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Abstract. We study isolated singularities of binary differential equations of degree n

which are totally real. This means that at any regular point, the associated algebraic
equation of degree n has exactly n different real roots (this generalizes the so called
positive quadratic differential forms when n = 2). We introduce the concept of index
for isolated singularities and generalize Poincaré-Hopf theorem and Bendixon formula.
Moreover, we give a classification of phase portraits of the n-web around a generic singular
point. We show that there are only three types, which generalize the Darbouxian umbilics
D1, D2 and D3.

1. Introduction

The study of the principal foliations near an isolated umbilic point of a surface M
immersed in R3 leads us to the consideration of quadratic binary differential equations
(BDE) of the form

a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2 = 0,

where a(x, y), b(x, y), c(x, y) are smooth functions in some open subset U ⊂ R
2 which are

defined, after taking a parametrization of M , by means of the coefficients of the first and
second fundamental form of M . Since the principal lines are orthogonal in the induced
metric of M , we have that the discriminant ∆ = b(x, y)2−a(x, y)c(x, y) ≥ 0, with equality
if and only if (x, y) corresponds to an umbilic of M , so that a(x, y) = b(x, y) = c(x, y) = 0
and hence, (x, y) is a singularity of the BDE. It was Darboux [5] who classified the
generic singularities and discovered there are only three topological types, known as the
Darbouxian umbilics D1, D2 and D3 (see [1] and [12] for a modern and precise study of
this classification).

In fact, we can consider quadratic BDE of this type for general functions a(x, y), b(x, y)
and c(x, y), with the discriminant property: ∆ ≥ 0 with equality if and only if a(x, y) =
b(x, y) = c(x, y) = 0. The quadratic forms with this property are called positive and have
been studied by many authors [2, 6, 9, 11, 13]. A positive quadratic differential form
defines a pair of transverse foliations in the region of regular points. Moreover, Gúıñez
showed has that in this more general situation, the only generic singularities are again
the Darbouxian umbilics D1, D2 and D3.

The aim of this paper is to generalize this to degree n BDE of the form

a0(x, y)dx
n + a1(x, y)dx

n−1dy + · · · + an(x, y)dyn = 0,

where ai(x, y) are smooth functions defined on U ⊂ R2 such that for any (x, y) ∈ U , either
it is a singular point (that is, ai(x, y) = 0 for any i = 1, . . . , n) or the associated algebraic
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equation has exactly n different real roots. If the functions ai(x, y) have this property,
then we say that the symmetric differential n-form ω =

∑n
i=1 ai(x, y)dx

n−idyi is totally
real.

When n = 1, a differential n-form is always totally real and it induces an oriented
foliation in the plane with singularities. For n = 2, totally real is equivalent to positive in
the Gúıñez sense and hence, the BDE defines a pair of transverse (non oriented) foliations.
However, for n ≥ 3, the corresponding BDE induces locally a n-web in the regular region
(that is, a set of n foliations {F1, . . . ,Fn} which are pairwise transverse). It seems that
isolated singularities of n-webs in the plane have not been considered previously in the
literature. Moreover, we feel that the use of degree n BDE is a good approach to treat
this subject.

The topological configuration of a n-web (n ≥ 3) can be extremely complicated, even in
the regular case. When n = 3, the curvature of the web is a function which is a topological
invariant. Hence, even for regular webs we find that the topological classification has
functional moduli. It is known that a regular 3-web is parallelizable or hexagonal (that
is, equivalent to three families of parallel straight lines) if and only if the curvature is
zero. We should also mention that because of the rigidity of webs (any homeomorphism
between two regular webs is in fact a diffeomorphism [7]) the topological and differentiable
classifications are the same.

We show here that for n ≥ 3, the classification of generic singularities of totally real
differential n-forms gives again only three types, which we call the generalized Darbouxian
D1, D2 andD3. Here, generic means a generic choice of coefficients in the linear part of the
functions ai(x, y). Moreover, the classification has to be understood not as a topological
classification, but just as a description of the phase portrait of the foliations around the
singular point.

One of the main ingredients of the classification is the index of an isolated singular
point. It is defined as a rational number of the form k/n, where k ∈ Z and it can be
interpreted as the rotation number of a continuously chosen vector tangent to the leaves,
when we make a trip around the singular point. We also show the generalization of the
Poincaré-Hopf theorem: if M is a compact surface and ω is a totally real n-form with
a finite number of singular points, then the sum of the indices is equal to the Euler
characteristic χ(M).

Another important point in the paper is the use of complex coordinates. By setting z =
x+ iy and z = x−iy, we can express any n-form as ω = A0dz

n +A1dz
n−1dz+ · · ·+Andz

n,
where Aj = An−j are differentiable functions. Then the index of an isolated singular point
is equal to − deg(A0)/n, where deg(A0) is the mapping degree of A0. This implies that
generically, the index is ±1/n.

The final ingredient for the classification is the use of the polar blow-up method to study
singularities with a non degenerate principal part (see [3] and [11] for related results for
vector fields or quadratic forms). We obtain a generalization of the Bendixon formula,
which says that the index is equal to 1 + (e− h)/2n where e, h are the number of elliptic
and hyperbolic sectors respectively. On the other hand, for a non degenerate singularity,
the blow-up produces a n-form which has only singularities of saddle/node type. The
configuration of these singularities gives a description of the phase portrait of the foliations
around the singular point.

We finish the paper with a section dedicated to higher order principal lines and umbilics
of surfaces M immersed in some Euclidean space RN . This was the original motivation of
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the authors to study singularities of differential n-forms. Other geometrical motivations
of the same kind can be found also in [15] or [10].

2. Totally real differential forms

Definition 2.1. Let M be a C∞ surface. A (symmetric) differential n-form on M is a
differentiable section of the symmetric tensor fiber bundle Sn(T ∗M). If we take coordi-
nates x, y on some open subset U ⊂M , any differential n-form can be written in a unique
way as

w =

n
∑

i=0

fidx
idyn−i,

where fi : U → R are smooth functions.
We will say that p ∈M is a singular point of ω if ω(p) = 0. We will denote by Sing(ω)

the set of singular points of ω.
In general, if p ∈ M , ω(p) : TpM → R is a form of degree n. Let p ∈ M \ Sing(ω),

we say that ω is totally real at p if there are n linear forms λ1, . . . , λn ∈ TpM
∗ which are

pairwise linearly independent and such that ω(p) = λ1 . . . λn. We say that ω is totally real
if it is totally real at any point p ∈M \ Sing(ω).

