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Abstract. We introduce a new family of affine metrics on a locally
strictly convex surface M in affine 4-space. Then, we define the sym-
metric and antisymmetric equiaffine planes associated with each metric.
We show that if M is immersed in a locally strictly convex hyperquadric,
then the symmetric and the antisymmetric planes coincide and contain
the affine normal to the hyperquadric. In particular, any surface im-
mersed in a locally strictly convex hyperquadric is affine semiumbilical
with respect to the symmetric or antisymmetric equiaffine planes.

1. Introduction

The main purpose in affine differential geometry is the study of properties
of submanifolds Mn in m-affine space that are invariant under the group of
unimodular affine transformations. The main results for the classical theory
of affine hypersurfaces can be seen, for instance, in [3, 6, 8].

Concerning submanifolds of codimension 2 there are few results. Nomizu
and Vrancken in [9] developed an affine theory for surfaces in R4. They
used the affine metric of Burstin and Mayer [2], which is affine invariant, to
construct the affine normal plane. However, this affine metric and the corre-
sponding affine normal plane present several problems if the surface is locally
strictly convex (i.e., at each point p ∈M there is a tangent hyperplane with
a non-degenerate contact which locally supports M).

The first point is that in order to define the affine metric, we need that the
surface is non-degenerate, in particular, M cannot have inflections (points
where the two second fundamental forms are collinear). But it is well known
that any locally strictly convex compact surface M with Euler characteristic
χ(M) 6= 0 has at least an inflection, because of the Poincaré-Hopf formula
(see [7]).

Another point is that even if M is non-degenerate, the affine metric is
indefinite when M is locally strictly convex. This is the opposite of what
you expect, for instance, if M is contained in a locally strictly convex hy-
persurface N , then the affine metric of N is positive definite.

Finally, if M is contained in a hypersurface N , you expect also some type
of compatibility between the affine normals. This is important, for instance,
if you want to consider contacts of the surface with affine hyperspheres.
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However, the affine normal plane to M does not contain the affine normal
vector to N in general (see remark 7.4).

Our interest to study affine differential geometry of surfaces M ⊂ R4

comes from the understanding of the asymptotic configuration of M near
an inflection. There is a conjecture (see [5]) that any locally strictly convex
surface homeomorphic to the sphere has at least two inflections. It is well
known that a positive answer to this conjecture should imply a proof of
the celebrated Carathéodory conjecture that any convex compact surface
M ⊂ R3 has at least two umbilic points (see for instance [1]).

Partial proofs for the conjecture in R4 can be found in [4] for generic sur-
faces or in [10] for semiumbilical surfaces in the Euclidean sense (i.e., there
is a non zero normal vector field whose shape operator is a multiple of the
identity). The problem with the result in [10] is that the semiumbilical con-
dition is not affine invariant, although the conjecture in R4 itself is affine in
nature. Surfaces immersed in an Euclidean hypersphere or surfaces given by
a product of two plane curves are examples of semiumbilical surfaces. How-
ever, surfaces immersed in other strictly convex hyperquadrics (like elliptic
paraboloids or hyperboloids of two sheets) are not semiumbilical in general.

We introduce a new family of affine metrics gξ on a locally strictly con-
vex surface M ⊂ R4 which are positive definite. Here, ξ is a transversal
vector field such that ξ and TpM span a local support hyperplane with non-
degenerate contact at p. We show that when M is immersed in a locally
strictly convex hypersurface N , then there is a natural choice of ξ in such a
way that gξ coincides with the Blasche metric of N restricted to M .

For each affine metric gξ, we define the symmetric and the antisymmet-
ric equiaffine planes, by using analogous arguments to that of Nomizu and
Vrancken in [9]. We also obtain algorithms to compute these normal planes.
The main result is that if M is immersed in a locally strictly convex hy-
perquadric N , then the symmetric and the antisymmetric equiaffine planes
coincide and contain the affine normal vector to N . As a consequence, any
surface contained in a locally strictly convex hyperquadric is affine semi-
umbilical with respect to the symmetric or antisymmetric equiaffine planes.
Another class of surfaces with the same property are those given by a prod-
uct of two plane curves, hence our definition of affine semiumbilical surface
has analogous properties as in the Euclidean case.

2. Preliminaries

Let R4 be the affine 4-space and D the usual flat connection on R4. Let
M ⊂ R4 be an immersed surface and let σ be a transversal plane bundle on
M . Then, for all p ∈M , σp ⊂ TpR4 is a plane such that

TpR4 = TpM ⊕ σp,

and for all tangent vector fields X,Y on M ,

(DXY )p = (∇XY )p + h(X,Y )p,

where (∇XY )p ∈ TpM and h(X,Y )p ∈ σp, for all p ∈M .

We note that for p ∈ M , there are ξ1, ξ2 transversal vector fields defined
on some neighborhood Up such that: σq = span{ξ1(q), ξ2(q)}, ∀q ∈ Up.



AFFINE METRICS OF LOCALLY STRICTLY CONVEX SURFACES 3

Then for tangent vector fields X,Y on M we have:

DXY = ∇XY + h1(X,Y )ξ1 + h2(X,Y )ξ2,(1)

DXξ1 = −S1X + τ1
1 (X)ξ1 + τ2

1 (X)ξ2,(2)

DXξ2 = −S2X + τ1
2 (X)ξ1 + τ2

2 (X)ξ2,(3)

where ∇ = ∇(σ) is a torsion free affine connection, h1, h2 are bilinear sym-

metric forms, S1, S2 are (1, 1) tensor fields, and τ ji are 1-forms on M . We
call ∇ the affine connection induced by the transversal plane bundle σ.

For a transversal vector field ξ, we can write

DXξ = −SξX +∇⊥Xξ,
where −SξX is the tangent component of DXξ and ∇⊥Xξ is the σ-component
of DXξ. The operator −Sξ is linear (in fact, a (1, 1)-tensor field) and is called

shape operator. We also call ∇⊥ the affine normal connection induced by
the transversal plane bundle σ.

We can consider the curvature tensor of the normal connection, called
normal curvature tensor

R∇⊥ : TpM × TpM × σp → σp,

given by

R∇⊥(X,Y )ν = ∇⊥X(∇⊥Y ν)−∇⊥Y (∇⊥Xν)−∇⊥[X,Y ]ν.

Since R4 has vanishing curvature, we obtain

R∇⊥(X,Y )ν = h(X,SνY )− h(Y, SνX).

3. The metric of the transversal vector field.

In this section, we introduce a family of affine metrics and the affine
normal planes: the antisymmetric and symmetric equiaffine planes. We
prove the existence and unicity of these planes and provide algorithms to
compute them.

Definition 3.1. A surface M ⊂ R4 is called locally convex at p if there is
a hyperplane π of R4 such that p ∈ π and π supports M in a neighborhood
of p. If π locally supports M at p, it is obvious that π is tangent to M at p.
If it has a non-degenerate contact (i.e., of Morse type), then we say that M
is locally strictly convex at p.

Let M ⊂ R4 be a locally strictly convex surface, let u = {X1, X2} be a
local tangent frame of a point p ∈M and let ξ be a transversal vector field
on M .

Definition 3.2. We define the symmetric bilinear form Gu on M to be

Gu(Y,Z) = [X1, X2, DZY, ξ].

We fix ξ such that Gu is a positive definite quadratic form, this is possible
because M is locally strictly convex and we call such a ξ a metric field. We
define the metric of the transversal vector field, denoted by gξ, by

gξ(Y, Z) =
Gu(Y, Z)

(detuGu)
1
4

,
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where detuGu = det(Gu(Xi, Xj)).

Lemma 3.3. The quadratic form gξ does not depend on the choice of the
tangent frame u.

Proof. Let v = {Y1, Y2} be another local tangent frame on a neighborhood
U of p ∈M , then there exist functions a, b, c and d with ad− bc 6= 0, defined
on U such that Y1 = aX1 + bX2 and Y2 = cX1 + dX2. Note that

Gv(Y,Z) = [Y1, Y2, DZY, ξ] = (ad− bc)Gu(Y,Z).

