

El Telururo de Zinc, (ZnTe)

Aspectos de interés

- Interés académico
- Potencial substrato para la epitaxia
- Fabricación de diodos emisores en el verde

Problemática

- Derivada de la dificultad de obtención de monocristales
- Derivada de la dificultad de dopado tipo n

El Te		elururo de l	Zinc, (ZnTe)
Algunas propiedades			
Estructur Parámetr Tempera Densidad Dureza Ionicidad Coef. Ex Conducti Banda pr	a to de malla tura de fusión d bansión térmica vidad térmica tohibida	Blenda de zinc 6.089 Å 1295 °C 5.636 g/cm ³ 54.54 Kg/mm ² 0.61 8.3 10 ⁻⁶ K ⁻¹ 0.14 W/cmK 2.28 eV a 300K	
	VICE	ENTE MUÑOZ SANJC	SÉ

El Telururo de Zinc, (ZnTe)

Objetivos

Crecer monocristales de buena calidad estructural

Analizar sus propiedades estructurales y físicas, en correlación con las condiciones de crecimiento

Estudiar sus posibilidades como substrato para la epitaxia

Analizar la respuesta frente a tratamientos térmicos y tensiones mecánicas

Profundizar en las técnicas y mecanismos de crecimiento cristalino

Crecimiento cristalino del ZnTe

Crecimiento en fase gaseosa (PVT y CVT)

•Buenos cristales obtenidos por el grupo del Institute of Physics, Polish Academy of Sciences. Prof. A. Mycielski.

•Problemas:

-Dificultad de mantener las condiciones termodinámicas

en la interfase móvil durante largos períodos de tiempo

-Dificultad de obtención de grandes monocristales

Crecimiento cristalino del ZnTe

Resultados:

Síntesis y crecimiento en el mismo proceso

Obtención de un lingote policristalino

de varios centímetros de longitud.

Grandes monocristales con buena

calidad estructural

A CONTRACTOR	Hg _{1-x} Mn _x T	agneticos, e
Algunas prop	viedades:	
Estructura	Blenda de zinc	
Parámetro de malla	6.641-0.121x A ón > 700 ºC (x≈0.11)	
I emperatura de fusi Densidad	8.12-3.37x a/cm ³	

Materiales semimagnéticos, Hg_{1-x}Mn_xTe

Objetivos:

Crecer monocristales de buena calidad estructural Crecer monocristales con homogeneidad composicional Analizar sus propiedades estructurales y de propiedades físicas, en correlación con las condiciones de crecimiento Profundizar en las técnicas y mecanismos de crecimiento cristalino

El Seleniuro de Zinc, ZnSe

- Algunos aspectos de interés
 - Interés académico
 - Potencial tecnológico en la "temática del azul"
 - Fabricación de diodos emisores en el azul
 - Temática infra-roja
- Problemática
 - Derivada de la dificultad de obtención de monocristales
 - Derivada de la dificultad de dopado tipo p

	Al	gunas prop	iedades
Estructura Parámetro de Temperatura o Tem. transició ∆H (Hexagona Densidad Dureza Ionicidad Coef. expansio Conductividad Banda prohibio	malla de fusión n fase, S-S al-cúbica) ón térmica l térmica da	Blenda de zinc 5.668 Å 1524 °C 1425 °C 946 J/mol 5.26 g/cm ³ 92 Kg/mm ² 0.63 6.8 10 ⁻⁶ K ⁻¹ 0.19 W/cmK 2.67 eV a 300K	

El Seleniuro de Zinc, ZnSe

Objetivos

Crecer monocristales de buena calidad estructural

Analizar sus propiedades estructurales y físicas, en correlación con las condiciones de crecimiento

Estudiar sus posibilidades como substratos para la epitaxia

 Analizar la respuesta frente a tratamientos térmicos y tensiones mecánicas

Profundizar en las técnicas y mecanismos de crecimiento cristalino

Crecimiento cristalino del ZnSe

La recristalización en fase sólida, RSS

Condiciones experimentales:

Material CVD policristalino

Preparación superficial y geometría de la muestra

Recristalización isoterma a 998 ºC

Presión de Selenio o Argón

Crecimiento cristalino del ZnSe

Resultados:

Obtención de monocristales de excelente calidad estructural.

Tamaño dependiente de la duración de la experiencia y presión de trabajo

Mayor velocidad de crecimiento con la mayor presión de selenio (10 atm)

Ligera evaporación y deposición superficial en las experiencias con baja presión de Argón (2 atm)

La modelización y simulación numérica como herramienta en el crecimiento cristalino

El método THM. Estudio numérico de crecimiento de HgTe

ALT . ALT .	
	Modelización del crecimiento THM
The Constant of the	
	a) Continuity equation
	$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial z} + \frac{1}{r} \frac{\partial (r \rho v)}{\partial r} = 0$
	where v is the fluid density, u the axial velocity and v the radial velocity.
	b) Momentum equation
	axial direction:
	$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial z}(\rho u u) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho v u) = -\frac{\partial P}{\partial z} + \frac{\partial}{\partial z}(2\mu\frac{\partial u}{\partial z}) + \frac{1}{r}\frac{\partial}{\partial r}\left[r\mu(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial z})\right] + \rho g$
	radial direction:
	$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial z}(\rho uv) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho vv) = -\frac{\partial P}{\partial r} + \frac{\partial}{\partial z} \left[\mu(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial z})\right] + \frac{1}{r}\frac{\partial}{\partial r}(r2\mu\frac{\partial v}{\partial r}) - \frac{1}{r}(2\mu\frac{v}{r})$
	where P is the static pressure, ?' is the molecular viscosity of the fluid and g is the gravitational acceleration
	c) Energy equation
	$\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial z}(\rho uh) + \frac{\partial}{\partial r}(\rho vh) = \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) + \frac{1}{r}\frac{\partial}{\partial r}(rk\frac{\partial T}{\partial r}) + \frac{\partial P}{\partial t} + u\frac{\partial P}{\partial z} + v\frac{\partial P}{\partial r} + S_h$
	where h is the enthalpy, T is the temperature, k is the thermal conductivity of the fluid and S_h is a source term
	that can include sources of enthalpy.
	VICENTE MUÑOZ SANJOSÉ

Modelización del crecimiento THM

Proceso de resolución en tres niveles

Nivel 1

Se determina el campo de temperaturas considerando la radiación, la conducción y la convección. Se conoce así la temperatura en la interfase de crecimiento y disolución que ajusta el valor de la concentración en el liquido junto con la longitud de la zona liquida considerando el diagrama de fases

	Modelización del crecimiento THM
Pro	oceso de resolución en tres niveles
	Nivel 2
La co ca cre ine	a temperatura en las paredes de la ampolla es considerada omo condición de contorno para el cálculo más exacto del ampo de temperaturas en el interior de la ampolla de ecimiento y en particular la zona liquida en la que ahora corporamos la convección.
	VICENTE MUÑOZ SANJOSÉ

	Modelización del crecimiento THM
Pro	ceso de resolución en tres niveles
	Nivel 3
Se tem enti teni	plantea un proceso dinámico de desplazamiento de las aperaturas que produce una diferencia de concentraciones re ambas interfases que ajustan el problema global iendo en cuenta el diagrama de fases.
	VICENTE MUÑOZ SANJOSÉ