A linear differential form (n = 1) is always totally real. In the case n = 2, a quadratic
differential form is totally real if it is positive in the sense of [9]. Take local coordinates
x, y defined on some open subset U ⊂M and assume that ω is given by

ω = Adx2 + 2Bdxdy + Cdy2,

for some smooth functions A,B,C : U → R. Then ω is totally real in U if and only if for
any p ∈ U , either A(p) = B(p) = C(p) = 0 or B2(p) − A(p)C(p) > 0.

Definition 2.2. A (1-dimensional) n-web on a surface M is a set of n (1-dimensional)
foliations W = {F1, . . . ,Fn} on M such that they are pairwise transverse at any point of
M .

If ω is a totally real differential n-form on M , then we can locally associate a n-web on
M \ Sing(ω) in the following way. For each p ∈ M \ Sing(ω), there are pairwise linearly
independent linear forms λ1, . . . , λn ∈ TpM

∗ such that ω(p) = λ1 . . . λn. Moreover, it is
possible to choose these linear forms so that they depend smoothly on p (and hence define
differential linear forms) on some open neighbourhood U ⊂ M . Then, the n-web is just
defined by taking Fi as the foliation determined by λi on U (that is, the tangent vectors
to Fi are the null vectors of λi).

Note that in general, it is not possible to extend this to a global n-web on M \ Sing(ω)
(unless it is simply connected). Moreover, two totally real differential n-forms ω1 and ω2

define the same n-web on U if and only if there is a non-zero smooth function f : U → R

such that ω1 = fω2 on U .

Remember that if ω is a differential n-form on N and f : M → N is a differentiable
map between surfaces, then f ∗ω is the n-form on M given by f ∗ω(p)(X) = ω(f(p))(f∗X)
for any p ∈ M and X ∈ TpM , and being f∗ : TpM → Tf(p)N the differential of f at the
point p.

Definition 2.3. Let ω1, ω2 be two totally real differential n-forms defined on surfaces
M,N respectively. We say that they are C∞-equivalent (resp. topologically equivalent) if
there is a C∞ diffeomorphism (resp. homeomorphism) φ : M → N such that
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(1) φ(Sing(ω1)) = Sing(ω2),
(2) φ : M \ Sing(ω1) → N \ Sing(ω2) preserves locally the leaves of the foliations of

the n-webs defined by ω1, ω2.

It is obvious that if φ is a C∞ diffeomorphism, then condition (2) is equivalent to the
existence of a nonzero smooth function f : M \ Sing(ω1) → R such that φ∗(ω2) = fω1 on
M \ Sing(ω1).

3. The index of an isolated singular point

We will define an index for isolated singular points of totally real differential forms,
which generalize the index in the case of linear or quadratic forms.

Definition 3.1. Let ω be a totally real differential n-form on a surface M and p ∈ M
an isolated singular point. Assume that M is orientable and choose some orientation.
Moreover, we choose a Riemannian metric g onM and orthogonal coordinates x, y on some
open neighbourhood U of p inM , compatible with the orientation. Now, let α : [0, ℓ] → M
be a simple, closed and piecewise regular curve, such that α([0, ℓ]) ⊂ U is the boundary of
a simple region R, which contains p as the only singular point in the interior. Moreover,
we assume that α goes through the boundary of R in positive sense. Since α is a closed
curve, it is obvious that we can extend it to α : R →M , with α(t+ ℓ) = α(t).

For each t ∈ R we choose a unit tangent vector X(t) which is a solution of the equation
ω(α(t))(X) = 0 at the point α(t). Since it is an algebraic equation of degree n, we can
choose X(t) so that it defines a differentiable unit vector field along α.

If we start with t = 0, after a complete turn, X(ℓ) must coincide with one of the 2n unit
vectors which are solution of ω(α(0))(X) = 0. Because of transversality, after 2n turns
in positive sense, we must return to the initial vector, that is, X(2nℓ) = X(0). Now, let
θ(t) be a differentiable determination of the angle from ∂

∂x
|α(t) toX(t). Then, θ(2nℓ) and

θ(0) differ in an integer multiple of 2π. We define the index of ω in p by

ind(ω, p) =
θ(2nℓ) − θ(0)

4πn
.

It follows from the definition that the index is always a rational number of the form s/2n,
with s ∈ Z.

Lemma 3.2. The index ind(ω, p) does not depend on the choice of:

(1) the determination of the angle θ,
(2) the vector field X,
(3) the coordinates x, y,
(4) the curve α,
(5) the Riemannian metric g,
(6) the orientation of M .

Proof. Note that two determinations of the angle must differ in an integer multiple of 2π.
Thus, it is clear that the index does not depend on the determination.

We show now that the index does not depend on the vector field X. Suppose that
we consider two vector fields X1(t), X2(t). Note that they are solutions of an algebraic
equation of degree n and they are differentiable with respect to the parameter t. Thus if
X1(t) = ±X2(t) at some point of the curve, then this should be true for any point. In this
case, the corresponding determinations of the angles should differ in an integer multiple
of π, giving the same index.
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Thus, we can assume that X1(t) 6= ±X2(t), for all t ∈ R. Then, we can choose the
determinations so that

0 < |θ1(t) − θ2(t)| < π,

for all t ∈ R. Moreover, suppose that

θi(2nℓ) − θi(0)

4πn
=

si

2n

with s1, s2 ∈ Z. Then,

|s1 − s2| =
1

2π
|θ1(2nℓ) − θ1(0) − θ2(2nℓ) + θ2(0)| < 1,

and necessarily s1 = s2.
To show that the index does not depend on the coordinates, let Y0 ∈ Tα(0)M be any

nonzero tangent vector. Let us denote by Y (t) the parallel transport of Y0 along α(t) and
let ψ(t) be a determination of the angle from ∂

∂x
|α(t) to Y (t). Following [4, Eq (2), page

271], we have that

ψ(ℓ) − ψ(0) =

∫

R

Kdσ,

where K denotes the gaussian curvature of M and dσ is the area element. From this we
deduce

(1) 2n

∫

R

Kdσ − 2πs = (ψ − θ)(2nℓ) − (ψ − θ)(0),

being s/2n the index. Since the angle ψ − θ does not depend on the coordinates x, y, we
get that the index does not depend either.

Let now α and β be two curves satisfying the conditions of the definition of the index.
We will show that the index given by both curves is the same. Suppose first that the
curves are disjoint. Then it is obvious that we can construct a family of curves αt, with
t ∈ [0, 1], depending continuously on t, which verify the conditions of the definition of
index and such that α0 = α and α1 = β. Taking into account that it is possible to express
the index by means of an integral expression, we deduce that the index with respect to αt

depends continuously on t. Since the index can only take rational values, we deduce that
it must be constant. In the case that the curves α and β are not disjoint, we can take
a third curve small enough so that it is disjoint with α and β and then apply the above
argument.