By properties of the determinant, it follows that detvGv = (ad−bc)2 detvGu.
On the other hand, from a simple computation detvGu = (ad− bc)2 detuGu,
therefore

detvGv = (ad− bc)4 detuGu.

Finally,

Gv(Y, Z)

(detvGv)1/4
=

(ad− bc)Gu(Y,Z)

((ad− bc)4 detuGu)1/4
=

Gu(Y,Z)

(detuGu)1/4
.

�

Remark 3.4. Let ξ ∈ R4 be a metric field, the definition of the metric gξ
depends only on the equivalence class of ξ in the quotient space R4/TpM ,
which is a 2-dimensional vector space. In fact, if [ξ] = [ξ′] then ξ = ξ′ + Z,
with Z ∈ TpM therefore gξ = gξ′ . Thus, we denote g[ξ] = gξ.

In this way, the family of metrics {g[ξ]}[ξ]∈A is parameterized by an open

set of R4/TpM given by:

A = {[ξ] ∈ R4/TpM : g[ξ] is positive definite }.

This open subset A is not empty wheneverM is strictly convex in a neighbor-
hood of p. It follows from the definition that the family of metrics {g[ξ]}[ξ]∈A
is an affine invariant of M that does not depend on the chosen transversal
plane bundle σ.

Remark 3.5. Although the metric g[ξ] does not depend on the chosen
transversal plane bundle σ, once we fix it, we can use it to compute the
metric as a second fundamental form. In fact, let {ξ1, ξ2} be a transversal
frame for σp and let us denote the second fundamental forms by h1(X,Y )
and h2(X,Y ). For all (r, s) ∈ R2 we denote

hr,s(X,Y ) = rh1(X,Y ) + sh2(X,Y )

and we consider the open subset Ã ⊂ R2 given by:

Ã = {(r, s) ∈ R2 : hr,s is positive definite }.

We note that, for all [ξ] ∈ A, there is an unique (r, s) ∈ Ã such that g[ξ] =
hr,s. In fact, there is an unique representative ξ ∈ σp of [ξ] given by ξ =
b1ξ1 + b2ξ2 and therefore (r, s) = λ(b2,−b1), where

λ =
[X1, X2, ξ1, ξ2]

(detuGu)
1
4

.
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Remark 3.6. Let M ⊂ R4 be a locally strictly convex surface and let π
be a support hyperplane with non-degenerate contact at p. Then there is a
transversal vector field ξ such that

π = ker{x 7→ [Y1, Y2, x− p, ξ]}

and gξ is positive definite, where {Y1, Y2} is a tangent local frame on M . We
say that ξ determines the support hyperplane π. Note that λξ determine
the same hyperplane π. So, the support hyperplane π determines a family
of metrics (gλξ)λ.

From now on, we fix a metric field ξ and consider a local orthonormal
tangent frame relative to the metric gξ on M , that is, u = {X1, X2} is a
tangent frame defined on some neighborhood U of p ∈M such that

gξ(Xi, Xj) = δij .

Theorem 3.7. Let M ⊂ R4 be a locally strictly convex surface and ξ a
metric field. Let u = {X1, X2} be a local orthonormal tangent frame of
gξ and let σ be an arbitrary transversal plane bundle. Then there exists a
unique local frame {ξ1, ξ2} of σ, such that

[X1, X2, ξ1, ξ2] = 1, h1(X1, X1) = 0, −ξ1 ∈ [ξ],

h2(X1, X1) = 1, h2(X1, X2) = 0, h2(X2, X2) = 1.

Proof. Let p be a point in M and let {ν1, ν2} be any local frame of σ in a
neighborhood U of p. We can assume that X1 and X2 are defined on U .
Now, we write

[ξ] = λ3ν1 + λ4ν2 + TpM.

Using the notation: h1(X1, X1) = a, h1(X1, X2) = b, h1(X2, X2) = c,
h2(X1, X1) = e, h2(X1, X2) = f , h2(X2, X2) = g and K = [X1, X2, ν1, ν2],
we compute the bilinear form Gu:

Gu(X1, X1) = (aλ4 − eλ3)K,

Gu(X1, X2) = (bλ4 − fλ3)K,

Gu(X2, X2) = (cλ4 − gλ3)K.

By using the change

ν1 = αξ1 + βξ2, ν2 = ϕξ1 + ψξ2,

we obtain the affine fundamental forms in the new frame {ξ1, ξ2}:

h
1
(X1, X1) = αa+ ϕe, h

1
(X1, X2) = αb+ ϕf, h

1
(X2, X2) = αc+ ϕg,

h
2
(X1, X1) = βa+ ψe, h

2
(X1, X2) = βb+ ψf, h

2
(X2, X2) = βc+ ψg.

By solving the following system:

1 = βa+ ψe,

0 = βλ3 + ψλ4,

we obtain

β =
λ4

aλ4 − eλ3
, ψ =

−λ3

aλ4 − eλ3
.



6 JUAN J. NUÑO-BALLESTEROS, LUIS SÁNCHEZ

We substitute β and ψ in h
2
(Xi, Xj) and we prove that h

2
(Xi, Xj) = δij . In

fact,

h
2
(X1, X2) = βb+ ψf = (

λ4

aλ4 − eλ3
)b+ (

−λ3

aλ4 − eλ3
)f =

Gu(X1, X2)

(aλ4 − eλ3)K

=
Gu(X1, X2)

Gu(X1, X1)
=
Gu(X1, X2)/(detuGu)

1/4

Gu(X1, X1)/(detuGu)1/4
=
gξ(X1, X2)

gξ(X1, X1)
= 0.

From the equation 0 = h
1
(X1, X1) = αa + ϕe we can write α = Re and

ϕ = −Ra, therefore

[X1, X2, ν1, ν2] = [X1, X2, ξ1, ξ2](αψ − βϕ) = (αψ − βϕ)

= ((Re)ψ − β(−Ra)) = R,

we conclude R = K, α = Ke and ϕ = −Ka.
It only remains to prove that [ξ] = −[ξ1]. First we note that Gu(X1, X2) =

0, because {X1, X2} is a orthonormal tangent frame relative to gξ. Moreover,

(detuGu)
1/2 = detuGu

(detuGu)1/2
= Gu(X1,X1)

(detuGu)1/4
Gu(X2,X2)

(detuGu)1/4
= 1.

It follows that

λ3α+ λ4ϕ = λ3Ke− λ4Ka = K(λ3e− λ4a) = −(detuGu)
1/4 = −1.

Finally, we compute [ξ]:

[ξ] = λ3ν1 + λ4ν2 + TpM

= λ3(αξ1 + βξ2) + λ4(ϕξ1 + ψξ2) + TpM

= (λ3α+ λ4ϕ)︸ ︷︷ ︸
−1

ξ1 + (λ3β + λ4ψ)︸ ︷︷ ︸
0

ξ2 + TpM.

�

Lemma 3.8. Let M ⊂ R4 be a locally strictly convex surface and ξ a metric
field. Let u = {X1, X2} and v = {Y1, Y2} be two orthonormal frames and let
σ a transversal plane bundle. So we can write

Y1 = cos θX1 + sin θX2,(4)

Y2 = ε(− sin θX1 + cos θX2).(5)

where ε = ±1. If we denote by {ξ1, ξ2} (resp. {ξ1, ξ2}) the frame of theorem
3.7 corresponding to u (resp. v), then

ξ1 = ξ1,

ξ2 = −(sin 2θh1(X1, X2) + sin2 θh1(X2, X2))ξ1 + ξ2,

and also

2h
1
(Y1, Y2) = ε(2 cos 2θh1(X1, X2) + sin 2θh1(X2, X2)),

h
1
(Y2, Y2) = cos 2θh1(X2, X2)− 2 sin 2θh1(X1, X2),

4h
1
(Y1, Y2)2 + h

1
(Y2, Y2) = 4h1(X1, X2)2 + h1(X2, X2)2.
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Proof. From theorem 3.7, we have [ξ1] = −[ξ] = [ξ1]. Since ξ1 and ξ1 belong
to the same transversal plane we conclude that ξ1 = ξ1. We compute now
the affine connection in the different references to compare the references.
By using the frame {ξ1, ξ2}, it follows from theorem 3.7 that

DY1Y1 = ∇Y1Y1 + ξ2,

and by using the reference {ξ1, ξ2} and the equation (1),

DY1Y1 = ∇Y1Y1 + h1(Y1, Y1)ξ1 + h2(Y1, Y1)ξ2.

