2004; Barca et al., 2002; Burani et al.,
2007; Chateau & Jared, 2003; Cortese & Khanna, 2007;
Cuetos & Barbón, 2006; Davies et al., 2013; Ferrand
et al., 2011; González-Nosti et al., 2014; Spieler & Balota,
2000; Wilson et al., 2013; Yap et al., 2010; Yap & Balota,
2009). These results have been interpreted as a marker
of the level of engagement of the sub-lexical route in
word processing. Indeed, since the use of this route
requires the letter string to be segmented into their
basic components (e.g. letters), and then converted
into sounds by using a set of grapheme-phoneme corre-
spondence rules, it is expected that the time needed to
process a word would increase as a function of the
number of letters in the string, particularly in shallow
orthographies as Spanish or Italian. Nevertheless, word
length effects have been also observed in languages
with lower levels of orthography-phonology consistency
such as English or French, and not only in word pronun-
ciation but also in word/nonword decisions (e.g. Baayen
et al., 2006; Balota et al., 2004; Chateau & Jared, 2003;
Cortese & Khanna, 2007; Ferrand et al., 2011; New et al.,
2006; Spieler & Balota, 2000; Wilson et al., 2013; Yap
et al., 2010; Yap & Balota, 2009).

These inconsistencies can be explained, at least in
part, by the fact that the relationship between word
length and word latencies is not linearly defined, as
demonstrated by New et al. (2006) with the lexical
decision data from the English Lexicon Project. Specifi-
cally, the authors found a U-shaped function that was
independent of word frequency, number of syllables,
and number of orthographic neighbours measured as
the number of words that can be formed by replacing
a given letter in the string by another letter, while
keeping the remaining constant in the same positions,
i.e. the standard N orthographic neighbourhood
measure of Coltheart, Davelaar, Jonasson, and Besner
(1977). Facilitative length effects were observed for
words from three- to five-letters, null effects for words
from five- to eight-letters, and inhibitory length effects
for words from eight- to-13-letters. This U-shaped func-
tion was also observed by Ferrand et al. in the lexical
decision data from both the French Lexicon Project
(Ferrand et al., 2010), and the recent MEGALEX database
(Ferrand et al., 2017; see however Ferrand et al., 2011; for
a J-shaped function in the lexical decision data from
Chronolex), although, in the French language, the
effect vanished when the most recent OLD20 ortho-
graphic neighbourhood measure (Yarkoni et al., 2008)
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was partialed out. The OLD20 is a richer and more flexible
way of measuring orthographic similarity, as it indexes
the mean number of operations necessary to transform
a word into another word in the lexicon considering
the 20 closest orthographic neighbours. As such, it
avoids the negative relationship that between the
number of letters and the number of orthographic
neighbours is observed when the classic N metric is
used instead (see Yarkoni et al., 2008; for details).

Additionally, it is also worth noting that inhibitory
word length effects were also observed in the English
language when larger word length units were con-
sidered (number of syllables), though the effect was, in
this case, linearly defined (see New et al., 2006; see also
Yap & Balota, 2009; for further evidence). These results
are consistent with the assertions of the grain-size
theory (Goswami & Ziegler, 2006; Ziegler & Goswami,
2005), claiming that in nonshallow orthographies, pho-
nological recoding involves the use of multiple and
larger size units (e.g. syllables) as in these languages
the use of small units (i.e. letters) is more prone to
error than in shallow orthographies. Therefore, in EP,
we expected to observe inhibitory length effects both
in lexical decision and naming performance. Note,
however, that in a previous factorial study conducted
with EP skilled readers, Lima and Castro (2010) only
found reliable word length effects in lexical decision
for EP words differing in two letters (i.e. words with
four- vs. words with six-letters) and in naming perform-
ance only when words and nonwords were presented
in mixed lists (i.e. in a context that stimulates the use
of the serial sub-lexical route of processing). Nonethe-
less, since that study only used a limited set of EP
words from a very narrow word length range (i.e. 100
dissyllabic words from four- to six-letters), it is impor-
tant to further examine whether these results can be
also observed when a more diversified set of EP
words coming from a wide length range were used.
Moreover, it is also critical to analyze whether EP
word length effects would be also observed when
larger (syllables) units are analyzed. Indeed, although
the characteristics of the EP language made syllabic
boundaries to be less clearly defined in EP than in
other languages as mentioned, recent EP factorial
studies have also demonstrated that the syllable
plays a functional role both in visual recognition and
pronunciation of EP words (e.g. Campos, Oliveira,
et al., 2018; Campos, Soares, et al., 2018; Pureza,
Soares, & Comesaña, 2016), thereby suggesting that
EP skilled readers may rely on the use of multiple
recoding strategies, as English skilled readers (e.g.
Goswami & Ziegler, 2006; New et al., 2006; Yap &
Balota, 2009; Ziegler & Goswami, 2005).

Furthermore, it remains also unclear whether EP word
length effects would survive when word neighbourhood
measures (e.g. Nmetric, OLD20) were taken into account,
as in New et al. (2006) and Ferrand et al. (2010, 2011,
2017) studies. As advanced by Ferrand et al. (2010),
since shorter words present more neighbours than
longer words, it is possible that the word length effects
observed in different languages may result from the
number of neighbours in the lexicon and not from
word length per se. Although the magnitude and the
direction of neighbourhood effects seem to depend on
the type of neighbourhood measure considered, on
the characteristics of the language in use, as well as on
task demands, facilitative neighbourhood effects tend
to be observed both in lexical decision, and particularly
in naming performance in different languages (see
Andrews, 1997; Perea, 2015; for reviews). These results
have been taken as evidence that words from denser
orthographic neighbourhoods present more stable
lexical representations than words from sparse neigh-
bourhoods, and also that retrieving phonological infor-
mation from an orthographic input (as in speed
pronunciation) relies more on the use of the sub-lexical
of processing, which seems to be more sensitive to the
orthographic and/or phonological similarities among
words in the lexicon than word/nonword discrimi-
nations. Nonetheless, larger neighbourhood effects
have been observed on the OLD20 than on the N
measure (e.g. Yarkoni et al., 2008; Yap & Balota, 2009;
see however Ferrand et al., 2010, 2017; or Keuleers
et al., 2010; for a modest contribution of OLD20 in the
lexical decision data from French and British-English par-
ticipants, and also Yap et al., 2010 for similar results in the
speeded pronunciation data from Malay participants),
and also in studies with factorial than megastudy
designs. As pointed out by Keuleers et al. (2012), this
might arise because in factorial studies researchers
tend to use words with extreme neighbourhood values
(i.e. words with a very few or a very high number of
orthographic and/or phonological neighbours), which
increases the likelihood of observing strong neighbour-
hood effects.

Additionally, recent megastudies (e.g. Ernestus &
Cutler, 2015; Ferrand et al., 2017; Goh et al., 2016) have
also analyzed the role that uniqueness point measures
(i.e. the point [letter/phoneme] in the string from
which a word becomes distinguishable from all its neigh-
bours – e.g. Kwantes & Mewhort, 1999; Luce, 1986) play
in word recognition in different languages. Classic factor-
ial studies showed that words with an early orthographic
or an early phonological uniqueness point tend to be
recognised and pronounced faster and more accurately
than words with a late orthographic or a late
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phonological uniqueness point (see Kwantes & Mewhort,
1999; Luce, 1986; or Radeau, Mousty, & Bertelson, 1989;
for some examples). This effect has been associted with
the use of the serial left-to-right route of processing
(see however Izura, Wright, & Fouquet, 2014; for a factor-
ial study showing an inhibitory orthographic uniqueness
point effect in the English language). Yet, the results from
the few megastudies testing these measures are incon-
clusive. Using different phonological uniqueness point
measures, Ernestus and Cutler (2015) found that word
duration was the best predictor of the latencies with
which Dutch spoken words were recognised, and Goh
et al. (2016) observed that the phonological uniqueness
point measure only contributed (marginally) for the
speed with which English spoken words were semanti-
cally categorised. Still, Ferrand et al. (2017), showed
that the effect of the orthographic and phonological
uniqueness point measures seems to depend on the
modality (visual vs. auditory) in which French words
were presented. Using the visual- and the auditory-
lexical decision data from the MEGALEX database, the
authors demonstrated that, in the visual domain, words
with an early orthographic or phonological uniqueness
point were recognised more slowly than words with a
late orthographic or phonological uniqueness point (an
inhibitory effect consistent with the results of Izura
et al., 2014). However, in the auditory domain, words
with an early phonological uniqueness point produced
faster recognition times, whereas words with an early
orthographic uniqueness point produced longer recog-
nition times. Thus, the effects of the orthographic and
phonological uniqueness point measures in shallow
and deep orthographies are unclear, and completely
unknown in intermediate-depth languages, as EP.

Finally, since semantic variables as imageability (i.e.
the ease and speed with which a word evokes a
mental image – e.g. Paivio, Yuille, & Madigan, 1968), con-
creteness (i.e. the degree to which words refer to objects,
persons, places, or things that can be experienced by the
senses – e.g. Paivio et al., 1968), subjective frequency (i.e.
the estimated number of times a word is encountered in
its spoken or written form by individuals in their daily
lives, Balota, Pilotti, & Cortese, 2001), AoA (i.e. the esti-
mated age at which a word is learned by individuals,
Carroll & White, 1973), and words’ affective properties
such as valence (i.e. the degree of pleasantness a word
evokes in individuals), arousal (i.e. the degree of physio-
logical activation it triggers) and dominance (i.e. the
degree of control it produces) (see Bradley & Lang,
1994; see also Soares, Comesaña, Pinheiro, Simões, &
Frade, 2012; or Pinheiro, Dias, Pedrosa, & Soares, 2017;
for recent studies collecting these emotional ratings for
EP verbal stimuli) were shown to account for significant,

though often small (around 1%–5%), amounts of var-
iance in word processing (e.g. Balota et al., 2004; Bonin
et al., 2018; Cortese & Khanna, 2007; Cortese & Schock,
2013; Davies et al., 2013; Ferrand et al., 2011, 2017; Goh
et al., 2016; González-Nosti et al., 2014; Kousta et al.,
2011; Kuperman, 2015; Kuperman et al., 2012; Wilson
et al., 2013; Yap & Balota, 2009), they were also intro-
duced in the analyses as semantic predictors. Note that
although subjective and objective word frequency
measures correlates strongly, subjective frequency was
shown to be a better determinant of word recognition
than objective word counts (e.g. Balota et al., 2001,
2004; Cortese & Khanna, 2007). Moreover, subjective fre-
quency was also shown to be a better predictor of the
relative frequency of exposure to a word in daily life
than the experiential familiarity construct introduced
by Gernsbacher (1984) (see Balota et al., 2001), hence
making the inclusion of this variable relevant for the pur-
poses of the current paper. Furthermore, it is also worth
noting that despite the lively debate concerning the role
that AoA assumes in word processing and how AoA
should be measured (see Ghyselinck, Lewis, & Brysbaert,
2004; Zevin & Seidenberg, 2002; or Soares, Medeiros,
et al., 2014; for a discussion), here we opted to include
this variable under the “semantic” category as in other
works (e.g. Kuperman et al., 2012; Soares, Costa,
Machado, Comesaña, & Oliveira, 2017) because AoA cor-
relates more strongly with semantic variables such as
imageability or concreteness than with lexical variables
such as objective word frequency (e.g. Brysbaert, Van
Wijnendaele, & De Deyne, 2000; Cortese & Khanna,
2007; Steyvers & Tenenbaum, 2005).

Overall, evidence from studies testing the role of
these variables in word processing demonstrate that
words that are acquired earlier in life, that are more con-
crete (see, however, Bonin et al., 2018; Kousta et al., 2011;
for a concreteness reverse effect), more imaginable,
more familiar, and more positively valenced, are named
and recognised faster and more accurately than words
presenting lower scores on these dimensions (see
Soares et al., 2017; for a recent review). Stronger seman-
tic effects have been also observed in lexical decision
than in naming performance (e.g. Balota et al., 2004;
Bonin et al., 2018; Cortese & Khanna, 2007; Cortese &
Schock, 2013; Ferrand et al., 2011, 2017; Wilson et al.,
2013; Yap & Balota, 2009), which has been taken as
reflecting a stronger reliance on the meaningfulness of
the stimulus in word/nonword discriminations than in
speed pronunciation. Indeed, since words’ phonological
information can be successfully achieved through the
use of grapheme-phoneme conversion rules, particularly
in languages with shallow orthographies, naming per-
formance is expected to be less affected by semantic-
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to-orthographic/phonological feedback connections
than word/nonword discriminations (see Balota,
Ferraro, & Connor, 1991; for details). Note, however,
that semantic effects have been also observed in
naming studies and not only from deep but also from
shallow orthographies (e.g. Balota et al., 2004; Cortese
& Khanna, 2007; Cuetos & Barbón, 2006; Davies et al.,
2013; Ferrand et al., 2011; Goh et al., 2016; Wilson et al.,
2013; Yap et al., 2011; Yap & Balota, 2009). In intermedi-
ate-depth orthographies, studies aiming to analyze how
semantic variables affect word processing are, to the best
of our knowledge, inexistent. The absence of semantic
norms for EP word stimuli certainly contributed to this
situation. However, norms for imageability, concreteness
and subjective frequency, as well for AoA and for the
affective dimensions of valence, arousal and dominance,
have become recently available for EP from the Minho
Word Pool database (Soares et al., 2017), the Cameirão
and Vicente (2010) norms, and the Portuguese adap-
tation of the Affective Norms for English Words
(Bradley & Lang, 1999; Soares et al., 2012). Therefore,
these ratings were used in the current paper to explore
how these variables affect visual recognition and pro-
nunciation of EP words. As in other languages, we
expected semantic variables to account for significant
(though small) amounts of variance of EP skilled
readers’ performance, particularly in word/nonword dis-
criminations, after all the other variables shown to
affect EP word processing were controlled for.