The independence with respect to the Riemannian metric g has an analogous argument.
In fact, if g and h are two Riemannian metrics, we can consider the family of Riemannian
metrics gt = (1 − t)g + th so that g0 = g and g1 = h. Again by means of an integral
expression of the index, we see that the index with respect to the metric gt depends
continuously on t and hence, it must be constant.

Finally, it only remains to show that it does not depend on the orientation. In fact, if we
change the orientation, we have to change α by α̃(t) = α(ℓ− t) and θ by θ̃(t) = −θ(ℓ− t).
Then,

θ̃(2nℓ) − θ̃(0) = −θ(ℓ− 2nℓ) + θ(ℓ) = −θ(0) + θ(2nℓ).

�

As a consequence of this lemma, we deduce that the index is well defined and it only
depends on the differential form ω. Moreover, the definition can be extended to the case
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that M is not orientable, just by taking a local orientation in a neighbourhood of the
singular point.

On the other hand, the definition of index can be also extended to the case that p
is a regular point, although in such case the index is always zero. In fact, we can take
coordinates in such a way that ∂/∂x coincides with X along α and hence, θ(t) ≡ 0.

Finally, another immediate consequence of the above lemma is that the index is invari-
ant by equivalence. Let ω1, ω2 be two totally real differential n-forms defined on surfaces
M,N respectively, which are equivalent through the diffeomorphism φ : M → N . Then,
for each p ∈ Sing(ω1),

ind(ω1, p) = ind(ω2, φ(p)).

Remark 3.3. We give here a formula which can be very useful to compute the index.
Let us denote by X1(t), . . . , X2n(t) the unit vector fields along α which are solution of
ω(α(t))(X) = 0. We assume that they are ordered so that

θ1(t) < θ2(t) < · · · < θ2n(t) < θ1(t) + 2π,

where θj(t) denotes the determination of the angle of each vector field Xj(t). In particular,
we have that

θ1(ℓ) = θi(0) + 2πm,

for some m ∈ Z and i ∈ {1, . . . , 2n}. Then, the index is given by

ind(ω, p) = m+
i− 1

2n
.

In fact, we introduce the notation θ2n+1(t) = θ1(t) + 2π, θ2n+2(t) = θ2(t) + 2π, and in
general, θ2qn+j(t) = θj(t) + 2qπ, for any q ∈ Z and j ∈ {1, . . . , 2n}. Then,

θ1(ℓ) = θi(0) + 2πm,

θ1(2ℓ) = θi(ℓ) + 2πm = θ2i−1(0) + 4πm,

. . .

θ1(2nℓ) = θ2n(i−1)+1(0) + 4πnm = θ1(0) + 2π(2nm+ i− 1).

From this, we arrive to

ind(ω, p) =
θ1(2nℓ) − θ1(0)

4πn
= m+

i− 1

2n
.

We finish this section by showing the generalization of the well known Poincaré-Hopf
Theorem for vector fields or quadratic differential forms [14, 4].

Theorem 3.4. Let M a compact surface and let ω be a totally real differential n-form
with a finite number of singular points p1, . . . , pm. Then,

χ(M) =

m
∑

i=1

ind(ω, pi),

where χ(M) denotes the Euler-Poincaré characteristic of M .

Proof. The proof given here is just an adaptation of the proof given in [4, page 279] for
the case of vector fields. We show first the theorem in the case that M is orientable.

We choose some orientation and a Riemannian metric on M . Let {ϕi : Ui → R2}i∈I

an atlas on M so that each chart is orthogonal and compatible with the orientation.
Moreover, we take a triangulation T such that:

(1) Each triangle T ∈ T is contained in some coordinate neighbourhood.
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(2) Each triangle T ∈ T contains at most one singular point pT . (In the triangles with
no singular points we choose any interior point pT .)

(3) The boundary of each triangle T ∈ T has no singular points and is positively
oriented.

Let XT be a vector field along the boundary of each triangle T ∈ T which is a solution
of equation ω(X) = 0. Moreover, we choose it in such a way that if T1, T2 are adjacent
triangles, then XT1

, XT2
coincide along the common edge. From Equation (1) we obtain

∫

T

Kdσ − 2π ind(ω, pT ) =
∆T

2n
,

for any T ∈ T , where ∆T denotes the variation of the angle from XT to some parallel
vector field after going through the boundary of T 2n times in positive sense.

Now, summing up for any T ∈ T and taking into account that each edge is common to
two triangles with opposite orientations, we arrive to

∫

M

Kdσ − 2π
∑

T∈T

ind(ω, pT ) =
∑

T∈T

∆T

2n
= 0.

Finally, the result is a consequence of the Gauss-Bonnet Theorem:
∫

M

Kdσ = 2πχ(M).

In the case that the surface M is not orientable, we consider π : M̃ → M a double
covering, where M̃ is an orientable and compact surface. Then χ(M̃) = 2χ(M) and since
π is a local diffeomorphism, each singular point pi of ω gives exactly two singular points
of the induced n-form π∗ω with the same index. Thus, this case is a consequence of the
orientable case. �

4. Differential forms in complex coordinates

We identify R2 = C and use the following notation

z = x+ iy, z = x− iy,

dz = dx+ idy, dz = dx− idy,

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

With this notation, it is obvious that any differential n-form on an open subset U ⊂ C

can be written in a unique way in this coordinates as

ω = A0dz
n + A1dz

n−1dz + · · · + Andz
n,

for some differentiable functions Aj : U → C such that Aj = An−j for all j = 0, . . . , n.
The following theorem is a generalization of [14, VII.2.3] in the case n = 2.

Theorem 4.1. Let ω be a totally real differential n-form on an open subset U ⊂ C and
let p ∈ U be an isolated singular point. Then, p is an isolated zero of A0 and

ind(ω, p) = −
deg(A0, p)

n
,

where deg(A0, p) denotes the local degree of A0 at p.
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Proof. Let δ > 0 small enough and let α(t) = p + δeit, for t ∈ R. We denote by
X1(t), . . . , Xn(t) unit vector fields along α which are pairwise linearly independent and
are solution of the equation ω(α(t))(X) = 0. We also denote by θj(t) a differentiable
determination of the angle of Xj(t), so that

Xj(t) = eiθj(t)
∂

∂z
+ e−iθj(t)

∂

∂z
.

It is obvious that Xj(t) annihilates the linear form λj(t) along α given by

λj(t) = eiφj(t)dz + e−iφj(t)dz,

being φj(t) = π/2−θj(t). Thus, by using elementary properties of the algebraic equations
of degree n, we deduce that along α it is possible to factor ω as

ω(α(t)) = f(t)λ1(t) . . . λn(t),

for some non vanishing function f : R → R.
On the other hand, by comparing the coefficient of dzn in the above expression, we

have that
A0(α(t)) = f(t)ei(φ1(t)+···+φn(t)).