Hence, ξ2 = h1(Y1, Y1)ξ1 + h2(Y1, Y1)ξ2, and from equation (4) we obtain:

ξ2 = (sin 2θh1(X1, X2) + sin2 θh1(X2, X2))ξ1 + ξ2.

Analogously, by comparing DY1Y2 (and DY2Y2) in the two frames, we
obtain:

h
1
(Y1, Y2) = cos 2θh1(X1, X2) + sin θ cos θh1(X2, X2),

h
1
(Y2, Y2) = cos 2θh1(X2, X2)− 2 sin 2θh1(X1, X2).

The last equality follows by direct computation. �

Let M ⊂ R4 be a locally strictly convex surface and let ξ be a metric
field. Let u = {X1, X2} be a local orthonormal tangent frame. If we denote
the corresponding transversal vector fields obtained by theorem 3.7 by ξ1

and ξ2, we define the metric g⊥u by setting

g⊥u (ξ1, ξ1) = 1,

g⊥u (ξ1, ξ2) = −1

2
h1(X2, X2),

g⊥u (ξ2, ξ2) = 4h1(X1, X2)2 +
5

4
h1(X2, X2)2.

and extending it linearly on σ.

Lemma 3.9. Take u = {X1, X2}, v = {Y1, Y2}, ξ1, ξ2, ξ1 and ξ2 as in
lemma 3.8 and theorem 3.7. Then

g⊥u (ξ, η) = g⊥v (ξ, η).

Proof. It is enough to show that equality occurs on the frame {ξ1, ξ2}. We
have g⊥v (ξ1, ξ1) = g⊥v (ξ1, ξ1) = 1, but also

g⊥v (ξ1, ξ2) = g⊥v (ξ1, h
1(Y1, Y1)ξ1 + ξ2)

= h1(Y1, Y1)− 1

2
h

1
(Y2, Y2) = −1

2
h1(X2, X2),

and finally,

g⊥v (ξ2, ξ2) = g⊥v (h1(Y1, Y1)ξ1 + ξ2, h
1(Y1, Y1)ξ1 + ξ2)

= h1(Y1, Y1)2 + 2h1(Y1, Y1)g⊥v (ξ1, ξ2) + g⊥v (ξ2, ξ2)

= h1(Y1, Y1)2 − h1(Y1, Y1)h
1
(Y2, Y2) + 4h

1
(Y1, Y2)2 +

5

4
h

1
(Y2, Y2)2

= (h1(Y1, Y1)− 1

2
h

1
(Y2, Y2))2 + 4h

1
(Y1, Y2)2 + h

1
(Y2, Y2)2

=
1

4
h1(X2, X2)2 + 4h1(X1, X2)2 + h1(X2, X2)2.
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�

By lemma 3.9, g⊥u is independent of the choice of the tangent frame u, we
denote it by g⊥ξ .

4. Asymptotic directions, affine binormals and inflections

In this section, we introduce the concepts of asymptotic directions, affine
binormals and inflections. These concepts are well known in the case of a
surface immersed in Euclidean space (see for instance [7, 11]). We show
how to adapt all these definitions to the context of the affine differential
geometry.

Let M ⊂ R4 be an immersed surface with a transversal plane bundle
σ. We denote by σ∗ the conormal, that is, the dual vector bundle of σ.
For any p ∈ M and for any conormal vector λ ∈ σ∗p, we define the second
fundamental form along λ as:

hλ(X,Y ) = λ(h(X,Y )), ∀X,Y ∈ TpM.

Definition 4.1. We say that a non zero λ ∈ σ∗p is an affine binormal at p
if hλ is degenerate, that is, if there is a non zero tangent vector X ∈ TpM
such that

hλ(X,Y ) = 0, ∀Y ∈ TpM.

Moreover, in such a case, we say that X is an asymptotic direction at p
associated with the affine binormal λ.

The concepts of asymptotic and affine binormals are related to the so-
called generalized eigenvalue problem. Let A, B be two n × n matrices. A
pair (p, q) ∈ R2 − {0} is a generalized eigenvalue of (A,B) if

det(pA+ qB) = 0.

Analogously, x ∈ Rn − {0} is a generalized eigenvector associated with the
generalized eigenvalue (p, q) if

(pA+ qB)x = 0.

In our case, given a point p ∈M we fix u = {X1, X2} any tangent frame
of TpM , {ξ1, ξ2} any transversal frame of σp and {λ1, λ2} the corresponding
dual frame of σ∗p. We denote by A = (h1(Xi, Xj)) and B = (h2(Xi, Xj))

the coefficient matrices of the second fundamental forms h1, h2 respectively.
The proof of the following lemma is straightforward from the definitions.

Lemma 4.2. With the above notation, X = u1X1 + u2X2 ∈ TpM is an
asymptotic direction associated with the affine binormal λ = rλ1 + sλ2 ∈ σ∗p
if and only if u = (u1, u2) is a generalized eigenvector of (A,B) associated
with the generalized eigenvalue (r, s).

It follows from lemma 4.2 that the affine binormals are determined by the
solutions of the quadratic equation det(rA+ sB) = 0, so we can have either
2, 1 or 0 affine binormal directions. When M is locally strictly convex, we
always have at least one affine binormal.

Corollary 4.3. Let M ⊂ R4 be a locally strictly convex surface with a
transversal bundle σ. At any point p ∈M , either:
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(1) there exist exactly two affine binormal directions and two asymptotic
directions (one for each binormal), or

(2) there exists exactly one affine binormal direction and any tangent
direction is asymptotic.

Proof. We choose any metric field ξ on M and consider u = {X1, X2} an
orthonormal tangent frame and {ξ1, ξ2} the associated transversal frame
given by theorem 3.7. The coefficient matrices of the second fundamental
forms are

A =

(
0 b
b c

)
, B =

(
1 0
0 1

)
,

where b = h1(X1, X2) and c = h1(X2, X2). By lemma 4.2, the asymptotic
and affine binormal directions are given in terms of the solutions of the
homogeneous linear system:(

s rb
rb rc+ s

)(
u1

u2

)
=

(
0
0

)
.

The affine binormal directions are given by the roots of the determinant
s2 + crs− b2r2 = 0. Since (r, s) 6= (0, 0), we can assume r 6= 0 and normalize
to r = 1, so,

s =
−c±

√
c2 + 4b2

2
.

If (b, c) 6= (0, 0), we have two distinct solutions and one asymptotic direction
(u1, u2) for each one of them. Otherwise, if (b, c) = (0, 0), then s = 0 and
all the directions (u1, u2) are asymptotic. �

Definition 4.4. We say that a point p ∈M is an inflection if all the tangent
directions at p are asymptotic, that is, if there is a non zero λ ∈ σ∗ such
that hλ = 0.

With the notation of lemma 4.2, p is an inflection if and only if the
matrices A,B are collinear. In the case that M is locally strictly convex,
we fix a metric field ξ and take an orthonormal tangent frame u = {X1, X2}
and a transversal frame {ξ1, ξ2} as in theorem 3.7. Then p is an inflection if
and only if h1(X1, X2) = h1(X2, X2) = 0.

We can also use the lemma 4.2 in order to obtain the differential equation
of the asymptotic lines of a surface. By definition, an asymptotic line is
an integral curve of the field of asymptotic directions, that is, it is a curve
whose tangent at any point is asymptotic.