Method

Participants

A total of 110 Portuguese college students (96 females),
with ages between 18 and 32 years (M = 21.0, SD = 3.32)
participated in the study. All of them were native speak-
ers of EP and reported normal audition and normal or
corrected-to-normal visual acuity, as well as no history
of language or learning disabilities. The majority was
right-handed (92%). Half of the participants (Mage =
21.2, SD = 2.87, 49 females) performed the visual lexical
decision task (LDT), while the other half (Mage = 20.8,
SD = 3.73, 47 females) performed the naming task
(NAM). Participants were randomly assigned to each
task while ensuring the same number of participants
per task (n = 55). Participants were informed that the par-
ticipation in the experiment (either LDT or NAM)
involved the collection of data in four consecutive ses-
sions, each separated by a week. Only participants who
completed the four sessions received course credits for
their participation. The experiment was conducted with
the approval of the Ethics Committee of the University

of Minho. Written informed consent was obtained from
all the participants.

Materials

The stimuli selected for both experiments consisted of
1,920 EP words plus 1,920 pronounceable EP nonwords
in the case of the LDT. Words were selected from the
MinhoWord Pool database (Soares et al., 2017). Nonwords
were created by changing one-to-five letters in the non-
terminal positions from other EP words matched with
the 1,920 experimental words in word length (in
number of letters and syllables) and word frequency
based on the P-PAL database (Soares, Iriarte, et al.,
2018). For instance, the nonword catufia was created
from the base-word calúnia[slander], respecting the pho-
notactic restrictions of the Portuguese language. This
method followed many other studies conducted in EP
(e.g. Campos, Oliveira, et al., 2018; Campos, Soares, et al.,
2018; Perea et al., 2013; Perea, Comesaña, & Soares,
2012; Soares, Lages, Oliveira, & Hernández, 2018; Soares,
Machado, et al., 2015; Soares, Perea, & Comesaña, 2014)
and in many other languages (e.g. Balota et al., 2004,
2007; Cuetos et al., 2011; Ferrand et al., 2010, 2011; Sze
et al., 2014; Yap et al., 2010), as research tools supporting
the generation of legal nonwords are not available for EP.
Nevertheless, extreme caution was taken to ensure that
the nonwords resembled real EP words as much as
possible.

The 1,920 words selected were intentionally chosen to
closely represent the diversity of the EP language.
Indeed, although several large-scale studies used only
mono- and disyllabic words as stimuli (e.g. Baayen
et al., 2006; Balota et al., 2004; Cortese & Khanna, 2007;
Goh et al., 2016; Keuleers et al., 2010, 2012; Sze et al.,
2014; Tse et al., 2017), most of the EP words included
in both experiments were multisyllabic, as most EP
words present more than two syllables (see Soares,
Iriarte, et al., 2018). Figure 1 presents the distribution of
the EP words selected in the dataset as a function of
the number of syllables and number of letters within
each syllable length.

As shown in Figure 1, monosyllables corresponded
only to 2.1% of the words in the dataset. Most words
had two to three syllables (n = 1,357, 70.7%). Words
with more than three syllables corresponded to 27.2%
of the total number of words (n = 523, 27.2%). Concern-
ing the number of letters, words from five to eight
letters were the most common (n = 1,264, 65.8%), fol-
lowed by words from nine to 12 letters (n = 419,
21.8%), and, finally, by words presenting two to four
letters (n = 237, 12.3%). Moreover, an equivalent
number of low-frequency (i.e. <10 occurrences per
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million words), medium-frequency (i.e. 11–74 occur-
rences per million words) and high-frequency
words (i.e. ≥ 75 occurrences per million words), based
on the P-PAL database (Soares, Iriarte, et al., 2018),
were also included for short (two to four letters and
one to two syllables), medium (five to eight letters
and two to four syllables) and long (nine to 12 letters
and three to six syllables) EP words, χ2(4) = 5.79, p
= .22. Therefore, although this dataset integrates a
smaller number of words than observed in other
large-scale studies (particularly the lexicon projects
mentioned before), the fact that these words were
intentionally selected to represent the lexical diversity
in the EP language makes this dataset a powerful tool
to generalise the results obtained here to the other
words in the EP lexicon.

Table 1 presents the descriptive statistics for the
orthographic, phonological and semantic measures
that were included in the multiple regression analyses
conducted in this paper and presented in the next sec-
tions. The distribution of the different measures under
these categories (i.e. orthographic, phonological, seman-
tic) followed the options adopted by other authors in
previous large-scale studies (e.g. Balota et al., 2004,
2007; Barca et al., 2002; Brysbaert et al., 2016; Burani
et al., 2007; Cortese & Khanna, 2007; Cuetos et al.,
2011; Davies et al., 2013; Ernestus & Cutler, 2015;
Ferrand et al., 2010, 2011, 2017; Goh et al., 2016; Gonzá-
lez-Nosti et al., 2014; Keuleers et al., 2010, 2012; Sze et al.,
2014, 2015; Tsang et al., 2017; Tse et al., 2017; Yap et al.,

2010). Values are provided in Table 1 for the total
number of words for which behavioural responses
(reaction times and accuracy) were collected (N =
1,920), except for AoA, valence, arousal and dominance
affective dimensions because, for these latter variables,
EP norms are only available for 818 (AoA) and 484
(valence, arousal, and dominance) words from our
dataset. Written-text word frequency, orthographic
and phonological statistics were obtained from the
P-PAL database (Soares, Iriarte, et al., 2018). Subtitle
word frequency measures were obtained from the
SUBTLEX-PT database (Soares, Machado, et al., 2015).
The phonological characteristics of the EP words
(onsets and stress pattern) were categorised dichoto-
mously, in which “1” denotes the presence of a given
phonetic feature and “0” the absence of that feature,
following the procedures adopted in other studies
(e.g. Balota et al., 2004; Chateau & Jared, 2003; Cortese
& Khanna, 2007; Davies et al., 2013). Seven categories
were used to classify the phonetic features of the EP
words beginning by a vocalic phoneme (front, central,
back, high, mid, low, and rounding) – corresponding
to ≅ 23% of the words; and 11 to classify the words
beginning by a consonant phoneme (bilabial, labioden-
tal, apico-dental, alveolar, palatal, velar, stop oral, stop
nasal, fricative, lateral and voiced). The stress pattern
was classified as paroxytone (words stressed on the
penultimate syllable), oxytone (words stressed on the
ultimate syllable) and proparoxytone (words stressed
on the antepenultimate syllable).

Figure 1. Distribution of the EP words as a function of number of syllables and letters. Both number of letters and number of ortho-
graphic syllables were obtained from the P-PAL database (Soares, Iriarte, et al., 2018).
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Procedure

LDT
Each participant responded to 3,800 stimuli (1,920 words
and 1,920 nonwords) in four experimental sessions that
took place in four consecutive weeks (one session per
week), with a quarter of the stimuli presented in each
session (four blocks with 960 stimuli – 480 words and
480 nonwords – each). Stimuli presented in each block
were randomly selected from the total stimulus pool,
with the constraint that a similar number of words
from different lengths (short, medium, and long words)
and frequency intervals (low, medium, high) were
included in each block (Block 1: χ2(4) = 3.24, p = .52;
Block 2: χ2(4) = 4.60, p = .33; Block 3: χ2(4) = 3.76, p = .44;

and Block 4: χ2(4) = .38, p = .98). Nonwords were assigned
to each block according to the characteristics (word
length and word frequency) of the basewords used to
generate the nonwords. Block presentation was counter-
balanced across participants (24 different orders). Partici-
pants were randomly assigned to each order
(approximately two participants per order). The exper-
iment was run individually in a soundproof booth in
each of the four experimental sessions at the facilities
of the Human Cognition Laboratory (University of
Minho). Stimulus presentation and response recording
(reaction times and accuracy) were controlled with
DMDX software (Forster & Forster, 2003). In each exper-
imental session, participants were asked to decide as

Table 1. Psycholinguistic characteristics of the words selected for the lexical decision (LDT) and naming (NAM) tasks on the
orthographic, phonological and semantic variables included in the by-item regression analyses.

Word measures M SD Range (min.-max.)

Orthographic measures P-PALpmwf 67.31 110.69 .43–1,214.45
P-PALZipf 4.46 .58 2.64–6.08
SUBTLEX-PTpmwf 59.77 138.49 .06–1,789.43
SUBTLEX-PTZipf 4.30 .64 1.81–6.26
SUBTLEX-PTCD .07 .08 .00–.51

P-PAL_Nlett 6.90 2.10 2–12
P-PAL_NOsyll 3.00 .95 1–6
P-PAL_OLD20 1.94 .57 1.00–3.85
P-PAL_ON 3.73 4.79 0–27
P-PAL_OUP 6.84 2.06 2–12

Phonological measures P-PAL_Nphon 6.48 1.96 2–12
P-PAL_NPsyll 2.92 .90 1–6
P-PAL_PN 4.20 5.10 0–30
First-phoneme characteristics
(onsets)

Front .07 .26 0–1
Central .13 .34 0–1
Back .03 .17 0–1
High .10 .30 0–1
Mid .12 .32 0–1
Low .02 .14 0–1
Rounded .03 .17 0–1
Bilabial .21 .41 0–1
Labiodental .09 .28 0–1
Apico-dental .18 .39 0–1
Alveolar .06 .23 0–1
Palatal .02 .15 0–1
Velar .21 .40 0–1
Stop oral .41 .49 0–1
Stop nasal .08 .27 0–1
Fricative .19 .39 0–1
Lateral .09 .28 0–1
Voiced .33 .47 0–1

Word stress pattern Paroxytone .73 .445 0–1
Oxytone .21 .410 0–1
Proparoxytone .06 .233 0–1

Semantic measures Imag (1–7 scale) 4.52 1.05 2.29–6.75
Conc (1–7 scale) 4.51 1.27 1.87–6.91
SubjFreq (1–7 scale) 4.74 .90 1.68–6.93
AoA (1–9 scale) 5.26 1.56 1.33–8.34
Val (1–9 scale) 5.43 1.78 1.34–8.38
Arou (1–9 scale) 4.78 1.13 1.79–7.65
Dom (1–9 scale) 5.16 .88 1.95–7.47

Notes: P-PALpmwf: per million word frequency, and P-PALZipf: Zipf scale word frequency obtained from the P-PAL database (Soares, Iriarte, et al., 2018); SUBTLEX-
PTpmwf: per million word frequency, SUBTLEX-PTZipf: Zipf scale word frequency, and SUBTLEX-PTCD: Contextual Diversity word frequency as obtained from the
SUBTLEX-PT database (Soares, Machado, et al., 2015); Nlett: Number of letters, NOsyll: Number of orthographic syllables, OLD20: Orthographic Levensthein Dis-
tance, ON: Orthographic Neighbourhood size, OUP: Orthographic Uniqueness Point, Nphon: Number of phonemes, NPsyll: Number of phonological syllables and
PN: Phonological Neighbourhood size as obtained from the P-PAL database (Soares, Iriarte, et al., 2018). Imag: Imageability; Conc: Concreteness; and SubFreq:
Subjective frequency obtained from the Minho Word Pool database (Soares et al., 2017); Val: Valence; Arou: Arousal; and Dom: Dominance obtained from Soares
et al. (2012) norms; AoA: Age of Acquisition obtained from Cameirão and Vicente (2010) norms.

LANGUAGE, COGNITION AND NEUROSCIENCE 697



quickly and accurately as possible if the string of letters
presented at the centre of the computer screen in lower-
case (Courier New 14) was or was not a real EP word, by
pressing the “Z” key on the keyboard to a sim[yes]
response, and the “M” key on the keyboard to a não
[no] response. Both speed and accuracy were stressed
in the instructions. In each block, trials were randomly
presented. Each trial consisted of a sequence of three
visual events. The first was a fixation point (+) presented
at the centre of the computer screen for 500 ms. The
fixation point was immediately replaced by the stimulus
(word or nonword) at the same position and remained
on the screen until a participant’s response or until
2,500 ms had elapsed. The next trial began after an
inter-trial interval (blank screen) of 500 ms. Participants
were also informed about the existence of pauses after
every 80 trials. Prior to the presentation of the trials, par-
ticipants received 12 practice trials (6 words and 6 non-
words) to familiarise them with the task (different
across blocks). Each experimental session lasted approxi-
mately 45 min. The entire procedure lasted about 3 h per
participant.

NAM
As in the LDT task, each participant responded to the
stimuli (words) in four consecutive experimental sessions
separated by a week each (one block per session). The
blocks used were the same of the LDT, with the exception
that nonwords were not presented in this task. Thus, in
each session, participants responded to 480 words
(1,920 in total). Blocks were counterbalanced across par-
ticipants following the same procedure as in the LDT
(approximately two participants per order). Data were col-
lected individually in soundproof booths at the facilities of
the Human Cognition Laboratory (University of Minho) in
each of the four experimental sessions. Stimulus presen-
tation was controlled with the DMDX software (Forster &
Forster, 2003). Naming latencies were recorded with voi-
cekey from the presentation of the word to the onset of
the naming response. Accuracy and response times of
the recorded vocal responses were checked offline by
using the CheckVocal software (Protopapas, 2007). Partici-
pants were instructed to read out loud as quickly and as
accurately as possible the words that were presented at
the centre of the computer screen. They were also
instructed to avoid producing any extraneous noises
that could trigger the voicekey. Trials in each block were
randomly presented. Each trial consisted of the following
sequence of events: a fixation point (+) presented at the
centre of the computer screen in lowercase (Courier
New 14) for 500 ms, the word to be named at the same
position for 2,000 ms or until the voicekey registered an
acoustic signal, and a blank screen for 500 ms that

worked as inter-trial interval. In each block, participants
were informed about the existence of pauses after every
80 trials. Prior to the experiment, six practice trials were
used to familiarise participants with the task (different
across blocks). Each experimental session lasted approxi-
mately 30 min. The entire procedure lasted about 2 h
per participant.