From this we see that A0(α(t)) 6= 0, for all t ∈ R, which shows the first statement.
Moreover, a differentiable determination of the angle of A0(α(t)) is given by

β(t) = φ1(t) + · · ·+ φn(t) + πq,

for some q ∈ Z.
Finally,

deg(A0, p) =
β(4πn) − β(0)

4πn
=

n
∑

j=1

φj(4πn) − φj(0)

4πn

= −
n
∑

j=1

θj(4πn) − θj(0)

4πn
= −n ind(ω, p).

�

Corollary 4.2. The index of any isolated singular point of a totally real differential n-
form on a surface M has the form s/n, with s ∈ Z. Moreover, for each s ∈ Z there is a
totally real differential n-form with an isolated singular point of index s/n.

Proof. The first part is an immediate consequence of the above theorem. To see the second
part, just consider M = C, p = 0 and

ω =

{

zsdzn + zsdzn, if s ≥ 0,

z|s|dzn + z|s|dzn, if s < 0.

�

According to Definition 3.1, an isolated singular point of an n-web will have an index
of the form s/2n, with s ∈ Z. The above corollary says that in the case that the n-web
is induced from a totally real differential n-form, the index will be of the form s/n, with
s ∈ Z. This can be interpreted as some kind of orientability condition for the n-web
defined by a differential n-form.

For instance, when n = 1, a linear differential form in M induces an orientable foliation
in a neighbourhood of each point of M . In this case, the index of an isolated singular
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point is an integer. For n = 2, a positive quadratic differential form induces a pair of (non
necessarily orientable) transverse foliations in a neighbourhood of each point of M . The
index associated to each one of the foliations is the same (because of transversality) and
it is a half-integer (see [14, VII.2.2]).

Corollary 4.3. Let ω be a totally real differential n-form on a surface M and p ∈ M
an isolated singular point. Let α : [0, ℓ] → M be a curve satisfying the conditions for the
definition of the index and let X(t) be a unit vector field along α, solution of ω(α(t))(X) =
0. Then X(nℓ) = X(0) and

ind(ω, p) =
θ(nℓ) − θ(0)

2πn
,

where θ(t) denotes a determination of the angle of X(t).

Proof. This is consequence of the above corollary and Remark 3.3. Let us denote by
X1(t), . . . , X2n(t) the unit vector fields along α which are solution of ω(α(t))(X) = 0,
being X(t) = X1(t). We suppose that they are ordered so that

θ1(t) < θ2(t) < · · · < θ2n(t) < θ1(t) + 2π,

where θj(t) is the determination of the angle of each vector field Xj(t). Then,

ind(ω, p) = m+
i− 1

2n
,

where θ1(ℓ) = θi(0) + 2πm, with m ∈ Z and i ∈ {1, . . . , 2n}. Moreover, we introduce the
notation θ2qn+j(t) = θj(t) + 2qπ, for any q ∈ Z and j ∈ {1, . . . , 2n}.

From the above corollary we see that i − 1 must be even and hence, we can write
i− 1 = 2q, with q ∈ Z. Thus,

θ1(nℓ) = θn(i−1)+1(0) + 2πmn = θ1(0) + 2π(mn+ q),

giving X1(nℓ) = X1(0). �

Definition 4.4. We say that a singular point p of a totally real differential n-form ω is
simple if the linear part of ω at p is itself a totally real differential n-form having p as an
isolated singular point. Suppose that in complex coordinates

ω = A0dz
n + A1dz

n−1dz + · · · + Andz
n,

for some differentiable functions Ai : U → C. We also assume, for simplicity, that p = 0.
Then, each one of these functions Ai has a Taylor expansion at the origin

Ai = aiz + biz + . . .

with ai, bi ∈ C. The linear part of ω at p is the differential n-form

ω1 = (a0z + b0z)dz
n + (a1z + b1z)dz

n−1dz + · · ·+ (anz + bnz)dz
n.

Corollary 4.5. Any simple singular point of a totally real differential n-form on a surface
M has index ±1/n.

Proof. We take complex coordinates, suppose that p = 0 and the linear part of ω at p is

ω1 = (a0z + b0z)dz
n + (a1z + b1z)dz

n−1dz + · · ·+ (anz + bnz)dz
n.

If ω1 is totally real and p is an isolated singular point, by Theorem 4.1, p is an isolated
zero of the linear function a0z + b0z and hence, such linear function is regular. Since it is
the linear part of the function A0, p is a regular point of A0. Thus, deg(A0, p) = ±1 and
ind(ω, p) = ±1/n. �
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5. Non degenerate differential forms

Let ω be a totally real differential n-form on some open subset U ⊂ C and let p ∈ U be
an isolated singular point. We can extend the notation introduced in the above section
and denote by ωk the homogeneous part of degree k of ω. That is, each one of the
coefficients Aj admits a Taylor expansion at p and ωk is the n-form whose coefficients are
the homogeneous parts of degree k in the expansion of the Aj.

Definition 5.1. We say that ω is semi-homogeneous at p if there is k ≥ 1 such that
ωi = 0 for i = 1, . . . , k − 1 and ωk is a totally real differential n-form having p as an
isolated singular point. Note that when k = 1, this is equal to the definition of simple
singular point.

Assume for simplicity that p = 0 and let

ωk = Ak
0dz

n + Ak
1dz

n−1dz + · · · + Ak
ndz

n,

where Ak
i are homogeneous polynomials of degree k. We define the characteristic polyno-

mial of ω as the (real) homogeneous polynomial of degree k + n

Pω = Ak
0z

n + Ak
1z

n−1z + · · · + Ak
nz

n.

Let us denote by π : R2 → C the polar blow-up, that is, π(r, t) = reit. We fix δ > 0
small enough such that π((−δ, δ) × R) ⊂ U and p = 0 is the only singular point of ω in
such set.

Lemma 5.2. If ω is semi-homogeneous with principal part ωk, then

ω̃(r, t) =







1

rk
ω(reit), if r 6= 0,

ωk(e
it), if r = 0,

defines a totally real differential n-form along π on (−δ, δ) × R with no singular points.

Proof. Suppose that ω is given by

ω = A0dz
n + A1dz

n−1dz + · · ·+ Andz
n

and let us denote by Ak
j the homogeneous part of degree k of Aj. By the Hadamard

Lemma it follows that
Aj(re

it) = rkBj(r, t),

for some differentiable functions Bj : (−δ, δ) × R → R such that Bj(0, t) = Ak
j (e

it). In
particular

ω̃(r, t) = B0(r, t)dz
n +B1(r, t)dz

n−1dz + · · ·+Bn(r, t)dzn.