Theorem 4.5. With the notation of lemma 4.2, the differential equation
for the asymptotic lines of M is:∣∣∣∣∣∣

dv2 −dvdu du2

a b c
e f g

∣∣∣∣∣∣ = 0,

where A =

(
a b
b c

)
and B =

(
e f
f g

)
.

Proof. We just eliminate (r, s) in the linear system (rA + sB)u = 0, where
u = (du, dv). �
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Another important fact is that we can characterize the asymptotic direc-
tions and affine binormals in terms of the singularities of the height functions.
Given the direct sum R4 = TpM ⊕ σp, we denote by p1 : R4 → TpM and
p2 : R4 → σp the two associated linear projections. Then, for each λ ∈ σ∗p,
we define the height function Hλ : M → R by

Hλ(x) = λ(p2(x)).

Proposition 4.6. Let λ ∈ σ∗p be a non zero conormal vector of M , then:

(1) Hλ has always a singularity at p;
(2) λ is an affine binormal if and only if Hλ has a degenerate singularity

at p;
(3) X ∈ TpM is an asymptotic direction associated with λ if and only if

X belongs to the kernel of the Hessian of Hλ at p;
(4) p is an inflection if and only if there exists a non zero λ ∈ σ∗p such

that Hλ has a corank 2 singularity at p.

Proof. The differential of Hλ at p is always zero and we have (1):

d(Hλ)p(X) = λ(p2(X)) = 0, ∀X ∈ TpM.

But the Hessian of Hλ at p is precisely the second fundamental form hλ:

d2(Hλ)p(X,Y ) = λ(p2(DXY )) = λ(h(X,Y )) = hλ(X,Y ), ∀X,Y ∈ TpM.

Then, (2), (3) and (4) follow directly from the definitions of affine binormal,
asymptotic direction and inflection. �

The results of proposition 4.6 can be easily restated in terms of contacts
with hyperplanes.

Definition 4.7. We say that π is an osculating hyperplane of M at p if
it is tangent to M at p and it has a degenerate contact with M at p. If
H : R4 → R is any linear function such that π is given by the equation
H(x− p) = 0, then we say that X ∈ TpM is a contact direction if it belongs
to the kernel of the Hessian of H|M .

Corollary 4.8. A tangent vector X ∈ TpM is an asymptotic direction if
and only if it is a contact direction of some osculating hyperplane. In par-
ticular, the asymptotic directions (and hence the inflections) of M are affine
invariant, that is, they do not depend on the choice of the transversal plane
bundle σ.

Proof. If X is an asymptotic direction, then there exists an affine binormal
λ ∈ σ∗p associated with X. We define π as the hyperplane passing through

p and parallel to TpM ⊕ kerλ. We can take H : R4 → R given by H(x) =
λ(p2(x)) so that H(x−p) = 0 is a defining equation of π and H|M = Hλ. By
proposition 4.6, π is an osculating hyperplane and X is a contact direction.

Conversely, assume that π is an osculating hyperplane and X is a contact
direction. Let H : R4 → R be any linear function such that H(x− p) = 0 is
a defining equation of π. We take now λ = H|σp ∈ σ∗p, then

H|M (x) = H(x) = H(p1(x) + p2(x)) = H(p2(x)) = λ(p2(x)) = Hλ(x),

for all x ∈ M . Again by proposition 4.6, λ is an affine binormal with
associated asymptotic direction X. �
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Remark 4.9. If M is locally strictly convex and ξ is a metric field, then we
can use the transversal metric g⊥ξ in order to define binormal directions also
in σ instead of σ∗. In fact, for each ν ∈ σp we have a well defined second
fundamental form along ν:

hν(X,Y ) = g⊥ξ (h(X,Y ), ν), ∀X,Y ∈ TpM.

We say that ν is binormal if hν is degenerate.

Remark 4.10. It is not difficult to see that if M is non-degenerate in
the sense of Nomizu-Vranken [9], then the asymptotic directions of M at p
are exactly the null directions of the Burstin-Mayer affine metric (which is
indefinite in the case that M is locally strictly convex). This gives another
proof of the fact that the asymptotic directions are affine invariant.

We finish this section with the next result, which gives the relation be-
tween the transversal frames of theorem 3.7 in the case we change the
transversal plane. This lemma will be very useful in the next section.

Lemma 4.11. Let M ⊂ R4 be a locally strictly convex surface without
inflections. Let ξ be a metric field and u = {X1, X2} a local orthonormal
tangent frame. Let σ and σ be two transversal plane bundles. We denote by
{ξ1, ξ2} and {ξ1, ξ2} the transversal frames obtained from theorem 3.7 for σ
and σ, respectively. Then there are Z1 and Z2 tangent vector fields on M
such that

ξ1 = ξ1 + Z1,

ξ2 = ξ2 + Z2.

Proof. We suppose that

ξ1 = φξ1 + ψξ2 + Z1, ξ2 = ρξ1 + βξ2 + Z2.

By theorem 3.7 we have [X1, X2, ξ1, ξ2] = 1, which implies φβ−ψρ = 1. We

denote by h
1

and h
2

the affine fundamental forms of the frame {ξ1, ξ2}. We
note that

h
1
(X1, X1) = φh1(X1, X1) + ρh2(X1, X1),

h
2
(X1, X1) = ψh1(X1, X1) + βh2(X1, X1).

Again by theorem 3.7, h
1
(X1, X1) = 0 = h1(X1, X1) and h

2
(X1, X1) = 1 =

h2(X1, X1), therefore ρ = 0 and β = 1. Since β = 1, we have

h
2
(X1, X2) = ψh1(X1, X2) + h2(X1, X2),

h
2
(X2, X2) = ψh1(X2, X2) + h2(X2, X2),

and by theorem 3.7, ψh1(X1, X2) = ψh1(X2, X2)=0. Note that there are no
affine inflections, so ψ = 0. Finally, from φβ − ψρ = 1 it follows φ = 1. �

5. The equiaffine transversal plane bundles

Nomizu and Vrancken in [9] had defined the concept of equiaffine plane
as a transversal plane bundle σ such that the affine connection induced by
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σ, ∇ = ∇(σ) satisfies ∇ωg = 0 where ωg is the metric volume form for the
Burstin-Mayer affine metric g:

ωg(X,Y ) =
√
|g(X,X)g(Y, Y )− g(X,Y )2|,

where {X,Y } is any positively oriented basis of TpM . In our case, we
consider the same definition, but we use the metric of the transversal vector
field gξ instead of the Burstin-Mayer affine metric. This definition is based
on the compatibility between the volume form and the affine connection.

Let M ⊂ R4 be a locally strictly convex surface and ξ a metric field and
g = gξ the metric of the transversal field ξ.

Definition 5.1. We say a transversal plane bundle σ is equiaffine if the
connection ∇ = ∇(σ) induced by σ satisfies ∇ωg = 0.

If u = {X1, X2} is a local orthonormal tangent frame and {ξ1, ξ2} is the
transversal frame given by theorem 3.7, then ωg = θ, where θ is the volume
form induced by the determinant:

θ(X,Y ) = [X,Y, ξ1, ξ2], ∀X,Y ∈ TpM.

This is because ωg(Xi, Xj) = θ(Xi, Xj), ∀i, j. Moreover, by using θ instead
of ωg, it is easy to see that σ is equiaffine if and only if

B1 := (∇g)(X1, X1, X1) + (∇g)(X1, X2, X2) = 0,(6)

B2 := (∇g)(X2, X1, X1) + (∇g)(X2, X2, X2) = 0.(7)

Lemma 5.2. Let M ⊂ R4 be a locally strictly convex surface and ξ a metric
field. If p ∈ M is not an inflection, then there exists an equiaffine plane
bundle σ defined on a neighborhood of p.