Results and discussion

Trimming procedures

Before computing the lexical decision and the naming
data (latency and accuracy) for the correct responses of
each of the 1,920 EP words used in this megastudy,
several trimming procedures were implemented on the
raw data that comprised 211,200 responses in the LDT
data and 105,600 responses in the NAM data. Participants
showed a high accuracy rate in both tasks (96.86% in LDT
and 99.43% in NAM) for word trials. Thus, all participants
(N = 55) were included in the computation of mean reac-
tion times (RT) and accuracy (%Acc) rates presented in
Table 2 and in the excel file that can be downloaded as
a supplemental archive from this paper or at http://p-
pal.di.uminho.pt/about/databases. Following a common
practice in megastudies (e.g. Balota et al., 2007; Ferrand
et al., 2010, 2017), RTs that were shorter than 200 ms or
longer than 2,000 ms (1,500 in the naming data) were
excluded from the latency analyses, as well as those that
were 2.5 SDs above or below the mean RTs of each partici-
pant. This procedure resulted in the exclusion of 2.70%
responses in the LDT latency data and 2.82% in the
NAM latency data. Therefore, the RT values provided
were based on 99,429 valid responses in LDT data (corre-
sponding to 94.16% of the original word data), and on
102,016 valid responses in NAM data (corresponding to
96.61% of the original data).

Reaction times and accuracy

Table 2 presents the descriptive statistics for the raw RTs
(in ms), as well as for the z-transformations of the raw RTs

Table 2. Descriptive statistics of the latency (RT, zRT) and
accuracy (%Acc) data obtained for the correct word responses
from the lexical decision (LDT) and naming (NAM) tasks.
Task Behavioural measures Min Max. Mean SD

LDT Raw latencies (RTs) 485.70 748.32 561.25 39.36
Standardised latencies (zRTs) −.69 1.94 .02 .39
Accuracy (%Acc) 16.40 100.00 96.86 5.24
Number of observations 4 55 51.79 3.91

NAM Raw latencies (RTs) 464.21 657.81 558.06 31.58
Standardised latencies (zRTs) −1.20 1.52 .01 .43
Accuracy (%Acc) 80.40 100.00 99.43 1.21
Number of observations 19 55 52.24 2.47
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obtained for each of the 1,920 words included in this
dataset (item statistics) both for LDT and NAM data. Z-
scores were calculated based on the standardised
latencies of the raw scores obtained by each participant
(see Balota et al., 2007; Ferrand et al., 2010, 2011, 2017; or
Keuleers et al., 2010, 2012; for similar procedures) in each
of the tasks. Z-scores allow a direct comparison of the RTs
obtained for each word and, in addition, minimise varia-
bility in item performance due to individual differences
(see Faust, Balota, Spieler, & Ferraro, 1999). Moreover,
for each task, accuracy, i.e. the percentage of correct
responses (%Acc) and the number of observations per
item are also presented.

The results depicted in Table 2 show that the behav-
ioural data obtained in the current study are in accord-
ance with other chronometric datasets available for
other languages (e.g. Balota et al., 2004, 2007; Davies
et al., 2013; Ferrand et al., 2010, 2011, 2017; González-
Nosti et al., 2014). Nevertheless, it is worth noting that
EP participants showed faster RTs and higher accuracy
rates than those reported in previous large-scale
studies, particularly in the LDT (e.g. Balota et al., 2007;
Ferrand et al., 2010, 2011; Keuleers et al., 2010, 2012).
Differences in the items used, in data collection pro-
cedures and participants’ recruitment strategy might
account for these discrepancies. Note, for instance, that
the words used in the current study were, on average,
more frequent and shorter than those used in the ELP
or in the FLP (see Balota et al., 2007; Ferrand et al.,
2010; for details). Furthermore, the nonwords were gen-
erated by changing as many letters as the length of the
corresponding basewords, thus maintaining nonwordli-
keness constant across words’ length (see Ferrand
et al., 2010 for a similar procedure). Moreover, our data
were collected in a laboratory setting under very strict
control conditions, and only college students from the
same university were included in the experiments.
Finally, the fact that in other large-scale studies (e.g.
Ferrand et al., 2017; Keuleers et al., 2010, 2012) partici-
pants were informed that if their accuracy fell below
85% their payment would suffer penalties may have
also contributed to make participants more cautious
about their responses, and, hence, to present longer
latencies. Note, however, that although EP participants
presented shorter latencies than participants from
other languages, the speed with which EP words were
recognised and pronounced did not compromise the
accuracy with which EP words were recognised/pro-
nounced as they were above those observed in previous
studies (e.g. Balota et al., 2007; Ferrand et al., 2010, 2011;
Keuleers et al., 2010, 2012). Nevertheless, the inspection
of the accuracy rates per item showed that nine words in
the dataset were incorrectly recognised by at least one

third of the participants in the LDT, including words as
cárcere[prison cell], asilo[asylum], lodo[sludge] and zelo
[zeal], all presenting a very low lexical frequency both
in the P-PAL (Soares, Iriarte, et al., 2018) and SUBTLEX-
PT (Soares, Machado, et al., 2015) databases. Therefore,
following a common practice in megastudies (e.g.
Balota et al., 2004; Ferrand et al., 2010, 2017), we
excluded these words from the regression analyses con-
ducted both on the LDT and NAM data. Even though all
words in NAM presented an accuracy level above 67%,
we opted to exclude these nine words from the NAM
data to make the results from both tasks fully compar-
able. Excluding these words from the dataset increased
the accuracy rates to 97.07% in LDT data and to
99.45% in the NAM data, and the mean number of obser-
vations per item to 51.92 (SD = 3.35, min. = 26, max. = 55)
in the TDL data, and to 52.28 (SD = 2.32, min. = 31, max.
= 55) in the NAM data.

Reliability

Reliability analyses were conducted using both the split-
half method based on the odd and the even groups of
participants that performed each task (see Ferrand
et al., 2010; or Keuleers et al., 2010 for a similar pro-
cedure), and on the intra-class correlation coefficients
(ICCs) proposed by Rey and Courrieu (2010) and recently
used by Keuleers et al. (2012). This seems to be the best
procedure to deal with missing data from megastudies,
particularly those using a between-subjects design (i.e.
in which different participants respond to a different
pool of items) as in the British Lexicon Project (Keuleers
et al., 2010). Results from the two methods showed
that the behavioural data were highly reliable in both
tasks. Specifically, the split-half method with the Spear-
man-Brown correction for length showed that the
reliability of the LDT data was .869 for the raw RTs, .887
for the zRTs and .829 for %Acc. In NAM, reliability
scores were even higher in the latency data (.898 for
raw RTs, and .919 for zRTs), though lower in accuracy
(.341). This result indicates that the low variability in
the accuracy NAM data could be replicated, probably
due to the ceiling effects observed in the NAM perform-
ance. Results from the ICCs method also showed highly
satisfactory reliability scores, mimicking the results
obtained with the split-half method (LDT: .869 for raw
RTs, .885 for zRTs and .827 for %Acc; NAM: .898 for raw
RTs, .916 for zRTs and .341 for %Acc). Note that since
the missing data were low in both tasks, it is not surpris-
ing that the results from both methods were virtually the
same. As in previous megastudies (e.g. Balota et al., 2007;
Ferrand et al., 2010; Keuleers et al., 2010, 2012; Tse et al.,
2017), zRTs produced better reliability results than raw
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RTs in both tasks, although the gain from removing indi-
vidual differences in the overall RT data was less pro-
nounced here than in the abovementioned studies.
The fact that a within-subjects design was used (i.e. all
participants responded to the whole pool of stimuli),
along with the use of a more homogeneous sample of
skilled readers (see for instance Balota et al., 2007; or
Keuleers et al., 2010, 2012), might have contributed to
attenuate differences in item performance across partici-
pants. Taken together, these results provide strong
support for the item estimates provided in the EP
chronometric dataset both for LDT and NAM perform-
ance and suggest that the analyses conducted based
on this chronometric dataset are highly reliable.

Practice effects

Since data were collected in different experimental ses-
sions, we explored practice effects in participants’ per-
formance (RTs) as in previous megastudies (e.g. Ferrand
et al., 2017; Keuleers et al., 2010, 2012). For that
purpose, the speed with which words were correctly
responded in each block was examined, by considering
the order by which they were responded across sessions
by each participant. As observed in other megastudies
(e.g. Ferrand et al., 2017; Keuleers et al., 2010, 2012), prac-
tice effects were observed both on LDT, F(3, 162) =
21.519, MSE = 625.09, p < .001, h2

p = .29, and NAM per-
formance, F(3, 162) = 4.15, MSE = 633.82, p = .007, h2

p

= .07. In LDT, the effect showed that participants were
approximately 30 ms slower responding to words from
the first block than to words from any other block (p
< .001), with the differences between the other blocks
being statistically non-significant (MBlock1 = 583.03;
MBlock2 = 549.99; MBlock3 = 552.49; MBlock4 = 553.12). In
NAM, the effect showed that participants were approxi-
mately 16 ms slower in responding to words from the
first than to words from the fourth block (p = .033),
being the remaining comparisons non-significant
(MBlock1 = 550.96; MBlock2 = 556.21; MBlock3 = 562.07;
MBlock4 = 566.86). However, when the counterbalancing
design used in data collection was considered, practice
effects vanished both from the LDT, F(3, 162) = .137,
MSE = 871.98, p = .938, h2

p = .003, and NAM data, F(3,
162) = .333, MSE = 678.38, p = .802, h2

p = .006. Thus, the
use of a counterbalanced Latin-Square design seems to
have been effective in removing variability from the RT
data due to participants’ familiarisation with the task
across sessions – note, however, that since Keuleers
et al. (2010, 2012) did not counterbalance the blocks
across participants, the variability due to practice
effects was not removed from the Dutch Lexicon
Project and from the British Lexicon Project data, which

led the authors to further recommend the use of z-
scores and/or the introduction of time-specific variables
as covariates in the statistical analyses conducted on
these chronometric data.1

Predictors of visual word recognition and
pronunciation of EP words

To explore the role played by the orthographic, phonolo-
gical and semantic variables under study in visual recog-
nition and pronunciation of EP words, multiple
regression analyses were conducted considering the
raw RTs and the accuracy rates of the items (words)
that reached 67% of correct responses in both tasks (N
= 1,911) as dependent variables. Since raw RTs and
zRTs produced similar reliability scores, we opted to
use the raw RTs since the results from this dependent
measure (expressed in ms) yielded a better interpret-
ation of the effects. Notwithstanding, conducting the
same analyses on the zRTs produced virtually the same
results. Moreover, it is also worth noting that since
several variables were highly correlated (see Table 3),
which may increase multicollinearity problems in the
regression analyses (see Cohen, Cohen, West, & Aiken,
2003), we first explored which of the word frequency,
word length and word similarity measures was the best
determinant of EP word performance. For that purpose,
we conducted separate regression analyses and exam-
ined the amount of variance accounted for by each of
them in both tasks (see Soares, Machado, et al., 2015;
for a similar procedure). Only then, the role played by
the semantic variables was examined, by conducting
multiple regression analyses controlling for the effect
of word frequency, word length, and word neighbour
variables shown to be the best determinants of EP
word processing in the previous analyses.

Word frequency effects on visual word recognition
and pronunciation of EP words
To analyze which of the word frequency measures
accounted for higher percentages of variance, separate
regression analyses were conducted for each of them.
Table 4 presents the results (R2) of the analyses con-
ducted both on the latency and accuracy data from the
lexical decision and naming tasks. P-PALpmwf, SUBTLEX-
PTpmwf and SUBTLEX-PTCD counts were both log trans-
formed (Log10) and squared (Log10

2 ) considering that
Balota et al. (2004; see also Baayen et al., 2006) found
that the relationship between the log-transformed fre-
quency and word latencies is not completely linear.
Log10 transformations were computed after summing
1 to the base value of each measure as suggested by
Brysbaert and Diependaele (2013). P-PALZipf, SUBTLEX-
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Table 3. Linear correlations between the full set of orthographic, phonological and semantic variables and the latency (RT in ms) and accuracy (%Acc) rates from the lexical decision (LDT)
and naming (NAM) data.
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. LDT RT – −.591** .475** −.163** −.263** −.425** −.288** −.588** −.455** .365** .365** .319** −.182** .363** .375**
2. LDT %Acc – −.160** .052** .118* .282** .069** .270** .167** .141** .099** .072** −.106** .135** .126*
3. NAM RT – −.096** −.119** −.160** −.196** −.357** −.296** .483** .450** .407** −.289** .478** .465**
4. NAM %Acc – .057* .076** .076** .128** .120** −.112** −.128** −.092** .034ns −.103** −.120*
5. P-PALpmwf – .737** .511** .477** .559** −.109* −.113* −.099* .054* −.106* −.107*
6. P-PALZipf – .398** .569** .528** −.063* −.088* −.060* .014ns −.066* −.066*
7. SUBTLEX-PTpmwf – .629** .826** −.236** −.239** −.198** .173** −.230** −.237**
8. SUBTLEX-PTZipf – .852** −.378** −.364** −.332** .254** −.364** −.380**
9. SUBTLEX-PTCD – −.329** −.319** −.288** .234** −.319** −.329**
10. Nlett – .893** .797** −.625** .993** .959**
11. NOsyll – .717** −.556** .889** .898**
12. OLD20 – – .787** .778**
13. ON – – −.603**
14. OUP – .949**
15. Nphon –
16. NPsyll
17. PN
18. Front –
19. Central
20. Back
21. High
22. Mid
23. Low
24. Rounded –
25. Bilabial
26. Labiodental
27. Apico-dental
28. Alveolar
29. Palatal
30. Velar
31. Stop oral
32. Stop nasal
33. Fricative
34. Lateral
35. Voiced
36. Paroxytone
37. Oxytone
38. Proparoxytone
39. Imag
40. Conc
41. SubjFreq
42. AoA
43.Val
44. Arou
45.Dom