�

As a consequence of the above lemma, if ω is semi-homogeneous, we can choose n unit
vector fields X1(r, t), . . . , Xn(r, t) along π on (−δ, δ)×R which are pairwise linearly inde-
pendent and solution of ω̃(r, t)(X) = 0. Moreover, we denote by θj(r, t) a differentiable
determination of the angle of each vector field Xj(r, t). Then we showed in the proof of
Theorem 4.1, that it is possible to factor ω̃ as

ω̃ = fλ1 . . . λn,

being λj the linear forms given by

λj = eiφjdz + e−iφjdz,

with φj = π/2 − θj and f : (−δ, δ) × R → R a non vanishing function.
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Definition 5.3. The pull-back through π of the n-form ω̃ defines an n-form π∗ω̃ on
(−δ, δ)×R, which is called the polar n-form of ω. Analogously, we call linear polar forms
of ω the linear forms π∗λ1, . . . , π

∗λn, in such a way that

π∗ω̃ = fπ∗λ1 . . . π
∗λn,

An easy computation gives that for each j = 1, . . . , n

π∗λj = 2(cosϕjdr − r sinϕjdt),

where ϕj = φj + t. Thus, each one of these polar linear forms has singular points (0, t)
with ϕj(0, t) = π/2 + qπ, q ∈ Z.

Note that a point (0, t) can be a singular point of only one of the polar linear forms.
In fact, suppose that

ϕj1(0, t) = π/2 + q1π, ϕj2(0, t) = π/2 + q2π,

for some q1, q2 ∈ Z. Then

θj1(0, t) − θj2(0, t) = (q2 − q1)π,

which implies that the corresponding vector fields are linearly dependent and hence, j1 =
j2.

Moreover, under some conditions it is possible to determine the topological type of
these singular points. Let Λj the vector field given by

Λj = r sinϕj

∂

∂r
+ cosϕj

∂

∂t
.

Then, the jacobian matrix at a singular point is

DΛj(0, t) = ±

(

1 −
∂ϕj

∂r

0 −
∂ϕj

∂t

)

.

As a consequence, we have that (0, t) is a hyperbolic singular point of π∗λj if and only if
∂ϕj

∂t
6= 0. Moreover, (0, t) is of saddle type when

∂ϕj

∂t
> 0 and of node type when

∂ϕj

∂t
< 0.

Lemma 5.4. Let ω be a semi-homogeneous totally real differential n-form and p = 0 an
isolated singular point. Then z = eit is a root of the characteristic polynomial Pω if and
only if (0, t) is a singular point of one of its polar linear forms. Moreover, it is a simple
root if and only if (0, t) is a hyperbolic singular point of such polar linear form.

Proof. In general, we have that π∗dz = eit(dr + irdt) and π∗dz = e−it(dr − irdt). In
particular, restricted to r = 0, we get

π∗ω̃(0, t) =

(

n
∑

j=0

Ak
j (e

it)(eit)j(e−it)n−j

)

drn = Pω(eit)drn.

On the other hand, by using the factor of π∗ω̃ in the polar linear forms, we see that

π∗ω̃(0, t) = f(0, t) cosϕ1(0, t) . . . cosϕn(0, t)dr
n,

which implies that

Pω(eit) = 2nf(0, t) cosϕ1(0, t) . . . cosϕn(0, t).

Thus, it is obvious that z = eit is a root of Pω if and only if (0, t) is a singular point of
one of the polar linear forms.
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Moreover, since Pω is a homogeneous polynomial it is easy to check that z is a simple
root if and only if d

dt
(Pω(eit)) 6= 0. But if we differentiate in the above expression, we

arrive to
d

dt

(

Pω(eit)
)

= ±2nf(0, t)
∂ϕj

∂t
(0, t).

Therefore, it is a simple root if and only if (0, t) is a hyperbolic singular point, by the
above remark. �

Remark 5.5. Suppose that z = eit is a root of the characteristic polynomial Pω. By the
above lemma, (0, t) is a singular point of one the polar linear forms, that is, ϕj(0, t) =
π/2 + qπ, for some j ∈ {1, . . . , n}, and q ∈ Z. For each p ∈ Z, ei(t+pπ) = ±z is also a root
of Pω and hence, there are jp ∈ {1, . . . , n}, and qp ∈ Z such that ϕjp

(0, t+pπ) = π/2+qpπ.
This implies that

ϕj(0, t) − ϕjp
(0, t+ pπ) = (p− qp)π,

for any p ∈ Z. But looking at the way that the functions ϕj are constructed, if this is
true for some point t ∈ R, then it must be true for any t ∈ R. Then, by taking derivatives
with respect to t,

∂ϕj

∂t
(0, t) =

∂ϕjp

∂t
(0, t+ pπ).

Thus, (0, t) is a singular point of π∗λj of saddle or node type if and only if (0, t+ pπ) is a
singular point of π∗λjp

of saddle or node type respectively. In conclusion, the singularity
type only depends on the direction determined by z = eit.

Definition 5.6. Let ω be a totally real differential n-form with an isolated singular point
p. We say ω is non degenerate at p if it is semi-homogeneous and the characteristic
polynomial has only simple roots.

Theorem 5.7. Let ω be a totally real differential n-form with a non degenerate singular
point p. Then,

ind(ω, p) = 1 −
S+ − S−

n
,

where S+ and S− denote the numbers of characteristic directions of saddle and node type
respectively.

Proof. Denote by S+
j and S−

j the numbers of singular points of saddle and node type
respectively of the polar linear form π∗λj in the interval [0, 2πn). Then,

n
∑

j=1

S+
j = 2nS+,

n
∑

j=1

S−
j = 2nS−.

Remember that such points are given by the points (0, t) such that ϕj(0, t) = π/2 + qπ,
with q ∈ Z. Moreover, it is of saddle type when ϕj is increasing at such point and of node
type when it is decreasing. This implies that

ϕj(0, 2πn) − ϕj(0, 0) = π(S+
j − S−

j ),

for all j = 1, . . . , n.
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Now, by Corollary 4.3,

ind(ω, p) =
1

n

n
∑

j=1

θj(0, 2πn) − θj(0, 0)

2πn
= −

1

n

n
∑

j=1

φj(0, 2πn) − φj(0, 0)

2πn

= −
1

n

n
∑

j=1

ϕj(0, 2πn) − 2πn− ϕj(0, 0)

2πn
= 1 −

1

n

n
∑

j=1

ϕj(0, 2πn) − ϕj(0, 0)

2πn

= 1 −
1

n

n
∑

j=1

S+
j − S−

j

2n
= 1 −

S+ − S−

n
,

since φj(0, t) = π
2
− θj(0, t) and ϕj(0, t) = φj(0, t) + t. �

Definition 5.8. Let ω be a totally real differential n-form with a non degenerate singular
point p. By a sector we mean each one of the regions bounded by two consecutive
characteristic directions S1 and S2. We say a sector is

(1) hyperbolic: if both S1 and S2 are of saddle type;
(2) parabolic: if one of S1 and S2 is of saddle type and the other one is of node type;
(3) elliptic: if both S1 and S2 are of node type.