Proof. Let u = {X1, X2} be an orthonormal tangent frame defined on some
neighborhood U of p. Let σ be a transversal plane bundle defined also on
U and {ξ1, ξ2} the local basis of σ obtained by theorem 3.7. Now we want
to construct a new equiaffine plane bundle σ defined on U , with local basis
{ξ1, ξ2} obtained also by theorem 3.7. By lema 4.11, we have

ξ1 = ξ1 − Z1, ξ2 = ξ2 − Z2,

where Z1 and Z2 are tangent vector fields. We denote the connection induced
by σ (resp. σ) by ∇ (resp. ∇). On the other hand, by a simple calculation
we obtain

B1 = B1 + 2g(Z2, X1) + 2h1(X1, X2)g(Z1, X2),

B2 = B2 + 2h1(X1, X2)g(Z1, X1) + 2h1(X2, X2)g(Z1, X2) + 2g(Z2, X2).

Note that σ is equiaffine if and only if B1 = B2 = 0. By writing Z1 =
aX1 + bX2 and Z2 = cX1 + dX2, this is equivalent to

B1 = 2c+ 2bh1(X1, X2),

B2 = 2d+ 2ah1(X1, X2) + 2bh1(X2, X2).

The lemma follows since the system above has a solution. For instance, set

a = b = 0, c = B1
2 and d = B2

2 . �
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We define now the affine normal plane bundles. Our construction is based
on the ideas developed in [9]. Because there are many equiaffine plane
bundles (lemma 5.2), we give conditions to choose some special types among
them.

Definition 5.3. Let M ⊂ R4 be a locally strictly convex surface, ξ a metric
field and u = {X1, X2} an orthonormal tangent frame. We say that an
equiaffine plane bundle σ is:

• symmetric, if

D1 = (∇g)(X2, X1, X1)− (∇g)(X1, X2, X1) = 0,

D2 = (∇g)(X1, X2, X2)− (∇g)(X2, X1, X2) = 0,

• antisymmetric, if

C1 = (∇g)(X2, X1, X1) + (∇g)(X1, X2, X1) = 0,

C2 = (∇g)(X1, X2, X2) + (∇g)(X2, X1, X2) = 0.

Theorem 5.4. Let M ⊂ R4 be a locally strictly convex surface and ξ be
a metric field. If p ∈ M is not an inflection, then there exists a unique
antisymmetric equiaffine plane bundle σ defined on a neighborhood of p.

Proof. Let u = {X1, X2} be an orthonormal tangent frame on a neighbor-
hood U of p. We consider σ an equiaffine plane bundle defined on U and
{ξ1, ξ2} the local basis of σ obtained by theorem 3.7.

Now, we want to construct a new antisymmetric equiaffine plane bundle
σ defined on U . Again by theorem 3.7 we have {ξ1, ξ2} a basis of σ, and by
lemma 4.11 we write

ξ1 = ξ1 − Z1, ξ2 = ξ2 − Z2,

where Z1 and Z2 are tangent vector fields. We denote by ∇ (resp. ∇) the
affine connection induced by σ (resp. σ). We compute C1 and C2

C1 = C1 + 3h1(X1, X2)g(Z1, X1) + g(Z2, X2),

C2 = C2 + 3h1(X1, X2)g(Z1, X2) + h1(X2, X2)g(Z1, X1) + g(X1, Z2).

Since σ is antisymmetric, C1 = C2 = 0 and writing Z1 = aX1 + bX2 and
Z2 = cX1 + dX2 we obtain the system

0 = c+ bh
1
(X1, X2),

0 = d+ ah
1
(X1, X2) + bh

1
(X2, X2),

C1 = 3ah
1
(X1, X2) + d,

C2 = 3bh
1
(X1, X2) + ah

1
(X2, X2) + c.

The determinant of the linear system above in the variables a, b, c, d is

4h
1
(X1, X2)2 + h

1
(X2, X2)2 6= 0,

since p is not an inflection. Therefore, the system has a unique solution. �

Theorem 5.5. With the same hypothesis as in theorem 5.4, there exists a
unique symmetric equiaffine plane bundle σ defined on a neighborhood of p.
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Proof. We follow the same arguments as in the proof of theorem 5.4, but
instead of C1 and C2, we compute D1 and D2:

D1 = D1 + h1(X1, X2)g(Z1, X1)− g(Z2, X2),

D2 = D2 + h1(X1, X2)g(Z1, X2)− h1(X2, X2)g(Z1, X1)− g(X1, Z2).

By writing Z1 = aX1 + bX2 and Z2 = cX1 + dX2 we obtain again a linear
system in a, b, c, d:

0 = c+ bh
1
(X1, X2),

0 = d+ ah
1
(X1, X2) + bh

1
(X2, X2),

D1 = ah
1
(X1, X2)− d,

D2 = bh
1
(X1, X2)− ah1

(X2, X2)− c,

whose determinant is again 4h
1
(X1, X2)2 + h

1
(X2, X2)2 6= 0. �

Remark 5.6. The lemma 5.2 and theorem 5.4 provide an algorithm to
calculate a basis {ξ1, ξ2} of the antisymmetric equiaffine plane bundle: Let
σ an arbitrary transversal plane and ν1, ν2, h1(X1, X2), h1(X2, X2) are
obtained by theorem 3.7. Denote by ∇ the affine connection induced by σ
and we write

∇X1X1 = a1X1 + a2X2,

∇X1X2 = a3X1 + a4X2,

∇X2X1 = a5X1 + a6X2,

∇X2X2 = a7X1 + a8X2,

then:

ξ1 = ν1 − aX1 − bX2,

ξ2 = ν2 − cX1 − dX2,

where:

a =
−2(a2 + a3 + a5 − a8)h1(X1, X2)− (a4 + a6 + a7 − a1)h1(X2, X2)

4h1(X1, X2)2 + h1(X2, X2)2
,

b =
−2(a4 + a6 + a7 − a1)h1(X1, X2) + (a2 + a3 + a5 − a8)h1(X2, X2)

4h1(X1, X2)2 + h1(X2, X2)2
,

c = −(a1 + a4 + bh1(X1, X2)),

d = −(a5 + a8 + ah1(X1, X2) + bh1(X2, X2)).

Remark 5.7. Analogously, by using the same notation as in remark 5.6, we
obtain from lemma 5.2 and theorem 5.5 the algorithm to compute a basis
{ξ1, ξ2} of the symmetric equiaffine plane bundle:

ξ1 = ν1 − aX1 − bX2,

ξ2 = ν2 − cX1 − dX2,
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where:

a =
2(a2 + a3 − 3a5 − a8)h1(X1, X2)− (a6 + a7 − a1 − 3a4)h1(X2, X2)

4h1(X1, X2)2 + h1(X2, X2)2
,

b =
2(a6 + a7 − a1 − 3a4)h1(X1, X2) + (a2 + a3 − 3a5 − a8)h1(X2, X2)

4h1(X1, X2)2 + h1(X2, X2)2
,

c = −(a1 + a4 + bh1(X1, X2)),

d = −(a5 + a8 + ah1(X1, X2) + bh1(X2, X2)).

6. Surfaces contained in a hypersurface

We recall the definition of the Blaschke metric of an immersed hypersur-
face N ⊂ R4. Let u′ = {X1, X2, X3} be a tangent frame defined in some
neighborhood U of a point p in N . Now we consider

Hu′(Y,Z) = [X1, X2, X3, DZY ], ∀Y,Z ∈ TpN.
Then Hu′ defines a symmetric bilinear form on N that initially depends on
the tangent frame u′. However, if we suppose that Hu′ is non-degenerate,
then we can normalize it and the symmetric bilinear form

G(Y,Z) =
Hu′(Y,Z)

(detu′ Hu′)
1
5

, ∀Y, Z ∈ TpN,

does not depend on the choice of the tangent frame u′, where detu′ Hu′ =
det(Hu′(Xi, Xj)). The metric G is called the Blaschke metric of N .

If N is locally strictly convex, then Hu′ is always non-degenerate and
the tangent hyperplane TpN is a support hyperplane with a non-degenerate
contact. In particular, given any immersed surface M ⊂ N we have TpM ⊂
TpN ⊂ R4, and hence, M is also locally strictly convex. Moreover, we can
consider the Blaschke metric G restricted to M .