(Continued)
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Table 3. Continued.
Variables 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1. LDT RT .360** −.155** .072** .047** −.030ns .038ns .063** −.014ns −.029ns −.097** −.054** .090** .004ns −.047* −.007ns
2. LDT %Acc .108** −.101** .020ns .010ns .027ns .043ns −.014ns .033ns .027ns .037ns −.009ns −.052** −.043ns .012ns .007ns
3. NAM RT .443** −.269** .136** .059** .073** .061** .133** .051** .073** .142** −.256** −.122** −.003ns −.131** .037ns
4. NAM %Acc −.131** .038ns −.059** −.067** .015ns −.064** −.053* .006ns .015ns .021ns −.006ns −.001ns .009ns .028ns .056*
5. P-PALpmwf −.117** .033ns −.008ns −.026ns .006ns −.011ns −.032ns .026ns .006ns .047* .025ns −.012ns .019ns −.002ns −.040ns
6. P-PALZipf −.095** −.004ns .028ns −.025ns .018ns .029ns −.040ns .041ns .018ns .049* .025ns −.041ns −.011ns .015ns −.031ns
7. SUBTLEX-PTpmwf −.232** .150** −.050* −.041ns .006ns −.037ns −.052* .011ns .006ns .043ns .053* −.008ns .022ns .006ns −.023ns
8. SUBTLEX-PTZipf −.359** .226** −.053* −.052* .026ns −.027ns −.063** .011ns .026ns .088** .050* −.054* .018ns .041ns −.031ns
9. SUBTLEX-PTCD −.312** .207** −.060** −.050* .020ns −.032ns −.065** .010ns .020ns .076** .057* −.032ns .028ns .032ns −.041ns
10. Nlett .892** −.575** .150** .105** −.027ns .173** .056* .001ns −.027ns −.096** −.104** .048* −.083** −.076** .027ns
11. NOsyll .959** −.507** .191** .208** .032ns .211** .173** .051* .032ns −.144** −.109** .025ns −.076** −.098** −.033ns
12. OLD20 .702** −.696** .173** .088** .035ns .184** .063** .037ns .035ns −.083** −.086** .041ns −.023ns −.024ns −.073**
13. ON −.542** .931** −.149** −.102** −.068** −.159** −.090** −.059** −.068** .084** .090** −.030ns .020ns −.013ns .084**
14. OUP .889** −.569** .147** .101** −.031ns .169** .052* −.004ns −.031ns −.089** −.101** .049* −.085** −.078** .025ns
15. Nphon .895** −.551** .089** .096** −.038ns .140** .020ns .006ns −.038ns −.072** −.093** .071** −.066** −.094** .022ns
16. NPsyll – −.490** .199** .215** .031ns .223** .177** .045ns .031ns −.146** −.116** .034ns −.078** −.101** −.043ns
17. PN – −.138** −.112** −.074** −.149** −.104** −.060** −.074** .098** .100** −.045* .042ns −.021ns .073**
18. Front – −.108** −.049* .604** .111** −.026ns −.049* −.142** −.085** −.132** −.067** −.043ns −.141**
19. Central – −.070** .253** .725** −.056* −.070** −.201** −.120** −.186** −.094** −.061** −.199**
20. Back – .073** .011ns .787** 1.000** −.092** −.055* −.085** −.043ns −.028ns −.091**
21. High – −.119** −.048* .073** −.170** −.102** −.158** −.080** −.052* −.169**
22. Mid – −.052* .011ns −.186** −.111** −.172** −.087** −.057* −.184**
23. Low – .787** −.074** −.045ns −.069** −.035ns −.023ns −.073**
24. Rounded – −.092** −.055* −.085** −.043ns −.028ns −.091**
25. Bilabial – −.159** −.245** −.124** −.081** −.262**
26. Labiodental – −.147** −.074** −.048* −.157**
27. Apico-dental – −.115** −.075** −.242**
28. Alveolar – −.038ns −.123**
29. Palatal – −.080**
30. Velar –
31. Stop oral
32. Stop nasal
33. Fricative
34. Lateral
35. Voiced
36. Paroxytone
37. Oxytone
38. Proparoxytone
39. Imag
40. Conc
41. SubjFreq
42. AoA
43.Val
44. Arou
45.Dom

(Continued)
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Table 3. Continued.
Variables 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1. LDT RT .020ns −.084** −.051* .012ns −.008ns −.014ns .002ns .021ns −.163** −.064* −.554** .558** −.259** .108* −.152**
2. LDT %Acc .002ns .005ns −.011ns −.039ns −.069* .028ns −.036ns .019ns .022ns −.046* .381** −.127** .133** −.065ns .122**
3. NAM RT .432** −.112** −.490** −.201** −.180** −.010ns −.025ns .065** −.126** −.062** −.267** .432** −.154** .142** −.087ns
4. NAM %Acc .062*** .008ns .010ns −.006ns −.011ns .007ns −.006ns −.001ns .039ns .030ns .129** −.129** .067ns −.017ns .028ns
5. P-PALpmwf −.002ns .050* .016ns −.031ns .001ns .057* −.058* .012ns −.139** −.142** .351** −.153** .159** −.083ns .111*
6. P-PALZipf −.011ns .056* .002ns −.043ns −.011ns .115** −.108** .004ns −.210** −.236** .432** −.158** .223** −.062ns .150**
7. SUBTLEX-PTpmwf −.001ns .071** .039ns −.028ns .039ns .019ns .006ns −.045* .038ns −.014ns .392** −.382** .172** −.070ns .077ns
8. SUBTLEX-PTZipf −.019ns .099** .049* −.035ns .031ns −.042ns .063** −.047* .150** .046* .549** −.621** .194** −.069ns .092*
9. SUBTLEX-PTCD −.023ns .089** .057* −.022ns .043ns −.025ns .048* −.047* .033ns −.051* .550** −.555** .199** −.073ns .108*
10. Nlett .049* −.099** −.112** −.080** −.154** .042ns −.060** .041ns −.309** −.287** −.120** .576** −.094* .175** .009ns
11. NOsyll −.065** −.089** −.125** −.071** −.154** −.065** −.001ns .116** −.278** −.264** −.108** .529** −.073ns .153** .025ns
12. OLD20 −.028ns −.063** −.063** −.088** −.121** .132** −.194** .138** −.251** −.240** −.118** .523** −.077ns .157** .006ns
13. ON .047* .055* .068** .071** .100** −.144** .197** −.123** .226** .230** .078** −.457** .040ns −.115* −.020ns
14. OUP .052* −.094** −.108** −.085** −.155** −.011 −.016ns .049* −.290** −.270** −.113** .557** −.098* .160** .004ns
15. Nphon .053* −.079** −.097** −.053* −.117** .064** −.095** .070** −.296** −.276** −.120** .574** −.100* .176** .007ns
16. NPsyll −.062** −.095** −.128** −.082** −.165** −.116** .036ns .135** −.264** −.248** −.104** .516** −.085 .158** .009ns
17. PN .045* .055* .058* .092** .123** −.151** .198** −.113** .201** .203** .058* −.418** .027 −.082ns −.011ns
18. Front −.229** −.081** −.135** −.086** −.196** .025ns −.033ns .019ns −.123** −.127** −.008ns .112** −.079 .073ns −.039ns
19. Central −.323** −.115** −.190** −.122** −.277** .027ns −.023ns −.004ns −.043ns −.052* −.008ns .060ns .004ns .062ns −.010ns
20. Back −.148** −.052* −.087** −.056* −.127** .003ns −.014ns .021ns .004ns .011ns .002ns .004ns .102* −.031ns .112*
21. High −.274** −.097** −.161** −.103** −.235** .042ns −.063** .046* −.121** −.130** .012ns .119** −.027ns −.029ns .015ns
22. Mid −.298** −.106** −.176** −.112** −.256** .001ns .013ns −.026ns −.025ns −.031ns −.025ns .031ns .014ns .118** −.001ns
23. Low −.119** −0.042 −.070** −.045* −.102** .024ns −.029ns .012ns −.013ns .003ns .000ns .029ns .037ns .028ns .033ns
24. Rounded −.148** −.052* −.087** −.056* −.127** .003ns −.014ns .021ns .004ns .011ns .002ns .004ns .102* −.031ns .112*
25. Bilabial .321** .395** −.250** −.160** .140** .009ns −.020ns .022ns .102** .105** .023ns −.083* .010ns .004ns −.044ns
26. Labiodental −.255** −.091** .634** −.096** .006ns −.020ns .016ns .004ns .026ns .004ns .039ns −.067ns .015ns .016ns .078ns
27. Apico-dental .153** −.140** .296** −.148** .017ns −.060** .035ns .039ns −.074** −.082** −.033ns .085* −.138** .026ns −.129**
28. Alveolar −.199** .243** −.117** .475** .340** .015ns .002ns −.030ns .040ns .023ns .006ns −.036ns .033ns −.059ns .040ns
29. Palatal −.130** −.046* .323** −.049* .099** .027ns −.012ns −.024ns .049* .051* .038ns −.111** .096* −.083ns .040ns
30. Velar .349** −.150** −.248** .302** .021ns .004ns .024ns −.053* .022ns .057* −.026ns −.021ns .041ns −.051ns .041ns
31. Stop oral – −.243** −.402** −.258** −.067** −.042ns .053* −.026ns .040ns .067** −.015ns −.018ns −.107* .077ns −.119**
32. Stop nasal – −.143** −.092** .415** .017ns −.034ns .035ns .046* .043ns .016ns −.048ns .001ns −.043ns −.060ns
33. Fricative – −.152** −.097** −.019ns .009ns .017ns .029ns .009ns .036ns −.064ns .074ns −.087ns .090*
34. Lateral – .439** .027ns −.005ns −.037ns .005ns .001ns −.024ns −.022ns .066ns −.073ns .100*
35. Voiced – −.008ns .025ns −.032ns .033ns .021ns −.011ns −.085* .036ns .002ns .014ns
36. Paroxytone – −.854** −.129** −.119** −.090** −.015ns .124** .145** −.022ns .082ns
37. Oxytone – −.406** .136** .108** .010ns −.189** −.125** .009ns −.072ns
38. Proparoxytone – −.051* −.048* .007ns .139** −.016ns .022ns −.004ns
39. Imag – .886** .003ns −.598** .124** −.188** .009ns
40. Conc – −.057* −.519** .033ns −.281** −.024ns
41. SubjFreq – −.544** .330** −.210** .298**
42. AoA – −.180* .354** −.045ns
43. Val – −.484** .827**
44. Arou – −.416**
45. Dom –

Notes: **p < .001, *p < .05; ns: non-significant; P-PALpmwf: per million word frequency, and P-PALZipf: Zipf scale word frequency as obtained from the P-PAL database (Soares, Iriarte, et al., 2018); SUBTLEX-PTpmwf: per million
word frequency, SUBTLEX-PTZipf: Zipf scale word frequency, and SUBTLEX-PTCD: Contextual Diversity word frequency as obtained from the SUBTLEX-PT database (Soares, Machado, et al., 2015); Nlett: Number of letters, NOsyll:
Number of orthographic syllables, OLD20: Orthographic Levensthein Distance, ON: Orthographic Neighbourhood size, OUP: Orthographic Uniqueness Point, Nphon: Number of phonemes, NPsyll: Number of phonological syl-
lables, and PN: Phonological Neighbourhood size as obtained from the P-PAL database (Soares, Iriarte, et al., 2018). Phonological characteristics of the onsets (front, central, back, high, mid, low, rounding, bilabial, labiodental,
apico-dental, alveolar, palatal, velar, stop oral, stop nasal, fricative, lateral and voiced) and word stress pattern (paroxytonea, oxytone and proparoxytone) categorised dichotomously (0–1). Imag: Imageability; Conc: Con-
creteness; and SubFreq: Subjective frequency obtained from the Minho Word Pool database (Soares et al., 2017); Val: Valence; Arou: Arousal; and Dom: Dominance obtained from Soares et al. (2012) norms; AoA: Age of
Acquisition obtained from Cameirão and Vicente (2010) norms.
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PTZipf and MWPSubjFreq were also squared to test for non-
linear effects.

The inspection of Table 4 shows that regardless of
the word frequency measure considered and of the
dependent variable analyzed, word frequency
accounted for higher percentages of variance in EP
word recognition than in EP word pronunciation (in
LDT it contributes, on average, for ≅ 30% of the variance
in the RT data and for ≅ 12% of the variance in the accu-
racy data, while in NAM it only contributes, on average,
for ≅ 8.6% of the variance in the RT data and for ≅ 1.4%
of the variance in the accuracy data). In line with pre-
vious studies (e.g. Balota et al., 2004, 2007; Cortese &
Khanna, 2007; Ferrand et al., 2011; Treiman et al.,
1995; Yap et al., 2010; Yap & Balota, 2009), these
results indicate that in EP, as in other languages, the
(facilitative) effects of word frequency were larger in
word/nonword discriminations than in speeded pro-
nunciation. This suggests other variables might impact
upon reading aloud more strongly. Secondly, and irre-
spective of the differences in the percentage of variance
accounted for by each of the word frequency measures
across tasks, subtitle word frequencies accounted for
higher percentages of variance than written-texts
word frequencies in the latency data from both tasks.
Specifically, in LDT, SUBTLEX-PT counts explained ≅
17% more of the variance in the RT data than P-PAL
word counts, and in NAM, SUBTLEX-PT explained ≅
10% more of the variance in the RT data than P-PAL
counts. These results are consistent with previous
findings of Soares, Machado, et al. (2015), and others

in lexical decision (e.g. Ferrand et al., 2010, 2017; Keul-
eers et al., 2010; Sze et al., 2014; Tse et al., 2017) and
naming performance (e.g. Cai & Brysbaert, 2010;
Cuetos et al., 2011). Moreover, they also demonstrate
that the MWPSubjFreq measure was no better than
SUBTLEX-PT word frequency measures in predicting
the speed with which EP words were recognised and
pronounced, explaining on average ≅ 5% less of var-
iance in the latency data from LDT than the SUBTLEX-
PT measures, and ≅ 6% less of variance in the latency
data from NAM than the SUBTLEX-PT measures. Never-
theless, it is important to note that in the accuracy data
from LDT, MWPSubjFreq accounted for ≅ 13% more var-
iance than SUBTLEX-PT word frequency measures,
though it still explained ≅ 6% less variance than the
SUBTLEX-PT word frequency measures in the accuracy
data from NAM (see Table 4). Yet, it is also worth
noting that the MWPSubjFreq measure accounted for ≅
12% more variance in RT and accuracy data from LDT,
and for ≅ 5% more variance in the RT data from NAM
than the P-PAL word frequency measures. The differ-
ence in the accuracy data from NAM is less expressive
(1% more). Thus, the current findings do not support
the superiority of the subjective frequency measure
observed in previous studies (e.g. Balota et al., 2001,
2004; Cortese & Khanna, 2007) at least when the subjec-
tive frequency estimates were compared with the
objective word counts drawn from subtitles. Note that
in the studies conducted so far showing an advantage
of subjective over objective word frequency measures
in word processing, subjective frequency was com-
pared with objective word counts drawn from written-
texts and not from subtitles, shown to be a better deter-
minant of reading performance in several languages
including EP (e.g. Soares, Machado, et al., 2015; Sze
et al., 2014; Tse et al., 2017; Yap et al., 2010). As Balota
et al. (2001) pointed out, it is possible than when subop-
timal word frequency measures are used (see Soares,
Machado, et al., 2015 for a discussion of the limitations
of word counts drawn from written-texts as books and
periodicals), other variables, such as subjective fre-
quency, might “fill in the gap”. However, when more
reliable word measures are used (as subtitles counts),
the predictive power of these variables (subjective fre-
quency) could be largely reduced, as it seems to be
the case in our data. These findings place the subjective
word frequency measure in between the two other
objective word frequency measures used, and strongly
advise the use of subjective word frequency estimations
when only objective word frequency measures drawn
from written-text corpus are available. However, if sub-
title word counts are available, they should be preferred
over the subjective word estimates as they seem to

Table 4. Percentages of variance accounted by objective and
subjective word frequency measures on the latency (RT in ms)
and accuracy (%Acc) data from the lexical decision (LDT) and
naming (NAM) tasks.