Let S+ and S− denote the number of characteristic directions of saddle and node
type respectively and let h and e denote the numbers of hyperbolic and elliptic sectors
respectively. It is obvious that e−h = 2(S−−S+). Thus, we get the following immediate
consequence of Theorem 5.7, which generalizes the well known Bendixson formula for the
index when n = 1.

Corollary 5.9. Let ω be a totally real differential n-form with a non degenerate singular
point p. Then,

ind(ω, p) = 1 +
e− h

2n
,

where e and h are the numbers of elliptic and hyperbolic sectors respectively.

Remark 5.10. When ω has a non degenerate principal part, it is possible to improve
the formula for the index given in Remark 3.3. Let X1(r, t), . . . , Xn(r, t) be unit vector
fields along π on (−δ, δ) × R which are pairwise linearly independent and solution of
ω̃(r, t)(X) = 0. Moreover, we suppose that they are chosen so that

θ1(0, t) < θ2(0, t) < · · · < θn(0, t) < θ1(0, t) + π,

where θj(r, t) denotes the determination of the angle of each vector fieldXj(r, t). Note that
for r = 0, these vector fields are solution of an equation with homogeneous coefficients,
which implies that

θ1(0, π) = θi(0, 0) + πm,

for some m ∈ Z and i ∈ {1, . . . , n}. Then, it follows that

ind(ω, p) = m+
i− 1

n
.
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6. Phase portrait of non degenerate singular points

In general, the foliations of an n-form can present very complicated configurations
around a singular point. In the case that ω has a non degenerate singular point, the
n foliations are obtained as the image of the integral curves of the polar linear forms
through the polar blow-up. Moreover, since the characteristic polynomial has only simple
roots, then the problem is simpler, because the polar linear forms only have singularities
of saddle or node type.

Definition 6.1. Let ω be a totally real differential n-form with a non degenerate singular
point p. Let x be a point near p and let L one of the n leaves of the web passing through
x. We say that L is

(1) hyperbolic: if p is not an accumulation point of L;
(2) parabolic: if p is an accumulation point on just one side of L;
(3) elliptic: if p is an accumulation point on both sides of L.

If the leaf L is hyperbolic (respectively parabolic, elliptic), then it corresponds to an
integral curve of one of the polar linear forms with a saddle-saddle (respectively saddle-
node, node-node) connection. In order to have a complete description, we need to know
how many sectors the leaf is going to pass through when connecting the two singular
directions (Figure 6.1).

Lemma 6.2. Let x be a point near p and let L be a hyperbolic leaf through x connecting
two saddles. Assume that L passes through k sectors containing n1 saddles and n2 nodes
(so that n1 + n2 = k − 1). Then,

k = n + 2n2.

Proof. Let R be the union of the closed sectors that L passes trhough, which is bounded
by the two saddles S1 and S2. Since R is simply connected, we can separate the web in R
into n foliations F1, . . . ,Fn. We will assume that L is a leaf of F1. Then F1 also contains
the saddles S1, S2 and all its other leaves of F1 are also hyperbolic.

Let Fi be one of the other foliations, with i = 2, . . . , n. We can use the leaves of Fi to
define a continuous map φi : L→ S1 ∪ S2. Given y ∈ L, we take the leaf Li of Fi passing
through y. Because of transversality, either Li intersects S1 ∪ S2 in a single point which
we define as φi(y) or p is an accumulation point of Li, in which case we define φi(y) = p
(see Figure 2).

Since the leaves of Fi are disjoint, we have two possibilities: either φ−1
i (p) is just one

point and Fi contains just one saddle, or φ−1
i (p) is an interval, so that Fi contains one

node and two saddles (see Figure 3).
Finally, assume there are a foliations of the first type and b of the second type, with

a+ b = n− 1. Then, n1 = a+ 2b and n2 = b, which gives the desired result. �

Lemma 6.3. Let x be a point near p and let L be an elliptic leaf through x connecting
two nodes. Assume that L passes through k sectors containing n1 saddles and n2 nodes
(so that n1 + n2 = k − 1). Then,

k = n + 2n1.

Proof. We assume that p = 0 and that ω has the following principal part

ωk = Ak
0dz

n + · · · + Ak
ndz

n,
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(1) saddle-saddle;

π

t j t j+kt j+1
itje

itj+1eitj+ke

(2) saddle-node;

π

itje
itj+1eitj+ke

t j t j+1
t j+k

(3) node-node.

t j t j+kt j+1
π

itje
itj+1eitj+ke

Figure 1

i

L
L

iL

y

y

p = φ ( y )
i

φ ( y )
i

S
1

S
2

Figure 2

where Ak
i are homogeneous polynomials of degree k. We take now the inversion z = 1/w,

which gives:

dzn = −
dw

w2n
−
w2ndw

(ww)2n
,
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Figure 3

and

Ak
i (z) = Ak

i (
1

w
) =

Ak
i (w)

(ww)k
.

Then we obtain that in C \ {0}, ωk is equivalent to the differential form

σk = Ak
0(w)w2ndwn + · · ·+ Ak

n(w)w2ndwn).

Note that σk is also totally real with non degenerate principal part and the characteristic
polynomial has the same roots as ωk, although the inversion transforms saddles into nodes
and nodes into saddles. Moreover, elliptic leaves of the foliations of ωk are transformed
into hyperbolic leaves of σk and vice versa. Thus, the result is a consequence of the above
lemma. In Figure 4 we present the result of taking the inversion of Figure 3.

L
S

1

S
2

S

L
S

1

S
2

S
- S

-

S

+-

Figure 4

�

Lemma 6.4. Let x be a point near p and let L be a parabolic leaf through x connecting a
saddle and a node. Assume that L passes through k sectors containing n1 saddles and n2

nodes (so that n1 + n2 = k − 1). Then,

k = 1 + 2n2.

Proof. We follow a similar argument to that of the proof of Lemma 6.2. We denote by
R the union of sectors containing the leaf L, which is bounded by the saddle S1 and the
node S2. Let F1, . . . ,Fn be the n foliations determined by ω in R so that L is a leaf of
F1.

