UNFOLDING PLANE CURVES WITH CUSPS AND NODES

J.J. NUÑO-BALLESTEROS

Abstract

Given an irreducible surface germ $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ with 1dimensional singular set Σ, we denote by $\delta_{1}(X, 0)$ the delta invariant of a transverse slice. We show that $\delta_{1}(X, 0) \geq m_{0}(\Sigma, 0)$, with equality if and only if $(X, 0)$ admits a corank 1 parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ whose only singularities outside the origin are transverse double points and semicubic cuspidal edges. Then, we use the local Euler obstruction $\operatorname{Eu}(X, 0)$ in order to characterize those surfaces which have finite codimension with respect to \mathscr{A}-equivalence or as a frontal type singularity.

1. Introduction

Any irreducible complex plane curve singularity $(Y, 0)$ can be parameterised, that is, it can be seen as the image of a finite and generically 1-1 map germ $\gamma:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$. Then, we can look at it either as a finitely determined map germ with respect to the \mathscr{A}-equivalence or also as a frontal type singularity (using Zakalyukin's terminology [16]) of finite codimension in some sense. This phenomenon becomes explicit when we consider a suitable deformation Y_{t}, parameterised by a stable map γ_{t}. In the first case, Y_{t} is a Morsification of Y, since the degenerated singularity splits into a finite number of nodes, that is, transverse double points A_{1}. In the second case, besides the nodes, we also allow the birth of simple cusps A_{2}, which are stable singularities in this context. As an example, we see in fig. 1 the two deformations of the E_{6} singularity, parameterised by $\gamma(v)=\left(v^{3}, v^{4}\right)$.

Figure 1
The total space of the deformation $(X, 0)$ is an irreducible surface in $\left(\mathbb{C}^{3}, 0\right)$ with 1-dimensional singular locus Σ which has special properties. It can be parameterised as the image of a map germ $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ given by $f(u, v)=\left(u, \gamma_{u}(v)\right)$. If γ_{u} is a Morsification, then f is \mathscr{A}-finite, that is, it has finite codimension with respect to the \mathscr{A}-equivalence. Otherwise, if γ_{u}

[^0]is a deformation as a frontal, then f is itself a frontal type surface of finite codimension as a frontal (see Section 3). We show in fig. 2 the two surfaces constructed with the two deformations of E_{6}. On the left hand side, we have the $P_{3}(c)$ singularity of D. Mond [12] and on the right hand side we have the swallowtail.

Figure 2

Another interesting property of $(X, 0)$ is the equality $\delta_{1}(X, 0)=m_{0}(\Sigma, 0)$, where $\delta_{1}(X, 0)$ is the transverse delta invariant (i.e., the delta invariant of a generic plane section) and $m_{0}(\Sigma, 0)$ is the multiplicity of its singular locus. Since this is the minimal possible value for $\delta_{1}(X, 0)$, we say that $(X, 0)$ is a δ_{1}-minimal surface. In fact, we show in theorem 2.1 that for any irreducible surface $(X, 0)$ with non isolated singularity, we have $\delta_{1}(X, 0) \geq m_{0}(\Sigma, 0)$, with equality if and only if $(X, 0)$ admits a corank 1 parameterisation f : $\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ and such that the only singularities outside the origin are transverse double points or semicubic cuspidal edges.

In the last part of the paper, we use the local Euler obstruction $\operatorname{Eu}(X, 0)$ in order to characterize those surfaces among the δ_{1}-minimal ones which are stable unfoldings of plane curves or frontals. We show that if $(X, 0)$ is δ_{1}-minimal, then

$$
1 \leq \operatorname{Eu}(X, 0) \leq m_{0}(X, 0)
$$

Moreover, we deduce (see corollary 4.3):
(1) $(X, 0)$ is the image of a corank $1 \mathscr{A}$-finite map germ if and only if it is δ_{1}-minimal and $\operatorname{Eu}(X, 0)=1$.
(2) $(X, 0)$ is the image of a corank 1 frontal of finite codimension if and only if it is δ_{1}-minimal and $\operatorname{Eu}(X, 0)=m_{0}(X, 0)$.
Note that Jorge-Pérez and Saia proved in [8] that if $(X, 0)$ is the image of a corank $1 \mathscr{A}$-finite map germ, then $\operatorname{Eu}(X, 0)=1$. The results presented here are also related to those of [11], where we consider the classification and the invariants of corank $1 \mathscr{A}$-finite map germs $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ by looking at the transverse slice.