Word frequency
measures Behavioural measures

Task

LDT NAM

RT %Acc RT %Acc

P-PAL pmwf Log10 17.5 7.4 2.5 .06
Log10 + Log10

2 18.6 10.3 ns ns
Zipf Zipf 18.1 8.0 2.6 .06

Zipf + Zipf 2 18.9 10.8 ns ns
SUBTLEX-PT pmwf Log10 34.6 7.3 12.7 1.7

Log10 + Log10
2 35.6 9.0 ns ns

Zipf Zipf 34.6 7.3 12.7 1.7
Zipf + Zipf2 35.6 9.0 ns ns

CD Log10 37.2 8.8 13.8 1.8
Log10 + Log10

2 37.4 10.1 ns ns
MWP SubjFreq 30.7 14.5 7.1 1.7

SubjFreq + SubjFreq2 31.7 22.2 ns ns

Notes: P-PALpmwf: per million word frequency, and P-PALZipf: Zipf scale word
frequency obtained from the P-PAL database (Soares, Iriarte, et al., 2018);
SUBTLEX-PTpmwf: per million word frequency, SUBTLEX-PTZipf: Zipf scale
word frequency, and SUBTLEX-PTCD: Contextual Diversity word frequency
as obtained from the SUBTLEX-PT database (Soares, Machado, et al.,
2015); SubjFreq: Subjective Frequency as obtained from the Minho Word
Pool database (Soares et al., 2017).
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represent a good proxy of the relative exposure/use of
words in a given language.

Furthermore, although SUBTLEX-PT measures
accounted for higher percentages of variance than P-
PAL measures in the speed with which EP words were
recognised and pronounced, the difference in the per-
centage of variance accounted for by each of these
word frequency measures was lower (and not higher)
in naming than in lexical decision performance (≅ 17%
in LDT and ≅ 10% in NAM). These results suggest that
the pronunciation of EP words was much less sensitive
to the number of times a word occurs in a language,
even when considering that subtitle word counts corre-
sponded to the transcriptions of social interactions that
people made in different situations. Anyway, because
the SUBTLEX-PTCD measure was shown to be the best
predictor of EP word processing times in both tasks,
we decided to use this word frequency measure in the
subsequent analyses to explore the relative contribution
that the other orthographic, phonological and semantic
variables play in visual recognition and pronunciation
of EP words, once the role of word frequency was par-
tialed out.

Another finding that should be highlighted from the
analysis of Table 4 is the fact that the relationship
between word frequency and latency and accuracy was
better captured by a linear function in naming, but by a
non-linear (quadratic) function in lexical decision. Indeed,
in the LDT data, when the squared values of any of the
word frequency measures were added to the regression
equation as predictor, the percentage of variance
explained increased significantly (F change, all ps <.001)
both in the RT (P-PALpmwf Log10 + Log10

2 , F(1, 1910) =
217.652, p < .001, P-PALZipf Log10 + Log10

2 , F(1, 1910) =
222.987, p < .001, SUBTLEX-PTpmwf Log10 + Log10

2 , F(1,
1910) = 527.592, p < .001, SUBTLEX-PTCD Log10 + Log10

2 ,
F(1, 1910) = 526.231, p < .001, SUBTLEX-PTZipf Log10 +
Log10

2 , F(1, 1910) = 570.520, p < .001, MWPSubjFreq Log10 +
Log10

2 , F(1, 1910) = 442.941, p < .001), and accuracy data
(P-PALpmwf Log10 + Log10

2 , F(1, 1910) = 109.030, p < .001,
P-PALZipf Log10 + Log10

2 , F(1, 1910) = 115.013, p < .001,
SUBTLEX-PTpmwf Log10 + Log10

2 , F(1, 1910) = 94.906,
p < .001, SUBTLEX-PTCD Log10 + Log10

2 , F(1, 1910) =
107.484, p < .001, SUBTLEX-PTZipf Log10 + Log10

2 , F(1,
1910) = 94.754, p < .001, MWPSubjFreq Log10 + Log10

2 , F(1,
1910) = 272.582, p < .001). This finding agrees with the
results observed in other languages (e.g. Baayen et al.,
2006; Balota et al., 2004; Brysbaert & New, 2009; Keuleers
et al., 2010). However, in the naming data, the R2 for the
linear and quadratic components was virtually the same.
Hence, introducing the squared values of any of the
word frequency measures as predictors in the analyses
did not significantly change the percentage of variance

explained both in the latency (P-PALpmwf Log10,
F(1, 1910) = 48.640, p < .001, P-PALZipf Log10, F(1, 1910) =
50.049, p < .001, SUBTLEX-PTpmwf Log10, F(1, 1910) =
278.288, p < .001, SUBTLEX-PTCD Log10, F(1, 1910) =
305.397, p < .001, SUBTLEX-PTZipf Log10, F(1, 1910) =
278.315, p < .001, MWPSubjFreq Log10, F(1, 1910) = 145.963,
p < .001), and accuracy data (P-PALpmwf Log10, F(1, 1910)
= 11.040, p < .01, P-PALZipf Log10, F(1, 1910) = 11.266,
p < .01, SUBTLEX-PTpmwf Log10, F(1, 1910) = 33.516,
p < .001, SUBTLEX-PTCD Log10, F(1, 1910) = 35.169, p
< .001, SUBTLEX-PTZipf Log10, F(1, 1910) = 33.215, p < .001,
MWPSubjFreq Log10, F(1, 1910) = 32.877, p < .001). Figure 2
displays the scatter plots of the mean items latency (RT
in ms) obtained from the lexical decision and naming
tasks.

Because the SUBTLEX-PTCD accounted for much less
variance in NAM than in LDT performance (ΔR2 =
23.6%), and also because previous studies (e.g. Balota
et al., 2004; Chateau & Jared, 2003; Cortese & Khanna,
2007; Davies et al., 2013; Treiman et al., 1995; Yap &
Balota, 2009) demonstrated that words’ phonological
characteristics accounted for significant amounts of var-
iance in speeded pronunciation, we conducted
additional regression analyses considering the phonolo-
gical properties (onsets and stress-pattern) of the EP
words used in both tasks as predictors. Table 5 presents
the regression coefficients obtained from the lexical
decision and naming data (RTs and %Accs).

As in other languages (e.g. Balota et al., 2004; Chateau
& Jared, 2003; Cortese & Khanna, 2007; Davies et al., 2013;
Spieler & Balota, 2000; Treiman et al., 1995; Yap & Balota,
2009), the phonological properties of the EP words were
quite powerful in predicting the speed with which EP
words were pronounced. Indeed, altogether they
accounted for 43.2% of the variance in the RT data,
F(16, 1910) = 90.135, p < .001, although they only
accounted for 1.5% of the variance in the accuracy
data, F(16, 1910) = 1.749, p = .033. Note that the
SUBTLEX-PTCD word frequency measure, which was
demonstrated to be the best determinant of EP word
processing in the previous analyses, only accounted for
13.8% of the variance in the RT naming data (ΔR2 =
29.4%), thus leaving much room for other variables to
exert their influence. However, in the LDT, coding the
onsets and the stress pattern of the EP words only
accounted for 3.5% of the variance in the RT data, F(16,
1910) = 4.305, p < .001 – the SUBTLEX-PTCD measure
accounted for 37.4% of the variance in the RT LDT data
(ΔR2 = 33.9%) (see Table 4).

Moreover, from Table 5 it is also possible to observe
that all the phonological features significantly contribu-
ted to the speed with which EP words were pronounced,
except the apico-dental and oxytone features. From the
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predictors that reached statistical significance, all con-
tributed positively to the speed with which EP words
were pronounced, except voicing and velar. Hence, pre-
senting each of these onset features (particularly stop
oral, mid, high and stop nasal) contributed to a

significant increase of the time needed to pronounce
EP words. This could be related either to the sensitivity
of the voice-key to be more easily triggered by these
phonetic features, and/or to the difficulty with which
these phonological codes were implemented during

Figure 2. A: Scatterplots depicting the linear and the quadratic functions of the P-PALpmwf (log transformed) measure obtained from
Soares, Iriarte, et al. (2018) on the latency (RT in ms) data from the lexical decision (LDT) and naming (NAM) tasks. B: Scatter plots
depicting the linear and the quadratic functions of the SUBTLEX-PTpmwf (log transformed) measure obtained from Soares, Machado,
et al. (2015) on the latency (RT in ms) data from the lexical decision (LDT) and naming (NAM) tasks. C: Scatter plots depicting the
linear and the quadratic functions of the MWPSubjFreq measure obtained from Soares et al. (2017) on the latency (RT in ms) data
from the lexical decision (LDT) and naming (NAM) tasks.
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articulation (see Kessler, Treiman, & Mullennix, 2002; for
details). In the naming accuracy data, voicing was the
only variable that contributed significantly and nega-
tively to the accuracy with which EP words were pro-
nounced, though only at a marginally significant level
(p = .081).

In latency data from LDT, only the tongue height
(high, mid, and low) and the apico-dental and the stop
oral features contributed significantly and positively to
the speed with which EP words were recognised
(though, in this last case, the coefficient was only margin-
ally significant, p = .055). In the LDT accuracy data,
voicing and apico-dental were the only phonetic features
that contributed significantly and negatively to the accu-
racy of word/nonword discriminations (though, in the
last case, only at a marginally significant level, p = .069).
Nevertheless, and despite differences in the size of the
individual regression coefficients observed across tasks,
the direction of the effects was identical in lexical
decision and naming performance. This suggests that
the articulatory and/or phonological processes involved
in EP word pronunciation also contribute (though to a
lower extent) to EP visual word recognition. Hence, the
effects of these variables were considered in the sub-
sequent analyses.

Word length effects on visual word recognition and
pronunciation of EP words
To explore which of the word length measures (letters,
phonemes, orthographic and phonological syllables)
produced larger effects on visual word recognition and
pronunciation of EP words, separate regression analyses

were conducted as in the previous analyses to avoid mul-
ticollinearity problems (Cohen et al., 2003), since word
length measures were strongly correlated (see Table 3).
The results (R2) of the regression analyses are presented
in Table 6. The raw length values, along with its squared
value, were entered as predictors in the regression
equations of each analysis to explore nonlinear effects
as in previous studies (e.g. Ferrand et al., 2010, 2017;
New et al., 2006).

As shown in Table 6, all word length measures pro-
duced larger effects on naming than on lexical decision
performance. Indeed, in NAM, they accounted for ≅
21.5% of the variance in the RT data, and for ≅ 1.8% of

Table 5. Raw Regression Coefficients (Standardised Regression Coefficients in brackets) of the phonological characteristics of the EP
words on the latency (RT in ms) and accuracy (%Acc) data from the lexical decision (LDT) and naming (NAM) tasks.

Predictors Task

LDT NAM

RT %Acc RT %Acc

First-phoneme characteristics
(onsets)

Front 7.503 (.050)ns −.155 (−.010)ns 16.734 (.137)*** −.020 (−.005)ns
High 15.612 (.121)** .070 (.005)ns 34.000 (.322)*** −.278 (−.074)ns
Mid 20.579 (.171)*** −.670 (−.052)ns 47.396 (.480)*** −.220 (−.062)ns
Low 23.637 (.087)* .609 (.021)ns 34.036 (.153)*** −.372 (−.047)ns
Rounded −13.438 (−.060)ns −.250 (−.011)ns 15.513 (.085)** .383 (.059)ns
Labiodental 6.237 (.046)ns −.434 (−.030)ns 14.937 (.134)*** −.013 (−.003)ns
Apico-dental 15.434 (.156)*** −.716 (−.067)a −.713 (−.009)ns −.024 (−.008)ns
Alveolar 8.162 (.048)ns −.763 (−.042)ns 23.000 (.166)*** .124 (.025)ns
Palatal .600 (.002)ns .201 (.007)ns 17.245 (.084)** .248 (.034)ns
Velar 4.750 (.050)ns −.201 (−.020)ns −5.759 (−.074)** .098 (.035)ns
Stop oral 8.443 (.108) a −.071 (−.008)ns 59.717 (.931)*** .055 (.024)ns
Stop nasal −2.690 (−.019)ns .377 (.025)ns 27.908 (.240)*** .103 (.025)ns
Lateral 5.850 (.043)ns .040 (.003)ns 19.956 (.180)*** −.028 (−.007)ns
Voiced 4.156 (.051)ns −.682 (−.078)* −7.108 (−.106)*** −.145 (−.061)a

Word stress pattern Oxytone −.562 (−.006)ns .249 (.025)ns .477 (.006)ns .027 (0.10)ns
Proparoxytone 3.739 (.023)ns .317 (.018)ns 10.623 (.079)*** .015 (.003)ns

R2 .035 0.13 .432 .015

Notes: ***p < .001; **p < .01; *p < .05; a marginally significant; ns: nonsignificant; Phonological characteristics of the onsets (front, high, mid, low, rounding, labio-
dental, apico-dental, alveolar, palatal, velar, stop oral, stop nasal, lateral and voiced) and word stress pattern (oxytone and proparoxytone) categorised dichot-
omously (0–1). Regression coefficients for the central, back, bilabial, fricative, and paroxytonea features are not presented because they were not calculated due
to collinearity issues.