For each one of the foliations Fi, with i = 2, . . . , n we have again two possibilities as
listed in Figure 5. In one case Fi does not contain any characteristic direction, while in
the other cased it contains one saddle and one node. If we denote by a, b the number of
foliations of each type respectively, we have that a+b = n−1 and n1 = n2 = b. Therefore,
we get k = 1 + 2n2.

�
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Figure 5

Remark 6.5. Once we know how many directions of saddle or of node type we have, as
well as their relative position around the singular point p, the three above lemmas allow
us to complete the phase portrait of all the leaves of the n web determined by ω. We call
this the phase portrait of ω at p. When n ≤ 2, it is well known that this is enough for
topological classification, that is, if two differential n-forms have the same phase portrait
at a point, then they are locally topologically equivalent. For n ≥ 3, this is not true
anymore because the curvature of the web is a topological invariant.

7. Phase portraits near hyperbolic singular points

In this section we give the possible phase portraits of “generic” singular points of totally
real differential n-forms.

Definition 7.1. We say that p is a hyperbolic singular point of a totally real differential
n-form ω if it is simple and the characteristic polynomial Pω has only simple roots.

Theorem 7.2. Let p be a hyperbolic singular point of a totally real differential n-form ω
(n ≥ 2). Then, there are only three possible phase portraits of the foliations of ω around
p:

(1) Type D1 or lemon: there are n− 1 directions of saddle type with hyperbolic leaves
passing through n sectors.

(2) Type D2 or monstar: there are n directions of saddle type and one of node type;
the hyperbolic leaves pass through n + 2 sectors, while the parabolic leaves pass
through one sector.

(3) Type D3 or star: there are n + 1 directions of saddle type with hyperbolic leaves
passing through n sectors.

Proof. Let S+ and S− be the numbers of directions of saddle and node type respectively.
The sum S+ +S− is the total number of roots of the characteristic polynomial Pω, which
has degree n + 1. Since the roots are simple,

0 ≤ S+ + S− ≤ n+ 1, S+ + S− ≡ n+ 1 mod 2.

Assume that S+ + S− = n + 1. If S− ≥ 2, then S+ ≤ n− 1 and by Theorem 5.7,

ind(ω, p) = 1 −
S+ − S−

n
≥ 1 −

n− 1 − 2

n
=

3

n
.

This is not possible, by Corollary 4.5, since the index can only be ±1/n. Thus, the only
possibilities are S+ = n + 1, S− = 0 or S+ = n, S− = 1 which correspond to the types
D3 and D2 respectively. Note that the index in each case is −1/n or 1/n respectively.
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Next case is S+ + S− = n− 1. As above, if we suppose that S− ≥ 1, then S+ ≤ n− 2
and hence,

ind(ω, p) = 1 −
S+ − S−

n
≥ 1 −

n− 2 − 1

n
=

3

n
.

The only possibility is S+ = n − 1, S− = 0 which correspond to the type D1 and has
index 1/n.

Finally, assume that S+ +S− ≤ n−3. Then necessarily S− ≥ 0, S+ ≤ n−3 and hence,

ind(ω, p) = 1 −
S+ − S−

n
≥ 1 −

n− 3 − 0

n
=

3

n
.

Therefore, it is clear that there are no more possibilities.
The discussion about the number of sectors of hyperbolic or parabolic leaves is a con-

sequence of above lemmas. �

The above classification in the case n = 2 gives the classification obtained by Darboux
for the curvature lines around generic umbilic points of an immersed surface in R3 (see
[1] and [12]). A proof for the general case of hyperbolic singular points of quadratic forms
can found in [9].

Example 7.3. Consider ω1 = zdzn + zdzn. By Theorem 4.3,

ind(ω1, 0) = − deg(z, 0)/n = 1/n.

Moreover, the characteristic polynomial is

Pω1
= zzn + zzn = zz(zn−1 + zn−1),

which has n− 1 real simple roots. Thus, for any n, ω1 has a hyperbolic singular point of
type lemon or D1.

Now, let ω2,ǫ = (iz − (1 + ǫ)iz)dzn + (−iz + (1 + ǫ)iz)dzn, with ǫ > 0. In this case, the
index is again 1/n and the characteristic polynomial is

Pω2,ǫ
= (iz − (1 + ǫ)iz)zn + (−iz + (1 + ǫ)iz)zn

= (iz − iz)(zn + zn) + ǫizz(zn−1 − zn−1).

Given n, it follows that for ǫ small enough, Pω2,ǫ
has exactly n+1 real simple roots. Then,

ω2,ǫ has a hyperbolic singular point of type monstar or D2.
Finally, we consider ω3 = zdzn + zdzn. The index is now −1/n and Pω3

= zn+1 + zn+1.
For any n, it has n + 1 simple real roots, so that ω3 is of type star or D3.

In Figure 6, we can find pictures of the foliations for the three examples D1, D2, D3 in
the cases n = 2 (top) and n = 3 (bottom) obtained with Mathematica (D1 and D3) and
with the program Homogeneous equations lines by A. Montesinos [16] (D2 with ǫ = 1/2).

8. Higher order principal lines and umbilics

Let g : M → RN be a C∞ immersion of a surface M in Euclidean space RN . We
consider the distance squared unfolding D : RN ×M → RN × R given by

D(x, p) = (x, dx(p)) = (x,
1

2
‖x− g(p)‖2).

We use Thom-Boardman notation for singularities. Then, it follows that Σ2(D) is the
subset of RN ×M of pairs (x, p) such that the jacobian matrix of dx has kernel rank 2 at
p, which is nothing but the normal bundle of M in RN .



ISOLATED SINGULARITIES OF BINARY DIFFERENTIAL EQUATIONS OF DEGREE n 19

Quadratic lemon Quadratic monstar Quadratic star

Cubic lemon Cubic monstar Cubic star

Figure 6

Assume N = 3. Then Σ2,1(D) is the subset of Σ2(D) given by pairs (x, p) such that the
hessian matrix of dx has kernel rank 1 at p. This is known as the focal set of M in R3 and
corresponds to the subset of pairs (x, p) such that x is a centre of principal curvature at
a non umbilic point p ∈M . Moreover, we can also consider the contact directions, which
are defined as the tangent directions X ∈ TpM such that X ∈ ker Hess(dx)p. When p is
not parabolic, then these contact direction correspond to the principal lines of M (when p
is parabolic, principal lines are in fact contact directions of the height function, in which
case the sphere becomes a plane and x goes to infinity).