We claim that we can choose a transversal vector field ξ such that g[ξ]

coincides with G in TpM . In fact, let u = {X1, X2} be a frame in TpM and
we choose a tangent vector field X3 ∈ TpN such that u′ = {X1, X2, X3} is a
frame in TpN , then

Gu(Y,Z) = −Hu′(Y,Z), ∀Y, Z ∈ TpM.

In particular, we have that g[X3] = −λG where λ is given by

λ =
(detu′ Hu′)

1
5

(detuGu)
1
4

.

Then, it is enough to change the transversal vector field X3 by ξ = −X3/λ
2,

so that g[ξ] = G.

An interesting particular case in this context are the immersed surfaces
in affine hyperspheres. We recall here the definition of affine hypersphere
(see for instance [8] for details).

Definition 6.1. A hypersurface H ⊂ R4 is called an improper affine hy-
persphere if the shape operator S is identically 0. If S = λId, where λ is a
nonzero constant, then H is called a proper affine hypersphere.
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Example 6.2. Immersed surface in an elliptic paraboloid. We take M as
the surface parameterized by

X : (u, v) 7→ (u, v, g(u, v),
1

2
(u2 + v2 + g(u, v)2)).

Note that, M is contained in an elliptic paraboloid H given by

H : (x, y, z) 7→ (x, y, z,
1

2
(x2 + y2 + z2)).

From [6], the Blaschke metric on H is given by

G(ei, ej) = δij ,

where e1 = (1, 0, 0, x), e2 = (0, 1, 0, y) and e3 = (0, 0, 1, z). Therefore, the
Blaschke metric on M is given by

G(Xu, Xu) = 1 + g2
u, G(Xu, Xv) = gugv and G(Xv, Xv) = 1 + g2

v .

We can choose ξ such that gξ = G. By a simple computation,

ξ = −
√

1 + g2
u + g2

v(0, 0, 1, g).

Example 6.3. Immersed surface in a hyperboloid of two sheets. We take
M as the surface parameterized by

X : (u, v) 7→ (u, v, g(u, v),
√

1 + u2 + v2 + g(u, v)2).

Then, M is contained in the hyperboloid of two sheets H

H : x2
1 + x2

2 + x2
3 − x2

4 = −1.

The Blaschke metric is calculated in [6, page 64]. We consider the metric
field

ξ = λ(0, 0, 1,
g√

1 + u2 + v2 + g(u, v)2
),

where

λ = −
√

1 + g2
u + g2

v + (ugu + vgv − g(u, v))2.

Then the Blaschke metric G on M coincides with gξ. It is not easy to check
this computation by hand, but it is possible to do it with the aid of the
software Wolfram Mathematica. Explicitly the metric gξ is given by

gξ(Xu, Xu) = (1 + g2
u)− (u+ ggu)2

1 + u2 + v2 + g(u, v)2
,

gξ(Xu, Xv) = gugv −
(u+ ggu)(v + ggv)

1 + u2 + v2 + g(u, v)2
,

gξ(Xv, Xv) = (1 + g2
v)−

(v + ggv)
2

1 + u2 + v2 + g(u, v)2
.

The examples 6.2 and 6.3 are particular cases of affine hyperspheres (hy-
perquadrics). The hypersurface Q(c, n) ⊂ Rn+1 (Li, Simon and Zhao, [6] )
is an example of an affine hypersphere which is not a hyperquadric:

Q(c, n) : xn+1 =
c

x1x2 . . . xn
,

where c = constant 6= 0, x1 > 0, x2 > 0, . . . , xn > 0.
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Example 6.4. Immersed surface in Q(1, 3). We take M as the surface
parameterized by

X : (u, v) 7→ (u, v, g(u, v),
1

uvg(u, v)
).

Note that, M is contained in Q(1, 3):

H : (x, y, z) 7→ (x, y, z,
1

xyz
).

We consider the tangent frame {e1, e2, e3} on H to compute the Blaschke
metric, where e1 = (x, 0, 0,− 1

xyz)), e2 = (0, y, 0,− 1
xyz ), e3 = (0, 0, z,− 1

xyz )

and a transversal field e4 = (x, y, z, −2
xyz ). By taking derivatives,

De1e1 = (x, 0, 0, x,
1

xyz
) = −e1 − 2e2 − 2e3 + 2e4,

so h11 = 2 which is the component e4 of De1e1. Analogously we compute
h12 = h13 = h23 = 1 and h22 = h33 = 2, therefore det(hij) = 4. Finally

Gij =
hij

(det(hij))1/5
,

that is, Gii = 23/5 and Gij = 1
22/5

(i 6= j). We restrict G to the surface M
and obtain

G(Xu, Xu) =
3× 23/5

u2
, G(Xu, Xv) =

5

22/5uv
, G(Xu, Xv) =

3× 23/5

v2
.

It is enough to consider the metric field

ξ = −
√

2g2 + 2(vgv − ugu)2 + (g + vgv + ugu)2

24/5g(u, v)
(0, 0, g(u, v),

−1

uvg(u, v)
),

then we have gξ = G.

We have also the following obvious property, which will be used in the
next section.

Proposition 6.5. Let M ⊂ H ⊂ R4 be an immersed surface in an affine
hypersphere. Let Y be the affine normal to H and assume that Yp ∈ σp, for
all p ∈M . Then the shape operator SY on M is a multiple of the identity.

Proof. Since H is an affine hypersphere, by definition there is λ ∈ R such
that DXY = −λX, for all X ∈ TpH. In particular, this is also true for all
X ∈ TpM , hence SY = λId. �

7. Affine semiumbilical surfaces.

Let M ⊂ R4 be a locally strictly convex surface with a transversal plane
bundle σ. Given ν ∈ σp, the ν-principal curvatures at p are the eigenvalues
of the shape operator Sν and the ν-principal directions are the associated
eigenvectors. It is common to call a point p ∈M umbilic if Sν is a multiple of
the identity, for all ν ∈ σp. In analogy with the Euclidean case we introduce
also the concept of semiumbilic point.
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Definition 7.1. A point p in M ⊂ R4 is called σ-semiumbilic if Sν is a
multiple of the identity, for some non zero ν ∈ σp. We say that M is σ-
semiumbilical if all its points are σ-semiumbilic.

In the case that σ is either the antisymmetric or the symmetric equiaffine
plane bundle, then we say that M is either antisymmetric or symmetric
affine semiumbilical, respectively.

We see now that the semiumbilic points are related to the vanishing of the
normal curvature tensor. We fix a metric field ξ on M . Let u = {X1, X2} be
an orthonormal tangent frame {ξ1, ξ2} the corresponding transversal frame
given by theorem 3.7. We consider X = aX1 + bX2 and Y = cX1 + dX2.
We write

S1X1 = λ1X1 + λ2X2,

S1X2 = λ3X1 + λ4X2.

We have
R∇⊥(X,Y )ξ1 = h(X,S1Y )− h(Y, S1X).

By using the relations above and the bilinearity of h, we prove that

R∇⊥(X,Y )ξ1 = (ad−bc)((λ4−λ1)h1(X1, X2)−λ2(h1(X2, X2))ν1+(λ3−λ2)ν2).

Therefore, R∇⊥(X,Y )ξ1 = 0 if and only if

(λ4 − λ1)h1(X1, X2) = λ2h
1(X2, X2),(8)

λ3 = λ2.(9)

Analogously, if we write:

S2X1 = µ1X1 + µ2X2,

S2X2 = µ3X1 + µ4X2,

then, R∇⊥(X,Y )ξ2 = 0 if and only if

(µ4 − µ1)h1(X1, X2) = µ2h
1(X2, X2),(10)

µ3 = µ2.(11)

Theorem 7.2. Let p ∈ M , then R∇⊥(p) ≡ 0 if and only if the following
conditions hold:

• the shape operator Sν is self-adjoint ∀ν ∈ σp, and
• either p is σ-semiumbilic and all the ν-principal configurations agree

with the asymptotic configuration or p is an inflection.