Table 6. Percentage of variance accounted for by word length
measures in number of letters and orthographic and
phonological syllables on the latency (RT in ms) and accuracy
(%Acc) data from the lexical decision (LDT) and naming (NAM)
tasks.

Word lengh
measures Behavioural measures

Task

LDT NAM

RT
%
Acc RT

%
Acc

Number of letters Nlett 13.4 2.0 23.3 1.2
Nlett + Nlett

2 14.7 2.6 23.8 1.5
Number of Phonemes NPhon 14.0 1.6 21.6 1.4

NPhon +
NPhon
2

15.1 2.0 22.0 1.7

Number of
syllables

Orthographic NOSyll 13.3 1.0 20.2 1.6
NOSyll +
NOSyll

2
14.0 1.3 20.5 1.9

Phonological NPSyll 13.0 1.2 19.6 1.7
NPSyll +
NPSyll

2
13.5 1.5 19.8 2.0

Notes: Nlett: Number of letters, Nphon: Number of phonemes, NOSyll: Number of
orthographic syllables, and NPSyll: Number of phonological syllables as
obtained from P-PAL database (Soares, Iriarte, et al., 2018).
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the variance in the accuracy data, while in LDT they only
accounted for ≅ 14.3% of the variance in the RT data
(ΔR2 = 7.2%), though for ≅ 1.9% of the variance in the
accuracy data (ΔR2 =−0.1%). These findings are in line
with the results observed in previous large-scale
studies conducted in deep (e.g. Balota et al., 2004;
Cortese & Khanna, 2007; Yap & Balota, 2009) and
shallow orthographies (e.g. Cuetos & Barbón, 2006;
Davies et al., 2013; Wilson et al., 2013; Yap et al., 2010),
but not with the findings of Lima and Castro (2010) in
a previous factorial study with EP participants. Indeed,
as mentioned before, Lima and Castro (2010) found
reliable length effects on naming performance only
when words and nonwords were presented in mixed
lists, and on lexical decision only for words differing in
two letters. These findings led the authors to conclude
that in EP the use of the grapheme-phoneme strategy
for phonological recodification is not as predominant
as in other shallow orthographies. However, our results
clearly indicate that when a higher and more diversified
set of EP words is used, reliable word length effects are
observed not only in reading aloud, as observed in
languages with higher levels of orthographic-phonologic
consistency (e.g. Barca et al., 2002; Burani et al., 2007;
Cuetos & Barbón, 2006; Davies et al., 2013; González-
Nosti et al., 2014; Wilson et al., 2013; Yap et al., 2010),
but also in word/nonword discriminations. Note that
the word length effects observed on the latency data
from LDT were larger than the effects previously
observed by, for example, Ferrand et al. (2010, 2011) or
Keuleers et al. (2010) in the lexical decision time data
from the French Lexicon Project and the Dutch Lexicon
Project, respectively. As word length effects are con-
sidered an index of the engagement of the phonological
route in word processing, these results also suggest that
EP skilled readers rely strongly on the grapheme-
phoneme conversation strategy when processing EP
words, even in tasks that are primarily orthographic, as
the LDT. Nevertheless, it is worth noting that word fre-
quency effects were larger in lexical decision than in
naming performance, hence indicating that in LDT the
serial sub-lexical route of processing seems to operate
simultaneously with higher-order lexical processes to
allow a more efficient EP visual word recognition.

Moreover, and despite differences in the percentage
of variance accounted for by each of the word length
measures under analysis across tasks, it is also important
to highlight that each of them produced comparable
effects both in lexical decision and naming performance.
Nonetheless, in the RT data from LDT the number of
phonemes accounted for a slightly higher percentage
of variance than both the number of letters (ΔR2 =
0.4%) and the number of orthographic (ΔR2 = 1.1%)

and phonological (ΔR2 = 1.6%) syllables; and in the RT
data from NAM the number of letters accounted for a
slightly higher percentage of variance than both the
number of phonemes (ΔR2 = 1.8%) and the number of
orthographic (ΔR2 = 3.3%) and phonological (ΔR2 = 4%)
syllables (see Table 6). In the accuracy data from LDT,
however, the number of letters accounted for a slightly
higher percentage of variance than both the number
of phonemes (ΔR2 = 0.6%) and the number of ortho-
graphic (ΔR2 = 1.3%) and phonological (ΔR2 = 1.1%) syl-
lables, and in the accuracy data from NAM the number
of phonological syllables accounted for a slightly
higher percentage of variance than both the number
of orthographic syllables (ΔR2 = 0.1%) and the number
of letters (ΔR2 = 0.5%) and phonemes (ΔR2 = 0.3%).
Thus, contrary to what was previously observed in the
English language (e.g. New et al., 2006; Yap & Balota,
2009), in both tasks single size units (letters/phonemes)
accounted for a slightly higher percentage of variance
in RT and accuracy data than syllable size units, even
though syllable units (phonological/orthographic)
accounted for a slightly higher percentage of variance
than single size units (letters/phonemes) in the accuracy
data from NAM. However, the similarities in the results
observed across word length measures in both tasks
suggest that both smaller (letters/phonemes) and
larger (syllables) size units are activated during EP word
processing. This provides further support for the notion
that the orthographic and phonological codes are
highly interconnected in intermediate-depth languages,
and that both letters/phonemes and syllable size units
play a functional role in visual word recognition and pro-
nunciation, as demonstrated in previous EP studies using
factorial designs (e.g. Campos, Oliveira, et al., 2018;
Campos, Soares, et al., 2018; Lima & Castro, 2010;
Pureza et al., 2016). These findings also support the
claims of the grain size theory (Goswami & Ziegler,
2006; Ziegler & Goswami, 2005), namely that in nonshal-
low orthographies as EP, word processing involves the
use of multiple phonological recoding units.

Another relevant finding is the fact that in both
tasks word length effects were better captured by a
nonlinear (quadratic) than by a linear function (see
Table 6). Still, it is worth noting that differences in the
percentage of variance accounted for by each of the
word length measures considered when the squared
valued were added to the regression equations were
larger in the LDT (F change, all ps <.001), both in the
latency (Nlett +Nlett

2 , F(1, 1910) = 164.169, p < .001, NPhon +
NPhon
2 , F(1, 1910) = 170.134, p < .001, NOSyll +NOSyll

2 , F(1,
1910) = 155.291, p < .001, NPSyll +NPSyll

2 , F(1, 1910) =
148.93, p < .001) and accuracy data (Nlett +Nlett

2 , F(1, 1910)
= 25.026, p < .001, NPhon +NPhon

2 , F(1, 1910) = 19.379,
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p < .001, NOSyll + NOSyll
2 , F(1, 1910) = 12.954, p < .001,

NPSyll + NPSyll
2 , F(1, 1910) = 14.948, p < .001), than in the

NAM performance (F change, all ps <.05), both in the
latency (Nlett + Nlett

2 , F(1, 1910) = 298.281, p < .001, NPhon

+ NPhon
2 , F(1, 1910) = 268.746, p < .001, NOSyll + NOSyll

2 ,
F(1, 1910) = 245.649, p < .001, NPSyll + NPSyll

2 , F(1, 1910) =
235.851, p < .001) and accuracy data (Nlett + Nlett

2 , F(1,
1910) = 14.531, p < .001, NPhon + NPhon

2 , F(1, 1910) =
16.889, p < .001, NOSyll + NOSyll

2 , F(1, 1910) = 18.949, p
< .001, NPSyll + NPSyll

2 , F(1, 1910) = 19.669, p < .001).
These results suggest that the word length effects
observed in EP are not monotonically defined, and that
the nature and size of the effect change as a function of
the number of letters, phonemes or syllables in the stimu-
lus, as previously observed by New et al. (2006) and Yap
and Balota (2009) for the English language, and by
Ferrand et al. (2010, 2017) for the French language. Not-
withstanding, contrary to New et al. (2006), robust non-
linear effects were observed both for single size (letters),
and larger (syllables) size units, which suggests that, in
EP, the nature of the relationship between word length
and the speed/accuracy with which EP words are recog-
nised/pronounced is not modulated by the type of word
length measure considered.

To further explore the nature of this nonlinear
relationship, we saved the residuals of the regression
analyses considering the phonological properties of the
EP words (onset and stress pattern) and the SUBTLEX-
PTCD measure as predictors, and the RTs from each task
as dependent variable, following the same procedure
as Ferrand et al. (2010, 2017). Then, we analyzed the dis-
tribution of the mean value of the residuals as a function
of the number of letters.2 Figure 3 illustrates the results.

As shown in Figure 3, the relationship between word
latencies and word length is defined by a U-shaped func-
tion, particularly in the lexical decision data (panel A), as
previously reported for the English (New et al., 2006) and
French languages (Ferrand et al., 2010, 2017). Indeed, RTs
decreased for short words (i.e. for words from three to six
letters), remained stable for medium long words (i.e. for
words from six to seven letters), and increased for long
words (i.e. for words from eight to 12 letters). In
naming performance (Figure 3, panel B), the U-shaped
function is less pronounced and the relationship
between word length and RTs resembles the J-shaped
function found by Ferrand et al. (2011) in the LDT data
from the Chronolex database. Pronunciation times
decreased slightly for words from two to three letters
(short words), stayed relatively stable for four to six
letters (medium words), and increased sharply for
words with more than seven letters (long words).
Hence, facilitative word length effects were not generally
observed in naming, and inhibitory word length effects
occurred earlier and more steeply on word pronuncia-
tion than on visual word recognition. The nonlinear
nature of the EP word length functions observed in our
data might even justify why Lima and Castro (2010)
found null effects in lexical decision data for EP words
with four to five letters, and also the fact that reliable
length effects in naming were only observed when EP
words and nonwords were presented in blocked con-
ditions (see Lima & Castro, 2010; for details).

Moreover, to explore whether the word length effects
observed in the EP language is an artifact of the number
of similar words in the lexicon (i.e. of the neighbourhood
measures as the N metric and the OLD20 measure), as

Figure 3. Effect of word length (in number of letters) when the effect of the phonological characteristics of the first phoneme, word
stress pattern, and objective word frequency measure (SUBTLEX-PTCD) as obtained from Soares, Machado, et al. (2015) has been par-
tialed out. Error bars indicate the Standard Errors (SEs) of the mean.
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observed in French (Ferrand et al., 2010; see Introduc-
tion), three-step hierarchical regression analyses were
conducted on the latency and accuracy data from both
tasks. The phonological characteristics of the words
(onsets and stress pattern), and SUBTLEX-PTCD measure
were entered as predictors in Step 1. Then, the OLD20

measure was entered as predictor in Step 2, as this
neighbourhood measure was shown to be the most
appropriate orthographic word similarity determinant
of EP word processing. Indeed, the results of the separate
regression analyses conducted on the latency and accu-
racy data from both tasks showed that OLD20 accounted
for 16.6% of the variance in the RT data from the NAM,
F(1, 1910) = 378.827, p < .001, and for 10.2% of the var-
iance in the RT data from LDT, F(1, 1910) = 216.993,
p < .001. In the accuracy data, OLD20 accounted for
0.8% of the variance in NAM, F(1, 1910) = 16.240, p < .001,
and for 0.5% of the variance in LDT, F(1, 1910) = 9.992,
p < .01. Conversely, the orthographic N metric (ON )
only accounted for 8.4% of the variance in the RT data
from NAM, F(1, 1910) = 174.521, p < .001 (ΔR2 = 8.2%),
and for 3.3% of the variance in the RT data from LDT,
F(1, 1910) = 65.375, p < .001 (ΔR2 = 6.9%). In the accuracy
data, ON only accounted for 0.1% of the variance in NAM,
F(1, 1910) = 2.183, p = .110 (ΔR2 = 0.7%), and for 1.1% of
the variance in LDT, F(1, 1910) = 21.816, p < .001 (ΔR2 =
−0.6%), though in the former case the model was only
marginally significant. Similar results were obtained for
the phonological N metric (PN, Luce & Pisoni, 1998),
the analogue of the Coltheart et al. (1977) neighbour-
hood measure in the phonological domain, which
accounted for 7.2% of the variance in the RT data from
NAM, F(1, 1910) = 149.197, p < .001 (ΔR2 = 9.4%), and
for 2.4% of the variance in the RT data from LDT, F(1,
1910) = 47.082, p < .001 (ΔR2 = 7.8%). In the accuracy
data, PN accounted for 0.1% of the variance in NAM,
F(1, 1910) = 2.719, p = .099 (ΔR2 = 0.7%), and for 1% of
the variance in LDT, F(1, 1910) = 19.703, p < .001 (ΔR2 =
−0.5%), though, once again, in the former case the
model was only marginally significant. Hence, these
findings indicate that in EP, similarly to English, the
OLD20 measure represents a better proxy estimation of
word similarity than the classic N metrics of Coltheart
et al. (1977) and Luce and Pisoni (1998), not only in
lexical decision (as previously observed by Yap &
Balota, 2009; Yarkoni et al., 2008) but also in naming per-
formance. For this reason, this word similarity measure
was added to the regression analyses. In Step 3, the
squared value of the word length (in number of letters)
variable was entered as predictor to examine the
unique variance accounted for by this measure when
all other variables previously shown to affect EP word
processing (i.e. word frequency, characteristics of the

first phoneme, stress pattern, similarity with other
words in the lexicon) were controlled for, as in New
et al. (2006) and Ferrand et al. (2010) studies. Even
though OLD20 and number of letters are strongly corre-
lated in the current (r = .797, p < .001, see Table 3) as in
previous studies (for example, in the study of Ferrand
et al., 2010; the correlation between the OLD20 and the
number of letters was .771), the inspection of the colli-
nearity statistics obtained when both predictors were
included in the analyses was satisfactory according to
the limits defined by Hair, Anderson, Tatham, and Black
(1995). Indeed, the Variance Inflation Factor (VIF) was
2.935 for the OLD20 measure and 3.024 for the Nlett

2

measure, and the tolerance index was .341 for the
OLD20 measure and 3.31 for the Nlett

2 measure. Moreover,
the Durbin-Watson values for the independence of errors
was also satisfactory (near 2 in both measures).