2. δ_{1}-MINIMAL SURFACES

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be a singular surface. Given $0 \in H \subset \mathbb{C}^{3}$ a generic plane we consider the plane curve $Y=X \cap H$ and we call it a transverse slice of X. The delta invariant of Y at 0 is an invariant of $(X, 0)$ which is independent of the choice of H. We denote $\delta_{1}(X, 0):=\delta(Y, 0)$ and call it the transverse delta invariant.

Given an analytic set germ $(V, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ we denote by $m_{0}(V, 0)$ its multiplicity. We recall that this can be computed by means of a generic linear projection $\ell: \mathbb{C}^{n} \rightarrow \mathbb{C}^{d}$, where $d=\operatorname{dim}(V, 0)$. Then $m_{0}(V, 0)=\# V \cap H_{t}$ where $H_{t}=\ell^{-1}(t)$ and $t \in \mathbb{C}^{d}$ is a generic value.

Theorem 2.1. Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be an irreducible surface with singular locus $(\Sigma, 0)$ of dimension 1 , then

$$
\delta_{1}(X, 0) \geq m_{0}(\Sigma, 0)
$$

Moreover, the equality holds if and only if $(X, 0)$ admits a corank 1 parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ such that the only singularities outside the origin are transverse double points and semicubic cuspidal edges.

Proof. We consider a linear projection $\ell: \mathbb{C}^{3} \rightarrow \mathbb{C}$ such that $H=\ell^{-1}(0)$ is a generic plane and $Y=X \cap H$ is a transverse slice of X. Moreover, for each $t \in \mathbb{C}$ we can take $H_{t}=\ell^{-1}(t)$ in such a way that $Y_{t}=X \cap H_{t}$ defines a flat deformation of $(Y, 0)$.

Since $(X, 0)$ is irreducible, it has a normalization $n:(\tilde{X}, 0) \rightarrow(X, 0)$, where $(\tilde{X}, 0)$ is a normal surface and n is finite and generically 1-1. By taking the composition $\tilde{p}=p \circ n:(\tilde{X}, 0) \rightarrow(\mathbb{C}, 0)$ we have also a flat deformation of $\tilde{Y}=n^{-1}(Y)$.

We use now a result of Lejeune-Lê-Teissier [6] (see also [3, 4.1.14]): for any $t \neq 0$ small enough,

$$
\begin{equation*}
\delta(Y, 0)=\delta(\tilde{Y}, 0)+\sum_{p \in S\left(Y_{t}\right)} \delta\left(Y_{t}, p\right) \tag{1}
\end{equation*}
$$

where $S\left(Y_{t}\right)$ denotes the singular set of Y_{t}. Obviously, $S\left(Y_{t}\right)=Y_{t} \cap \Sigma=$ $H_{t} \cap \Sigma$ and for each $p \in S\left(Y_{t}\right), \delta\left(Y_{t}, p\right) \geq 1$. Therefore,

$$
\delta(Y, 0) \geq \# H_{t} \cap \Sigma=m_{0}(\Sigma, 0)
$$

We have the equality in the case that $(X, 0)$ admits a corank 1 parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ and the only singularities of $(X, 0)$ outside the origin are transverse double points and semicubic cuspidal edges. In fact, after taking a linear coordinate change in \mathbb{C}^{3} and after reparameterisation, we can assume that f is given in the form

$$
f(u, v)=(u, p(u, v), q(u, v))
$$

for some function germs p, q and such that generic plane is $x=0$ (here we denote by (x, y, z) the coordinates in $\left.\mathbb{C}^{3}\right)$. Then \tilde{Y} is the curve $u=0$ which is smooth and thus $\delta(\tilde{Y}, 0)=0$.

On the other hand, for each $t \neq 0$, the deformation Y_{t} is given by $x=t$. The only singularities of Y_{t} are cusps and nodes, both having delta invariant equal to 1 . By $(1), \delta(Y, 0)=m_{0}(\Sigma, 0)$.

We see now the converse. If $\delta(Y, 0)=m_{0}(\Sigma, 0)$, we deduce from (1) that $\delta(\tilde{Y}, 0)=0$ and $\delta\left(Y_{t}, p\right)=1$ for each $t \neq 0$ and $p \in S\left(Y_{t}\right)$. In other words, \tilde{Y} is smooth at 0 and the only singularities of Y_{t} are cusps and nodes when $t \neq 0$.