Proof. We suppose that R∇⊥(p) ≡ 0. By equations (9) and (11) it follows
that λ2 = λ3 and µ2 = µ3, in other words S1 = Sν1 and S2 = Sν2 are self-
adjoint. Now if ν = αν1 +βν2, then any Sν = αS1 +βS2 is also self-adjoint.

If p is not an inflection, then (b, c) = (h1(X1, X2), h1(X2, X2)) 6= 0, hence∣∣∣∣ λ4 − λ1 λ2

c b

∣∣∣∣ = 0⇐⇒ (λ4 − λ1, λ2) = t(c, b),∣∣∣∣ µ4 − µ1 µ2

c b

∣∣∣∣ = 0⇐⇒ (µ4 − µ1, µ2) = s(c, b),

for some t, s ∈ R, therefore

∣∣∣∣ λ4 − λ1 λ2

µ4 − µ1 µ2

∣∣∣∣ = 0.
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Moreover, if ν = αν1 + βν2, with (α, β) 6= 0 then,

α

(
λ1 λ2

λ3 λ4

)
+ β

(
µ1 µ2

µ3 µ4

)
= λ

(
1 0
0 1

)
if and only if

αλ1 + βµ1 = αλ4 + βν4,

αλ2 + βµ2 = 0,

if and only if ∣∣∣∣ λ4 − λ1 λ2,
µ4 − µ1 µ2,

∣∣∣∣ = 0.

On the other hand, the asymptotic configuration is given by∣∣∣∣∣∣
y2 −xy x2

0 b c
1 0 1

∣∣∣∣∣∣ = −bx2 − cxy + by2,

and the ν-principal configuration is given by:∣∣∣∣∣∣
y2 −xy x2

αλ1 + βµ1 αλ2 + βµ2 αλ4 + βµ4

1 0 1

∣∣∣∣∣∣ ,
which is equal to

−(αλ2 + βµ2)x2 − (α(λ4 − λ1) + β(µ4 − µ1))xy + (αλ2 + βµ2)y2.

Therefore, the asymptotic configuration and the ν-principal configuration
are the same if and only if

(α(λ4 − λ1) + β(µ4 − µ1))b− (αλ2 + βµ2)c = 0,

or equivalently,

b(λ4 − λ1)− cλ2 = 0,

b(µ4 − µ1)− cµ2 = 0.

�

In the last part of this section we will consider an immersed surface M in a
locally strictly convex hyperquadric N . These hyperquadrics are particular
cases of affine hyperspheres (elliptic paraboloid, ellipsoid and hyperboloid
of two sheets), [6]. By affine transformation, the locally strictly convex
hyperquadrics are equivalent to one of the following normal forms:

• Elliptic paraboloid x4 = 1
2(x2

1 + x2
2 + x2

3).

• Ellipsoid x2
1 + x2

2 + x2
3 + x2

4 = 1.
• Hyperboloid of two sheets x2

1 + x2
2 + x2

3 − x2
4 = −1.

Theorem 7.3. Let M ⊂ R4 be a locally strictly convex surface immersed in
an hyperquadric N . Then the affine normal field to N belongs to both the
antisymmetric and symmetric equiaffine plane bundles of M , with respect to
the Blaschke metric G restricted to M .
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Proof. Let p ∈ M , since M ⊂ N there is a transversal vector field ν1 on
M , which is tangent to N and such that g[−ν1] coincides with the Blaschke
metric G restricted to surface M . Now we consider a local orthonormal
tangent frame {X1, X2} on M relative to the metric g[−ν1] = G. We fix a
local transversal plane bundle σ, by theorem 3.7 there is a local basis {ν1, ν2}
on σ such that :

[X1, X2, ν1, ν2] = 1, h1(X1, X1) = 0, h2(Xi, Xj) = δij .

Now we consider the local frame, {e1, e2, e3, e4} such that e1 = X1, e2 = X2,
e3 = ν1 and e4 = fY where Y is the affine normal vector field to N and f is
defined by condition [e1, e2, e3, e4] = 1. Since ν2 is a transversal vector field
on M and [X1, X2, ν1, ν2] = 1, we can conclude ν2 = λ3e3 + e4, for some λ3.

By theorem 3.7 we can write:

De1e1 = a1e1 + a2e2 + λ3e3 + e4,

De1e2 = a3e1 + a4e2 + h1(X1, X2)e3,

De1e3 = β1e1 + β2e2 + (τ1
1 (X1) + λ3τ

2
1 (X1))e3 + τ2

1 (X1)e4,

De2e1 = a5e1 + a6e2 + h1(X1, X2)e3,

De2e2 = a7e1 + a8e2 + (h1(X2, X2) + λ3)e3 + e4,

De2e3 = β3e1 + β4e2 + (τ1
1 (X2) + λ3τ

2
1 (X2))e3 + τ2

1 (X2)e4.

We note that:

h(e1, e1) = 1, h(e1, e2) = 0, h(e1, e3) = τ2
1 (X1),

h(e2, e2) = 1, h(e2, e3) = τ2
1 (X2).

As e4 is parallel to the affine normal, it follows:

a1 + a4 + τ1
1 (X1) + λ3τ

2
1 (X1) = 0,

a5 + a8 + τ1
1 (X2) + λ3τ

2
1 (X2) = 0,

Since N is a hyperquadric, then C(X,Y, Z) := (∇Xh)(Y, Z) ≡ 0 (see [8]):

0 = C(e1, e1, e1) = e1(h(e1, e1))− 2h(∇e1e1, e1)

= −2h(a1e1 + a2e2 + λ3e3, e1)

= −2a1 − 2λ3τ
2
1 (X1).

0 = C(e1, e1, e2) = e1(h(e1, e2))− h(∇e1e1, e2)− h(e1,∇e1e2)

= −h(a1e1 + a2e2 + λ3e3, e2)− h(e1, a3e1 + a4e2 + h1(X1, X2)e3)

= −a2 − λ3τ
2
1 (X2)− a3 − h1(X1, X2)τ2

1 (X1).

0 = C(e1, e2, e2) = e1(h(e2, e2))− 2h(∇e1e2, e2)

= −2h(a3e1 + a4e2 + h1(X1, X2)e3, e2)

= −2a4 − 2h1(X1, X2)τ2
1 (X2).
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0 = C(e2, e1, e1) = e2(h(e1, e1))− 2h(∇e2e1, e1)

= −2h(a5e1 + a6e2 + h1(X1, X2)e3, e1)

= −2a5 − 2h1(X1, X2)τ2
1 (X1).

0 = C(e2, e1, e2) = e2(h(e1, e2))− h(∇e2e1, e2)− h(e1,∇e2e2)

= −h(a5e1 + a6e2 + h1(X1, X2)e3, e2)− h(e1, a7e1 + a8e2 + (h1(X2, X2) + λ3)e3)

= −a6 − h1(X1, X2)τ2
1 (X2)− a7 − (h1(X2, X2) + λ3)τ2

1 (X1).

0 = C(e2, e2, e2) = e2(h(e2, e2))− 2h(∇e2e2, e2)

= −2h(a7e1 + a8e2 + (h1(X2, X2) + λ3)e3, e2)

= −2a8 − 2(h1(X2, X2) + λ3)τ2
1 (X2).

In the antisymmetric case we have:

a8 − a2 − a3 − a5 =− (h1(X2, X2) + λ3)τ2
1 (X2) + (λ3 + h1(X1, X2))τ2

1 (X1))

+ h1(X1, X2)τ2
1 (X1)

=− h1(X2, X2)τ2
1 (X2) + 2h1(X1, X2)τ2

1 (X1),

a1 − a4 − a6 − a7 =− λ3τ
2
1 (X1) + h1(X1, X2)τ2

1 (X2) + h1(X1, X2)τ2
1 (X2)

+ (h1(X2, X2) + λ3)τ2
1 (X1)

=2h1(X1, X2)τ2
1 (X2) + h1(X2, X2)τ2

1 (X1).

That is,

2h1(X1, X2)τ2
1 (X1)− h1(X2, X2)τ2

1 (X2) = a8 − a2 − a3 − a5,

h1(X2, X2)τ2
1 (X1) + 2h1(X1, X2)τ2

1 (X2) = a1 − a4 − a6 − a7.