The results of the three-step hierarchical regression
analyses showed that, despite a decrease in the percen-
tage of variance explained by word length in both tasks
when OLD20 entered as predictor, sizeable proportions of
variance were still observed. Specifically, in the latency
data from LDT, the word length effect decreased from
4.2% of unique variance when the phonological charac-
teristics of the words and the SUBTLEX-PTCD measure
were entered as predictors, F(19, 1910) = 74.045, p
< .001, to 2.8% of unique variance when OLD20 also
was also entered as predictor, F(20, 1910) = 70.419, p
< .001 (see Table 7). In the latency data from NAM, a
similar pattern of results was observed, even though
the reduction was sharp: from 10.3% when the phonolo-
gical features of the EP words and the SUBTLEX-PTCD
measure were added as predictors, F(19, 1910) =
186.348, p < .001, to 4% when OLD20 was also con-
sidered, F(20, 1910) = 177.370, p < .001 (see Table 7). In
the accuracy data from LDT, the percentage of variance
accounted for by word length decreased from 7% of
unique variance when the characteristics of the first
phoneme, stress pattern and SUBTLEX-PTCD were
entered as predictors, F(19, 1910) = 219.595, p < .001, to
5.2% when OLD20 was additionally introduced in the
analyses, F(20, 1910) = 20.924, p < .001. A similar pattern
was also observed in the accuracy data from NAM,
although in this case the reduction was less pronounced:
from 0.7% of unique variance when the characteristics of
the first phoneme, stress pattern and SUBTLEX-PTCD were
entered as predictors, F(19, 1910) = 3.862, p < .001, to
0.5% of unique variance when the OLD20 was added to
the regression equation, F(20, 1910) = 3.671, p < .001.
Hence, sizeable word length effects were still observed
in the EP language when the variables shown to affect
EP word processing in the previous analyses (first-
phoneme, word stress, subtitle word frequency and
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word similarity) were taken into account, even though
the percentage of unique variance decreased signifi-
cantly, as observed in other languages (e.g. Ferrand
et al., 2010, 2017; New et al., 2006).3 The sharper
reduction observed in naming than in lexical decision
performance is also consistent with previous studies
showing that the speed/accuracy with which words are
processed are more strongly affected by the number of
similar words in the lexicon in speeded pronunciation
than in word/nonword discriminations (e.g. Andrews,
1997; Balota et al., 2004; Cortese & Khanna, 2007;
Ferrand et al., 2011, 2017; Yap & Balota, 2009). Taken
together, these results provide further support for the
view that EP skilled readers rely strongly on the serial
sub-lexical route of processing when recognising and
particularly when pronouncing EP words.

To test whether the word length effects observed in
EP were due to a strong reliance on the serial sub-
lexical route of processing, additional analyses were con-
ducted in which the orthographic uniqueness point
(OUP) measure used in recent megastudies (e.g. Ernestus
& Cutler, 2015; Ferrand et al., 2017; Goh et al., 2016) was
introduced in Step 2 of the three-step hierarchical
regression mentioned above instead of the OLD20
measure.4 Indeed, if this was the case, word length
effects should disappear, or at least should be strongly
diminished (bear in mind that the OUP measures are
taken as an index of the use of the serial left-to-right
route of processing as mentioned in the Introduction).
The results of these additional analyses supported this

assertion. Indeed, although the word length effect
remained significant, its impact on EP word processing
was greatly reduced particularly in naming performance.
Specifically, in the RT data from NAM, results showed that
the effect attributed to word length decreased from 4%
when the OLD20 measure was considered to only 1/%
when the OUP was used instead, F(20, 1910) = 177.005,
p < .001. In the RT data from LDT, the results also indi-
cated that when the OUP measure was included, the
word length effect decreased, though in a lower
extent, i.e. from 2.8% to 2.2%, F(20, 1910) = 70.759, p
< .001. In the accuracy data from LDT, the percentage
of variance accounted for by word length decreased
from 5.2% to 1.8%, F(20, 1910) = 21.068, p < .001,
though in the accuracy data from NAM, the inclusion
of the OUP measure led to an increase in the percentage
of variance from .05% to 1%, F(20, 1910) = 4.209, p < .001.
Hence, the reduction in the percentage of variance
accounted for by word length when the OUP measure
was introduced as a predictor suggests that the word
length effects observed in EP resulted effectively from
a stronger reliance on the serial left-to-right sub-lexical
route of processing, particularly in naming performance.
Moreover, the fact that word length effects were less
attenuated in lexical decision than in naming perform-
ance is also consistent with the view that serial and par-
allel strategies operate simultaneously to allow a more
efficient EP word recognition, as mentioned before.

Furthermore, the results obtained with the OUP
measure also revealed a positive (facilitation) impact of

Table 7. Raw Regression Coefficients (Standardised Regression Coefficients in brackets) accounted for by the semantic variables on the
latency (RT in ms) and accuracy (%Acc) data from the lexical decision (LDT) and naming (NAM) tasks.

Task LDT NAM

Predictors RT %Acc RT %Acc

Step 1: Onset + Stress + SUBTLEX-PTCD. R
2 .385*** .101*** .549*** .030***

Step 2: OLD20. R
2 .399*** .129*** .612*** .032**

Step 3: Nlett
2 . R2 .413*** .158*** .651*** .036**

Step 4: Semantic variables. R2 .494*** .217*** .666*** .041***
Imag. β unstandardised (standardised) −7.850 (−.212)*** .773 (.197)*** −3.139 (−.139)*** .004 (.004)ns
Conc. β unstandardised (standardised) 5.051 (1.670)*** −.439 (−.135)** 2.585 (.104)** −.004 (−.004)ns
SubjFreq. β unstandardised (standardised) −14.492 (−.339)*** 1.291 (.282)*** −4.951 (−.141)*** .120 (.096)**

Step 1: Onset + Stress + SUBTLEX-PTCD. R
2 .415*** .062*** .561*** 0.36*

Step 2: OLD20. R
2 .441*** .073*** .618*** 0.36*

Step 3: Nlett
2 . R2 .487*** .108*** .672*** .041*

Step 4: Semantic variables. R2 .513*** .119*** .677*** .042*
AoA. β unstandardised (standardised) 5.477 (.228)*** −.291(−.151)*** 2.394 (.119)*** −.033 (−.046)ns

Step 1: Onset + Stress + SUBTLEX-PTCD. R
2 .478*** .125*** .564*** .082**

Step 2: OLD20. R
2 .498*** .137*** .605*** .082**

Step 3: Nlett
2 . R2 .504*** .166*** .644*** .087**

Step 4: Affective variables. R2 .519*** .172*** .647*** .093**
Val. β unstandardised (standardised) −3.561 (−.167)** −.013 (−.006)ns −1.539 (−.090)a .030 (.052)ns
Arou. β unstandardised (standardised) −1.092 (−.032)ns −.168 (−.050)ns −.734 (−.027)ns .010 (.011)ns
Dom. β unstandardised (standardised) 1.442 (.033)ns .230 (.053)ns 1.697 (.049)ns −.044 (−.038)ns

Notes: ***p < .001; **p < .01; *p < .05; a marginally significant; ns: nonsignificant; Onset: Phonological characteristics of the onsets; Stress: word stress pattern;
SUBTLEX-PTCD: Contextual Diversity word frequency from the SUBTLEX-PT database (Soares, Machado, et al., 2015); OLD20: Orthographic Levensthein Distance,
and Nlett: Number of letters obtained from the P-PAL database (Soares, Iriarte, et al., 2018); Imag: Imageability, Conc: Concreteness, and SubjFreq: Subjective
Frequency obtained from the Minho Word Pool database (Soares et al., 2017); Val: Valence, Arou: Arousal, and Dom: Dominance obtained from Soares et al.
(2012) norms; AoA: Age of Acquisition obtained from Cameirão and Vicente (2010) norms.
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the OUP measure both in latency and accuracy data from
word/nonword discriminations (RT: βunstandardised = 6.787,
βstandardised = .363, p < .001; Acc: βunstandardised = 0.271,
βstandardised = .135, p < .001), and in the latency data
from speeded pronunciation (RT: βunstandardised = 7.314,
βstandardised = .478, p < .001). This indicate that EP words
with an early OUP were recognised faster and more accu-
rately than words with a late OUP, as observed in pre-
vious factorial studies conducted in other languages
(e.g. Kwantes & Mewhort, 1999; Luce, 1986; Radeau
et al., 1989; see however Izura et al., 2014; for inhibitory
OUP effects in the English language), though not with
findings recently reported by Ferrand et al. (2017) on
visual and auditory lexical decision data obtained from
the MEGALEX database. Nevertheless, it should be also
noted that the facilitation OUP effect observed in the
EP language also entailed a cost in naming performance,
as EP words with an early OUP produced more errors
than EP words with a late OUP (βunstandardised =−0.056,
βstandardised =−.103, p < .001), which was probably due
to a trade-off effect: as participants were faster respond-
ing to words with an early OUP, these words might also
be more prone to mispronunciations. Note that the cor-
relation coefficient between accuracy and RTs for words
with early OUP in the dataset (i.e. for words with an OUP
measure below 7 – the median value in the distribution)
is r =−.598, p < .001.

Semantic effects on visual word recognition and
pronunciation of EP words
As noted before, there is a considerable debate about
the unique contribution of semantic to word processing
in different languages, although studies analyzing the
role that these variables play in EP word recognition
and pronunciation are, to the best of our knowledge,
inexistent. To explore this issue, several hierarchical
regression analyses were conducted on latency and
accuracy data from both tasks, considering the image-
ability, concreteness, subjective frequency, AoA,
valence, arousal, and dominance ratings provided by
the EP normative studies reported by Soares et al.
(2017), Cameirão and Vicente (2010) and Soares et al.
(2012) (see methodological section). Even though these
ratings are available for imageability, concreteness and
subjective frequency of the total pool of items, they are
only available for a limited set of words in the case of
AoA, valence, arousal and dominance affective dimen-
sions (see Table 1). For that reason, three different sets
of four-step hierarchical regressions analyses were con-
ducted for the latency and accuracy data from both
tasks. Furthermore, it is also worth noting that despite
the strong correlation between imageability and concre-
teness in the current study (r = .886, p < .001, see Table 3),

the inspection of the collinearity statistics in the latency
and accuracy data showed acceptable values (imageabil-
ity: VIF = 5.008, tolerance = .220; concreteness: VIF =
5.040, tolerance = .210; subjective frequency: VIF =
1.571, tolerance = .636). The Durbin-Watson statistics
was also satisfactory (near 2). Consequently, both vari-
ables were kept in the first set of analyses reported in
Table 7. In the same vein, we also opted to maintain
the valence and the dominance affective measures in
the third set of regression analyses presented in Table
7. Indeed, although they also present a high correlation
(r = .827, p < .001, see Table 3), the inspection of the col-
linearity statistics also showed acceptable values
(valence: VIF = 5.008, tolerance = .220; arousal: VIF =
5.040, tolerance = .210; dominance: VIF = 1.571, toler-
ance = .636). The Durbin-Watson statistics was also satis-
factory in both cases (near 2). Nonetheless, caution is
advised when interpreting the coefficients of predictors
like imageability and concreteness (or valence and dom-
inance), because they are highly related (rs > .80).

In all hierarchical regressions analyses conducted to
examine the contribution of these sematic variables in
EP word processing, the phonological characteristics
(onsets and stress pattern) and word frequency
(SUBTLEX-PTCD) were entered as predictors in Step 1, fol-
lowed by the OLD20 measure in Step 2, and by the square
of word length (Nlett

2 ) in Step 3. Only in Step 4, the seman-
tic variables were introduced in the analyses to examine
the percentage of “extra” variance accounted for by each
of them. The results obtained for both tasks are pre-
sented in Table 7.

As shown in Table 7, imageability, concreteness and
subjective frequency produced significant semantic
effects both on lexical decision and naming perform-
ance, though larger on word/nonword discriminations
than on speed pronunciation, in accordance with pre-
vious studies conducted in other languages (e.g. Balota
et al., 1991, 2001, 2004; Cortese & Schock, 2013;
Cortese & Khanna, 2007; Cuetos & Barbón, 2006; Davies
et al., 2013; Ferrand et al., 2011; Goh et al., 2016; Gonzá-
lez-Nosti et al., 2014; Kousta et al., 2011; Kuperman, 2015;
Wilson et al., 2013). Specifically in lexical decision, image-
ability, concreteness and subjective frequency
accounted for more 8.1% of unique variance in the RT
data, F(22, 1910) = 83.645, p < .001, and for more 5.9%
of unique variance in accuracy data, F(22, 1910) =
23.716, p < .001, when all the other surface, lexical and
sub-lexical variables were partialed out. Altogether,
these variables accounted for 49.4% of the variance in
the LDT latency data, and for 21.7% of the variance in
the LDT accuracy data. In naming performance, image-
ability, concreteness and subjective frequency only
accounted for more 1.5% of unique variance in the
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latency data, F(22, 1910) = 170.894, p < .001, and only for
more 0.5% of unique variance in the accuracy data, F(22,
1910) = 3.709, p < .00, when the phonetic features of the
onsets, stress pattern, word frequency, word similarity
and word length were partialed out (see Table 7).
Together, these variables accounted for 66.6% of the
total variance in the naming latency data, and for 4.1%
of the total variance in the naming accuracy data. Thus,
as in other languages, the analysis of the similarities
and differences between the regression models exam-
ined separately for each experimental task suggests
that the semantic variables seem to impact more EP
word/nonword discrimination than EP word pronuncia-
tion. The weaker semantic effects observed in the
naming performance may be related to the fact that
the retrieval of phonological information from an ortho-
graphic input in EP can rely strongly on the use of sub-
lexical recoding strategies (i.e. grapheme-conversion
rules) as mentioned before. Thereby, the semantic-to-
orthographic/phonological feedback connections may
impact EP word pronunciation in a lesser extent than
EP word/nonword discriminations.