Since $\delta(\tilde{Y}, 0)=0$, we have from (1) that Y_{t} is a delta constant family of curves in the sense of Teissier. By [3, 7.1.3], Y_{t} admits a normalization in family. But the unicity of the normalization implies that \tilde{X} is smooth
at 0 and we can assume $\tilde{X}=\mathbb{C}^{2}$. Thus, $(X, 0)$ is the image of $f=i \circ n$: $\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$, where i denotes the inclusion map.

Because of \tilde{Y} is smooth at $0, f$ must have corank 1 . Moreover, the only singularities of f outside the origin will be semicubic cuspidal edges and transverse double points (having as transverse slice cusps and nodes, respectively).
Definition 2.2. We say that a surface $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ is δ_{1}-minimal if it is irreducible with 1-dimensional singular locus Σ and $\delta_{1}(X, 0)=m_{0}(\Sigma, 0)$.

It follows from the proof of theorem 2.1 that the following statements are equivalent:
(1) $(X, 0)$ is δ_{1}-minimal.
(2) $(X, 0)$ admits a corank 1 parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
(3) $(X, 0)$ is the image of an unfolding of a plane curve with only cusps and nodes.

Example 2.3. Let $(X, 0)$ be the surface parameterised by the double fold map germ $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ given by $f(u, v)=\left(u^{2}, v^{2}, u^{5}+v^{5}+2 u^{3} v^{3}\right)$ (see [10]). Then $(X, 0)$ is irreducible, its singular set Σ has dimension 1 and all the singularities outside the origin are semicubic cuspidal edges and transverse double points (see fig. 3). But since f has corank 2 , we expect to get $\delta_{1}(X, 0)>m_{0}(\Sigma, 0)$.

Figure 3
In fact, according to [10], Σ is the curve in $\left(\mathbb{C}^{3}, 0\right)$ given by the zeros of the 3×3 minors of the following matrix:

$$
\left(\begin{array}{cccc}
-z & x^{2} & y^{2} & 2 x y \\
x^{3} & -z & 2 x^{2} y & y^{2} \\
y^{3} & 2 x y^{2} & -z & x^{2} \\
2 x^{2} y^{2} & y^{3} & x^{3} & -z
\end{array}\right)
$$

With the aid of the computer algebra system Singular [4], we compute $m_{0}(\Sigma, 0)=13$. On the other hand, $(X, 0)$ is given by the determinant of the
above matrix:

$$
\begin{aligned}
& x^{10}-8 x^{8} y^{3}+16 x^{6} y^{6}-2 x^{5} y^{5}-2 x^{5} z^{2}-16 x^{4} y^{4} z \\
& -8 x^{3} y^{8}-8 x^{3} y^{3} z^{2}+y^{10}-2 y^{5} z^{2}+z^{4}=0 .
\end{aligned}
$$

In order to compute the transverse slice, we just substitute $z=a x+b y$ for some generic coefficients $a, b \in \mathbb{C}$. Again with the aid of Singular we get $\delta_{1}(X, 0)=14$.

We can associate two invariants to each δ_{1}-minimal surface $(X, 0)$. Let $\ell: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a generic linear projection and put $H_{t}=\ell^{-1}(t)$ and $Y_{t}=$ $X \cap H_{t}$. Since $(X, 0)$ is δ_{1}-minimal, the only singularities of Y_{t} for $t \neq 0$ small enough are cusps and nodes.
Definition 2.4. We define the numbers of transverse cusps and transverse nodes of ($X, 0$), respectively as:

- $\kappa=$ number of cusps $\left(A_{2}\right)$ of Y_{t},
- $\nu=$ number of nodes $\left(A_{1}\right)$ of Y_{t}.