Therefore:

a1 + a4 + τ2
1 (X2)h1(X1, X2) = −λ3τ

2
1 (X1),

a5 + a8 + τ2
1 (X1)h1(X1, X2) + τ2

1 (X2)h1(X2, X2) = −λ3τ
2
1 (X2).

From remark 5.6, the affine normal plane is generated by the fields ν1, ν2,
where:

ν1 = ν1 − τ2
1 (X1)X1 − τ2

1 (X2)X2,

ν2 = ν2 − λ3τ
2
1 (X1)X1 − λ3τ

2
1 (X2)X2.

By substituting ν2 = λ3ν1 + e4−λ3τ
2
1 (X1)X1−λ3τ

2
1 (X2)X2, it follows that

ν2 = λ3ν1 + e4.

Analogously, in the symmetric case:
a2 + a3 − 3a5 − a8 = a2 + a3 − 2a5 − (a5 + a8)
= −λ3τ

2
1 (X2)−h1(X1, X2)τ2

1 (X1)+2h1(X1, X2)τ2
1 (X1)+τ1

1 (X2)+λ3τ
2
1 (X2)

= h1(X1, X2)τ2
1 (X1) + τ1

1 (X2)
= h1(X1, X2)τ2

1 (X1) + h1(X1, X2)τ2
1 (X1) + h1(X2, X2)τ2

1 (X2)
= 2h1(X1, X2)τ2

1 (X1) + h1(X2, X2)τ2
1 (X2),

a6 + a7 − 3a4 − a1 = a6 + a7 − 2a4 − (a1 + a4)
= h1(X1, X2)τ2

1 (X2)− h1(X2, X2)τ2
1 (X1) + τ1

1 (X1).
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= h1(X1, X2)τ2
1 (X2)−h1(X2, X2)τ2

1 (X1)+h1(X1, X2)τ2
1 (X2)

= 2h1(X1, X2)τ2
1 (X2)− h1(X2, X2)τ2

1 (X1).

That is,

2h1(X1, X2)τ2
1 (X1) + h1(X2, X2)τ2

1 (X2) = a2 + a3 − 3a5 − a8,

−h1(X2, X2)τ2
1 (X1) + 2h1(X1, X2)τ2

1 (X2) = a6 + a7 − 3a4 − a1.

Therefore:

a1 + a4 + τ2
1 (X2)h1(X1, X2) = −λ3τ

2
1 (X1),

a5 + a8 + τ2
1 (X1)h1(X1, X2) + τ2

1 (X2)h1(X2, X2) = −λ3τ
2
1 (X2).

From remark 5.7, the affine normal plane is generated by the fields ν1, ν2

where:

ν1 = ν1 − τ2
1 (X1)X1 − τ2

1 (X2)X2,

ν2 = ν2 − λ3τ
2
1 (X1)X1 − λ3τ

2
1 (X2)X2.

By substituting ν2 = λ3ν1 + e4 − λ3τ
2
1 (X1)X1 − λ3τ

2
1 (X2)X2, it follows

ν2 = λ3ν1 + e4.

�

Remark 7.4. When we consider the affine metric of Burstin and Mayer [2],
then theorem 7.3 fails. In fact, we suppose that M is parameterized by

X(u, v) = (u, v, uv,
u2 + v2 + u2v2

2
)

Note that M is contained in the paraboloid w = 1
2(x2 + y2 + z2). Now by

using Wolfram Mathematica we compute the affine normal plane of Nomizu
and Vrancken [9] which is generated by

ν1 =
1

12(1 + u2)2/3(1 + v2)2/3
(u, v, 2uv, 12 + 3v2 + u2(13 + 14v2)) and

ν2 =
1

12((1 + u2)(1 + v2))1/6
(

5v

1 + v2
,

5u

1 + u2
,
−12− 7v2 − 7u2 − 2u2v2

(1 + u2)(1 + v2)
,−14uv).

We can see that (0, 0, 0, 1) does not belong to the plane generated by ν1 and
ν2.

The following corollary is deduced from the proof of theorem 7.3.

Corollary 7.5. With the same hypothesis as in theorem 7.3, the antisym-
metric and symmetric equiaffine plane bundles of M are equal.

Let M ⊂ R4 be an immersed surface in a hyperquadric N . We can
consider on M the extended Blaschke metric, by writing G(ei, Y ) = 0 for
all i = 1, 2, 3. Here {e1, e2, e3} is an unimodular frame and Y is the affine
normal to N .

Corollary 7.6. With the same hypothesis as in theorem 7.3, the antisym-
metric (and symmetric) equiaffine plane to M is the orthogonal plane to the
tangent plane with respect to the extended Blaschke metric G.
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Proof. By theorem 7.3, the antisymmetric equiaffine plane is generated by

ν1 = ν1 − τ2
1 (X1)X1 − τ2

1 (X2)X2,

ν2 = ν2 − λ3τ
2
1 (X1)X1 − λ3τ

2
1 (X2)X2.

Now we consider u′ = {X1, X2, ν1} the tangent frame on N and see that
{ν1, ν2} are orthogonal to the tangent plane:

G(ν1, X1) = G(ν1, X1)− τ2
1 (X1)G(X1, X1)

=
H(ν1, X1)

(detu′ Hu′)1/5
− τ2

1 (X1)
H(X1, X1)

(detu′ Hu′)1/5

=
τ2

1 (X1)

(detu′ Hu′)1/5
− τ2

1 (X1)
1

(detu′ Hu′)1/5
= 0.

Analogously,

G(ν1, X2) = G(ν1, X2)− τ2
1 (X2)G(X2, X2) = 0,

G(ν2, X1) = G(ν2 − e4, X1) = λ3G(ν1, X1) = 0,

G(ν2, X2) = G(ν2 − e4, X2) = λ3G(ν1, X2) = 0.

�

Corollary 7.7. Any surface M ⊂ R4 immersed in a hyperquadric N is
antisymmetric (and symmetric) affine semiumbilical.

Proof. This result follows from theorem 7.3 and proposition 6.5. �

Example 7.8. The product of plane curves is also antisymmetric and sym-
metric affine semiumbilical with respect to some metric field. We consider
the product of two plane curves parameterized by affine arc length, as

X(u, v) = (α1(u), α2(u), β1(v), β2(v))

and consider the transversal vector field ξ = (0, 1

α
′
1(u)

, 0,− 1

β
′
1(v)

).

The metric of the transversal field gξ is given by

gξ(Xu, Xu) = 1, gξ(Xu, Xv) = 0, gξ(Xv, Xv) = 1.

Now consider the transversal plane bundle σ = span{Xvv, Xuu}. By theo-
rem 3.7 we obtain

ξ1 = (−α′′
1(u),−α′′

2(u), β
′′
1 (v), β

′′
2 (v)),

ξ2 = (α
′′
1(u), α

′′
2(u), 0, 0).

Since ∇XiXj = 0 for i = u, v and j = u, v then ∇g = 0. Therefore, the plane
generated by ξ1 and ξ2 is the antisymmetric and the symmetric equiaffine
plane. Finally, by a simple calculation we note that the normal curvature
tensor R∇⊥ ≡ 0 and by theorem 7.2 it follows that the product of curves is
also antisymmetric (and symmetric) affine semiumbilical.

Example 7.9. In the case of immersed surfaces in affine hyperspheres
Q(c, n), in general the symmetric and antisymmetric equiaffine planes bun-
dle are not equal with respect to the Blaschke metric. Moreover, we have
examples of immersed surfaces in Q(c, n) which are semiumbilical and some
others which are not:
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• The surface parameterized by

(u, v) 7→ (u, v, uv,
1

u2v2
)

is symmetric and antisymmetric affine semiumbilical,
• and the surface parameterized by

(u, v) 7→ (u, v, v2 + u3,
1

uv(v2 + u3)
)

is not symmetric nor antisymmetric affine semiumbilical.
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