By taking local coordinates u, v in an open subset U ⊂ M , it is possible to find the
differential equation of principal lines:

∣

∣

∣

∣

∣

∣

dv2 −dudv du2

E F G
L M N

∣

∣

∣

∣

∣

∣

= 0,

where E,F,G and L,M,N are respectively the coefficients of the first and second funda-
mental forms of M in R3. The singular points of this equation are the umbilic points of
M where the surface has a contact of type Σ2,2 with some sphere of R3 (if the umbilic
is non flat). However, for our purposes, it is better to consider the following equivalent
differential equation:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1u g2u g3u 0 0
g1v g2v g3v 0 0
g1uu g2uu g3uu E dv2

g1uv g2uv g3uv F −dudv
g1vv g2vv g3vv G du2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.



20 T. FUKUI AND J.J. NUÑO-BALLESTEROS

This matrix (excluding the last column) was introduced in [8] to define the notion of k-
rounding of an immersion g : M → RN . It is a higher order generalization of umbilic point
and for an appropriate choice of the ambient dimension N these points are generically
isolated.

For instance, assume now that k = 3 and consider an immersion of a surface M in
R7. We define the third order contact directions as the tangent directions X ∈ TpM such
that X ∈ ker J3(dx)p and (x, p) ∈ Σ2,2,1(D). Here J3 is the operator defined in local
coordinates

J3(f) =





fuuu fuuv

fuuv fuvv

fuvv fvvv



 .

Note that fu = fv = fuu = fuv = fvv = 0, this definition does not depend on the
coordinates.

Note that we can do the same construction by taking the height function unfolding
H : S6 ×M → S6 × R given by

H(v, p) = (v, hv(p)) = (v, 〈v, g(p)〉).

We also include in the above definition of third order contact directions those X ∈ TpM
such that X ∈ ker J3(h

v
)p and (v, p) ∈ Σ2,2,1(H).

Assume that M is locally parameterized locally by a map g : U ⊂ R2 → R7. We use
the following notation: ϕαβ = 〈gα, gβ〉 are the coefficients of the first fundamental form
and

ϕαβγ = 〈gαβ, gγ〉 + (ϕαβ)γ.

Theorem 8.1. With the above notation, the differential equation for the third order con-
tact directions is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1u . . . g7u 0 0
g1v . . . g7v 0 0
g1uu . . . g7uu ϕuu 0
g1uv . . . g7uv ϕuv 0
g1vv . . . g7vv ϕvv 0
g1uuu . . . g7uuu ϕuuu dv3

g1uuv . . . g7uuv ϕuuv −dudv2

g1uvv . . . g7uvv ϕuvv du2dv
g1vvv . . . g7vvv ϕvvv −du3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Proof. Let X = agu + bgv be a non-zero tangent vector at p with a, b ∈ R. It follows from
the definition that X is a third order contact direction if and only if fu = fv = fuu =
fuv = fvv = 0, (fuuu, fuuu, fuuu, fuuu) 6= 0 and





fuuu fuuv

fuuv fuvv

fuvv fvvv





(

a
b

)

=





0
0
0



 ,

for either f = dx or f = h
v
. Note that this last equation is equivalent to









fuuu

fuuv

fuvv

fvvv









= λ









b3

−ab2

a2b
−a3









,
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for some λ ∈ R, λ 6= 0. In order to simplify the expressions we introduce the notation
σαβγ , which are defined by









σuuu

σuuv

σuvv

σvvv









=









b3

−ab2

a2b
−a3









.

Then we can express shortly our conditions by fα = fαβ = 0 and fαβγ = λσαβγ .
On the other hand, we recall that for f = dx we have

fα = −〈gα, x− g〉,

fαβ = −〈gαβ, x− g〉 + ϕαβ,

fαβγ = −〈gαβγ , x− g〉 + ϕαβγ,

while for f = h
v
,

fα = 〈gα, v〉,

fαβ = 〈gαβ, v〉,

fαβγ = 〈gαβγ, v〉.

Assume we have a third order contact line with f = dx. Then,




gα 0 0
gαβ ϕαβ 0
gαβγ ϕαβγ σαβγ









x− g
−1
λ



 =





0
0
0



 ,

which implies that the matrix has determinant equal to zero. For f = h
v

we take (v, 0, λ)
instead of (x− g,−1, λ).

Conversely, if the determinant of the matrix is zero, then there is (X, Y, Z) 6= 0 such
that





gα 0 0
gαβ ϕαβ 0
gαβγ ϕαβγ σαβγ









X
Y
Z



 =





0
0
0



 .

If Y 6= 0, we take x = −X/Y +g and λ = −Z/Y , which gives a third order contact line for
f = dx. Otherwise, Y = 0 implies, necessarily X 6= 0 so that we can define v = X/‖X‖
and λ = Z. This gives a third order contact line for f = h

v
. �

We see that third order contact lines are defined by means of a cubic differential form
and can be interpreted as some kind of “third order principal directions”. The singular
points corresponds to the “third order umbilics” (that is, points p ∈ M where g(M) has
a third order contact Σ2,2,2 with some hypersphere or hyperplane of R7). In general, this
cubic differential form is not always totally real (as it happens with principal lines of a
surface in R

3). However, in the case that it is, we find that for a generic immersion the
singularities are hyperbolic and the phase portrait of the 3-web is described in Theorem
7.2, in analogy with the classical Darbouxian classification of principal foliations near
generic umbilics.

Corollary 8.2. Let g : M → R
7 be a generic immersion. Let p be a third order umbilic

such that the third order contact lines are defined by a totally real cubic differential form
near p. Then, p is hyperbolic in the sense of Definition 7.1.
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Proof. Given a map g : M → R7, we denote by j4g : M → J4(M,R7) its 4-jet extension.
We also denote by U ⊂ J4(M,R7) with the following property: p ∈ M is a third order
umbilic of g if and only if j4g(p) ∈ U . It follows that ⊂ U is an algebraic subset of
codimension 2 in J4(M,R7).

We also denote by U1 the subset of U such that j4g(p) ∈ U1 if and only if p is not a
simple singularity of the cubic differential form which defines third order contact lines.
Analogously, we define U2 as the subset of U where the characteristic polynomial of the
cubic differential form has not simple roots.

In both cases, Ui is an algebraic subset of J4(M,R7) of codimension 3. In fact, the
equations of U are functions which only depend on the derivatives of g up to order 3, whilst
the equations of Ui involve in a non-trivial way the 4th order derivatives. This implies
that codimUi > codimU . The result follows now from Thom transversality theorem by
requesting transversality to both U1 and U2. �

This construction can be generalized easily to any k. We just need to consider an

immersion g : M → R
N , with N = (k+2)(k+1)

2
− 3. Then, the k-th order contact lines

are defined by means of a symmetric differential form of degree k, whose singularities
correspond to the k-roundings of M in RN (see [8] for more details).
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46100 Burjassot SPAIN

E-mail address : nuno@uv.es