It is obvious that the numbers κ, ν are well defined and do not depend on the choice of the linear projection ℓ nor the parameter t. Moreover, we also deduce from the proof of theorem 2.1 that

$$
\kappa+\nu=\delta_{1}(X, 0) .
$$

If $(X, 0)$ admits a corank 1 parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$, then after taking a linear coordinate change in \mathbb{C}^{3} and after reparameterisation, we can assume that f is given in the form

$$
f(u, v)=\left(u, \gamma_{u}(v)\right),
$$

where $\gamma_{u}(v)$ is the parameterisation of the plane curve $Y_{u}=X \cap\{x=u\}$.
Proposition 2.5. Let ($X, 0$) be a δ_{1}-minimal surface, parameterised by $f(u, v)=\left(u, \gamma_{u}(v)\right)$, where $x=0$ is a generic plane. The following statements are equivalent:
(1) $\kappa=0$,
(2) f is \mathscr{A}-finite,
(3) for each $t \neq 0, \gamma_{t}$ is \mathscr{A}-stable.

Proof. The equivalence between (1) and (3) follows from the fact that the only \mathscr{A}-stable singularities of plane curves are nodes. The equivalence between (1) and (2) is a consequence of the Mather-Gaffney determinacy criterion: the map germ $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ is \mathscr{A}-finite if and only if there is a proper representative $f: U \rightarrow V$ such that $f^{-1}(0)=\{0\}$ and the restriction to $U \backslash\{0\}$ is \mathscr{A}-stable. But since the cross-caps and the transverse triple points are isolated, by shrinking U if necessary, this is equivalent to that f has only transverse double points on $U \backslash\{0\}$.

Example 2.6. Let ($X, 0$) be an irreducible surface with 1-dimensional singular set whose transverse slice has type E_{6}. We parameterise the curve by $\gamma(v)=\left(v^{3}, v^{4}\right)$ and take the mini-versal deformation:

$$
\Gamma(v ; a, b, c)=\left(v^{3}+a v, v^{4}+b v^{2}+c v\right) .
$$

Then, after a linear coordinate change, $(X, 0)$ admits a parameterisation of the form

$$
f(u, v)=\left(u, v^{3}+a(u) v, v^{4}+b(u) v^{2}+c(u) v\right)
$$

for some $a, b, c \in \mathbb{C}\{u\}$, with $a(0)=b(0)=c(0)=0$.
The discriminant of the deformation Δ is the set of points $(a, b, c) \in \mathbb{C}^{3}$ such that the curve $\gamma_{a, b, c}(v)=\left(v^{3}+a v, v^{4}+b v^{2}+c v\right)$ is not \mathscr{A}-stable. According to [11], Δ has equation $P_{1} P_{2} P_{3}=0$, where:

$$
\begin{aligned}
& P_{1}=16 a^{3}-48 a^{2} b+36 a b^{2}+27 c^{2} \\
& P_{2}=32 a^{3}-48 a^{2} b+24 a b^{2}-4 b^{3}+27 c^{2} \\
& P_{3}=a-b
\end{aligned}
$$

The three factors P_{1}, P_{2}, P_{3} correspond to the strata of singular points, selftangencies and triple points, respectively.

If we also denote $P_{i}=P_{i}(a(u), b(u), c(u))$, we have three types of δ_{1} minimal surfaces:
(1) $(X, 0)$ is δ_{1}-minimal with $\kappa=0$ and $\nu=3$ if and only if $P_{1} P_{2} P_{3} \neq 0$.
(2) $(X, 0)$ is δ_{1}-minimal with $\kappa=1$ and $\nu=2$ if and only if $P_{1}=0$, but $(c, 2 a-3 b) \neq(0,0)$ and $P_{2} P_{3} \neq 0$.
(3) $(X, 0)$ is δ_{1}-minimal with $\kappa=2$ and $\nu=1$ if and only if $(c, 2 a-3 b)=$ $(0,0)$, but $P_{2} P_{3} \neq 0$.

3. Frontals

In this section, we consider frontal type singularities. This concept was introduced by Zakalyukin and Kurbatskiĭ in [16] and it is the generalization of a front. Roughly speaking, a frontal is the projection of a Legendrian submanifold with singularities. We refer also to Ishikawa's paper [5] for basic definitions and notations about Legendre singularities.