Furthermore, and regardless of differences in the per-
centage of variance accounted for by the semantic vari-
ables under analyses across tasks, it is worth noting that
whereas imageability and subjective frequency contribu-
ted negatively to the speed with which EP words were
recognised and pronounced, and positively to the accu-
racy with which EP words were recognised (in naming
the effect did not reach statistical significance, see
Table 7), concreteness contributed positively to the
latency data in both tasks and negatively to the accuracy
data in the lexical decision task (in the naming data the
result was nonsignificant, see Table 7). Hence, on the
one hand, the more imageable and the more familiar
EP words were, the faster and the more accurate the
responses they elicited, in line with previous studies con-
ducted in other languages (e.g. Balota et al., 2001, 2004;
Cortese & Khanna, 2007; Ferrand et al., 2011; Wilson et al.,
2013; Yap & Balota, 2009); on the other hand, the more
concrete EP words were, the slower and the less accurate
responses they produced.

This inhibitory concreteness effect observed in the EP
data is inconsistent with the vast amount of factorial
studies conducted in other languages, showing that con-
crete words were recognised, named, and recalled more
quickly and easily than abstract words (see Kousta et al.,
2011; or Bonin et al., 2018; for recent reviews), and also
with the recent results obtained by Goh et al. (2016) in
their lexical decision and semantic categorisation mega-
study conducted with spoken English words. Neverthe-
less, observing concreteness reverse effects is not
entirely new in the literature. For example, Kousta et al.

(2011) found similar results in a study that aimed to dis-
entangle the role of two dominant accounts (dual coding
theory and context availability model) in explaining the
advantage of concrete words over abstract words. As
abstract words were more affectively valenced than con-
crete words, the authors proposed that the denser
affective associations in abstract than concrete words
may yield richer internal representations, thereby
leading abstract words to be recognised faster and
more accurately than concrete words, when all other
objective (e.g. word frequency, word length, ON ), and
subjective variables (e.g. imageability, familiarity, AoA)
known to affect word recognition are controlled for
(see Kousta et al., 2011; for details; see also Bonin et al.,
2018; for similar results in the French language). The
negative relationship observed between concreteness
and both objective and subjective word frequency
measures was also proposed by Soares et al. (2017) as
another potential explanation. Indeed, since abstract
words tend to be linked to a wide range of contexts/situ-
ations than concrete words, this could explain why
abstract words were rated with higher values of use in
everyday life than concrete words in the Minho Word
Pool data (see Soares et al., 2017; for a further discussion),
and also the concreteness inhibitory effect observed in
the current study. Indeed, although concreteness was
not significantly correlated with valence, it correlated sig-
nificantly and negatively both with subjective frequency
and SUBTLEX-PTCD measures (see Table 3), thus provid-
ing further support for this argument. Notwithstanding,
regardless of the direction of the results whose discus-
sion is beyond the scope of this paper, they clearly
demonstrate that imageability, concreteness and subjec-
tive frequency contribute with significant proportions of
“extra” variance in the processing of EP words, particu-
larly in LDT. Hence, these variables should not be disre-
garded when planning/conducting research with EP
words, particularly those relying more strongly on the
meaningfulness of the stimuli (e.g. LDT, semantic categ-
orisation task).

Regarding AoA, the results of the second set of
regression analyses conducted were quite surprising.
Indeed, contrary to the vast amount of studies showing
that AoA is one of the most powerful variables in predict-
ing lexical decision and naming times (e.g. Cortese &
Khanna, 2007; Cortese & Schock, 2013; Cuetos &
Barbón, 2006; Davies et al., 2013; Ferrand et al., 2011;
González-Nosti et al., 2014; Wilson et al., 2013), the
current findings show that AoA only contributes with a
modest percentage of unique variance both in lexical
decision and particularly in naming performance. Specifi-
cally, in lexical decision, AoA accounted for more 2.6% of
unique variance in the latency data, F(21, 816) = 39.800,
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p < .001, and for more 1.1% of unique variance in
accuracy data, F(21, 816) = 5.106, p < .001 after all other
variables shown to affect EP word processing were par-
tialed out (see Table 7). In naming, AoA contributed for
more 0.7% of unique variance in the latency data, F(21,
816) = 79.915, p < .001, and for more 0.1% of unique var-
iance in the accuracy data, F(21, 816) = 1.670, p < .05
when the phonetic features of the onsets, stress
pattern, word frequency, word similarity and word
length measures were controlled for (see Table 7).
Hence, although the earlier in life a EP word is acquired,
the easier it is processed, as shown in other languages
(e.g. Cortese & Khanna, 2007; Cortese & Schock, 2013;
Cuetos & Barbón, 2006; Davies et al., 2013; González-
Nosti et al., 2014; Wilson et al., 2013), the magnitude of
the AoA effects observed in EP were smaller than in
other languages.

The less relevant role that AoA seems to play in EP
word processing may be related with two main factors.
First, we used a word frequency measure (SUBTLEX-
PTCD) that was shown to be a better determinant of
reading performance than the word frequency measures
obtained from written-text corpus and used in previous
studies in which the role of AoA was tested (e.g.
Cortese & Khanna, 2007; Cortese & Schock, 2013;
Cuetos & Barbón, 2006; Davies et al., 2013; González-
Nosti et al., 2014; Wilson et al., 2013). Second, the
OLD20 measure was used instead of the classic N
metric adopted in the abovementioned studies, which
was shown to be a better proxy estimation of word simi-
larity not only in English (e.g. Yap & Balota, 2009; Yarkoni
et al., 2008), but also in EP. Yet, although less expres-
sively, the percentage of variance accounted for by
AoA in the EP data is not negligible (note that in some
of the studies mentioned above semantic variables did
not account for more than 1% of the variance even
when using suboptimal word frequency and word neigh-
bourhood measures). Thus, AoA should be not neglected
when planning research with EP verbal stimuli.

Finally, the results obtained for the third set of
regression analyses showed that the affective content
of EP words contributed with even lower percentages
of variance than AoA ratings both in the RT and accuracy
data from lexical decision and naming performance (see
Table 7). Specifically, in LDT, the affective variables only
accounted for more 1.5% of unique variance in the
latency data, F(22, 480) = 22.432, p < .001, and for more
0.6% of unique variance in accuracy data, F(22, 480) =
4.340, p < .001, after all the other surface, lexical and sub-
lexical variables shown to affect EP word processing have
been partialed out (see Table 7). Altogether, these vari-
ables accounted for 51.9% of the variance in the LDT
latency data, and for 17.2% of the variance in the LDT

accuracy data. In naming, the contribution of the
affective variables was even less expressive: more 0.3%
of unique variance in the latency data, F(22, 480) =
38.086, p < .001, and more 0.6% of unique variance in
the accuracy data, F(22, 480) = 1.978, p < .01 when first-
phoneme characteristics, word stress, SUBTLEX-PTCD
and OLD20 were controlled for. Together, all the variables
accounted for 64.7% of the total variance in the latency
naming data, and for 9.3% of the variance in the accuracy
naming data. Of note, from all the affective measures
considered, only valence contributed significantly and
negatively to the speed with which EP words were recog-
nised – note that none of the affective variables pro-
duced a significant effect in naming performance (see
Table 7). This shows that EP skilled readers were faster
at recognising positively valenced words than negatively
valenced words, which is consistent with the positivity
bias observed in previous studies in EP (e.g. Pinheiro
et al., 2017; Soares et al., 2012, 2013; Soares, Pinheiro,
et al., 2015; Vasconcelos, Dias, Soares, & Pinheiro, 2017)
as well as in other languages (e.g. Goh et al., 2016;
Kuperman, 2015; Kuperman et al., 2012), even though
not controlling for the full set of variables used in the
present analyses.

Summary of findings
The current findings showed that orthographic, phonolo-
gical and semantic variables have a strong impact on EP
word processing, though the magnitude and the nature
of the effects were modulated by task demands. Overall,
word frequency (SUBTLEX-PTCD) and word similarity
(OLD20) seem to have a stronger impact on EP word/
nonword discrimination than EP word pronunciation;
phonological properties of the onsets, stress pattern
and word length (both in the number of letters/pho-
nemes and orthographic/phonological syllables) seem
have a stronger impact on EP word pronunciation than
EP word/nonword decisions; and semantic variables
seem to have stronger impact on EP lexical decision
than EP word pronunciation.

These results are in line with previous findings
observed in deep (e.g. English, French) and in shallow
orthographies (e.g. Spanish, Dutch), hence putting EP
in-between the effects observed in those languages.
For instance, the strong reliance on the sub-lexical
route of processing, indexed by a robust nonlinear
word length effect in all word length measures con-
sidered (even when all other variables shown to affect
word processing were controlled for), brings EP closer
to shallow- than to deep-orthographies The current
study also showed that EP skilled readers make use of
multiple recoding size units in reading, which brings EP
closer to deep- than to shallow-orthographies. Moreover,
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as observed in other deep and shallow languages, word
frequency represents a powerful predictor of the speed
with which EP words were recognised and pronounced,
particularly when CD measure drawn from subtitles were
used. Critically, the advantage of this measure over all
other word frequency measures tested was still observed
when the recent Zipf word frequency was used, and also
when the subjective frequency measure was taken into
account.

Even though the results from the current study
demonstrate that the CD measure drawn from subtitles
is undeniably the best index of word frequency, the pho-
netic features of the first-phoneme clearly go beyond
word frequency measures by accounting for the largest
portion of variance in the speed of EP word pronuncia-
tion. These findings are consistent with those observed
in other deep- and shallow-orthographies, and suggest
that the phonetic features of the first-phoneme should
not be neglected particularly in studies using tasks that
rely more strongly on words’ phonological information.
Additionally, as in (American) English, but in contrast
with French or Malay languages, the OLD20 represented
the best proxy estimate of EP word similarity since it
accounted for the largest amounts of variance in EP
word processing, particularly in naming performance.
However, contrary to the results of other large-scale
studies conducted in deep-orthographies, facilitative
OUP effects were observed both in EP visual word recog-
nition and particularly in EP word pronunciation. This
result provides further evidence for the view that EP
skilled readers rely strongly on the sub-lexical recoding
strategy when processing EP words, though EP skilled
readers also rely on the lexical route of processing in
visual word recognition.

Finally, as in other deep and shallow orthographies, the
current results showed that imageability, concreteness
and subjective frequency contribute with a sizeable per-
centage of variance in EP word processing, particularly
in lexical decision. However, if EP words with higher ima-
geability and subjective frequency ratings produced faster
recognition times, a reverse concreteness effect was
observed, as recently observed in the English and
French languages. AoA and affective variables contributed
with a very low percentage of variance in EP word proces-
sing, particularly in speeded pronunciation. Among the
affective variables, only valence reached statistical signifi-
cance in lexical decision, confirming in EP the positivity
bias observed in other languages.

Conclusion

The current study examined the role that orthographic,
phonological and semantic variables play in visual

recognition and pronunciation of EP words, by using
the megastudy approach. Although a growing body of
evidence has been obtained from large-scale studies
conducted in deep and shallow orthographies, little is
known about how these word properties affect word
processing in intermediate-depth language such as EP.
We found that the pattern of findings in EP is in-
between the effects observed in deep and shallow
languages. A theoretical implication of the current mega-
study is that models of visual word recognition and word
production should address these differences by includ-
ing different parameters/weights that better fit the
singularities of each language and/or orthography (e.g.
see Perea, Winskel, & Gomez, 2018; for discussion).
Researchers interested in conducting new analyses
probing the role that different variables play in EP
word processing, or comparing word processing in EP
and in other deep and/or shallow languages, may
freely download the behavioural data described in the
current study as a supplemental archive or at http://p-
pal.di.uminho.pt/about/databases.

Notes

1. Even though we have not used repeated blocks aiming
to directly test practice effects in participants’ perform-
ance as Keuleers et al. (2010), the use of lexically
similar experimental blocks (see Materials section)
allowed us to examine practice effects across blocks
even considering that they relied on a different subset
of stimuli.

2. Even though the number of phonemes accounted for
0.4% more variance in the latency data from TDL
latencies, we opted to use the number of letters in the
analyses since this word length measure has been used
in most large-scale studies conducted so far (e.g.,
Ferrand et al., 2010, 2017; New et al., 2006), hence allow-
ing a direct comparison of the results.

3. Note, that if the standard orthographic (ON; Coltheart
et al., 1977) and phonological (PN; Luce & Pisoni, 1998)
neighbourhood measures were used instead, larger
word length effects were observed in both tasks. Specifi-
cally, in the latency data from NAM, the percentage of
unique variance increased to 8% for ON, F(20, 1910) =
176.98, p < .001, and to 8.3% for PN, F(20, 1910) =
177.993, p < .001, and in the latency data from LDT, to
4.2% both for ON, F(20, 1910) = 70.316, p < .001, and
PN, F(20, 1910) = 70.389, p < .001 neighbourhood
measures. In the accuracy data from NAM, the percen-
tage of unique variance increased to 0.8% both for ON,
F(20, 1910) = 3.779, p < .001, and PN, F(20, 1910) =
3.692, p < .001, although in the accuracy data from LDT
it remained the same (5.2%) for PN, F(20, 1910) =
20.545, p < .001, and decreased slightly (4.7%) for ON, F
(20, 1910) = 20.566, p < .001.

4. Although Ernestus and Cutler (2015), Goh et al. (2016)
and Ferrand et al. (2017) used orthographic and phono-
logical uniqueness point measures in their megastudies,
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here we only considered the orthographic uniqueness
point measure since phonological uniqueness point
measures are not available from the P-PAL database
(see Soares, Iriarte, et al., 2018).
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