Let $P T^{*} \mathbb{C}^{n+1}$ be the projectivized cotangent bundle of \mathbb{C}^{n+1} with the canonical contact structure defined by the contact form α and denote the projection by $\pi: P T^{*} \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$. By definition, a holomorphic map germ $\mathcal{L}:\left(\mathbb{C}^{n}, 0\right) \rightarrow P T^{*} \mathbb{C}^{n+1}$ is said to be integral if $\mathcal{L}^{*} \alpha \equiv 0$. This is means that $\mathcal{L}=(f,[\nu])$ where $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}^{n+1}$ is a holomorphic map germ and $\nu:\left(\mathbb{C}^{n}, 0\right) \rightarrow T^{*} \mathbb{C}^{n+1}$ is a holomorphic non-zero 1-form along f such that $\nu(d f \circ \xi)=0$, for any $\xi \in V_{n}$, the space of all germs of vector fields in $\left(\mathbb{C}^{n}, 0\right)$. If ν is given in coordinates by $\nu=\sum_{j=1}^{n+1} \nu_{j} d x_{j}$, this is also equivalent to

$$
\sum_{j=1}^{n+1} \nu_{j} \frac{\partial f_{j}}{\partial u_{i}}=0, \quad \forall i=1, \ldots, n
$$

Definition 3.1. We say that a map germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is a frontal map germ if there is an integral map germ $\mathcal{L}:\left(\mathbb{C}^{n}, 0\right) \rightarrow P T^{*} \mathbb{C}^{n+1}$ such that $\pi \circ \mathcal{L}=f$. If in addition \mathcal{L} is an embedding, then we say that f is a front.

When \mathcal{L} is an integral embedding, then its image in $P T^{*} \mathbb{C}^{n+1}$ is called a Legendrian submanifold. If it is not an embedding, then it is usual to call the image a Legendrian submanifold with singularities. A hypersurface singularity $(X, 0)$ in $\left(\mathbb{C}^{n+1}, 0\right)$ is called a frontal (resp. front) if there is
a frontal (resp. front) map germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ whose image is $(X, 0)$.

Remark 3.2. If the map germ f is itself an embedding, then it is always a frontal and the class $[\nu]$ is determined univocally by the components of the cross product:

$$
\frac{\partial f}{\partial u_{1}} \wedge \cdots \wedge \frac{\partial f}{\partial u_{n}}
$$

If f is not an embedding, but it is generically immersive (for instance, when it is finite and generically $1-1)$, then the class $[\nu]$ is also univocally determined, if it exists.

Example 3.3. Let us see some examples:
(1) Any irreducible plane curve singularity is always a frontal. Assume $(Y, 0)$ is parameterised in $\left(\mathbb{C}^{2}, 0\right)$ by $\gamma(v)=(p(v), q(v))$, where

$$
\begin{aligned}
& p(v)=a_{n} v^{n}+a_{n+1} v^{n+1}+\ldots \\
& q(v)=b_{m} v^{m}+b_{m+1} v^{m+1}+\ldots
\end{aligned}
$$

with $a_{n}, b_{m} \neq 0$ and $n \leq m$. Then we take the 1 -form:

$$
\nu=\frac{1}{v^{n-1}}\left(-q^{\prime}(v) d x+p^{\prime}(v) d y\right)
$$

Note that $(Y, 0)$ is a front if and only if $m=n+1$.
(2) The double fold surface $(X, 0)$ of Example 2.3 is a corank 2 frontal surface in $\left(\mathbb{C}^{3}, 0\right)$. In fact, since

$$
\frac{\partial f}{\partial u} \wedge \frac{\partial f}{\partial v}=u v\left(-2 u\left(5 u^{2}+6 v^{3}\right),-2 v\left(6 u^{3}+5 v^{2}\right), 4\right)
$$

we may take

$$
\nu=-2 u\left(5 u^{2}+6 v^{3}\right) d x-2 v\left(6 u^{3}+5 v^{2}\right) d y+4 d z
$$

(3) Not every parameterised surface $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ is a frontal. For instance, given the cross-cap $f(u, v)=\left(u, v^{2}, u v\right)$ we have

$$
\frac{\partial f}{\partial u} \wedge \frac{\partial f}{\partial v}=\left(-2 v^{2},-u, 2 v\right)
$$

There is no a non-zero holomorphic 1-form ν such that

$$
\nu\left(\frac{\partial f}{\partial u}\right)=\nu\left(\frac{\partial f}{\partial v}\right)=0 .
$$

In general, we have the following criterion for corank 1 hypersurfaces.
Proposition 3.4. Consider a hypersurface $(X, 0) \subset\left(\mathbb{C}^{n+1}, 0\right)$ parameterised by a corank 1 map germ $f(u, v)=(u, p(u, v), q(u, v))$, with $u \in \mathbb{C}^{n-1}, v \in \mathbb{C}$. Then $(X, 0)$ is a frontal if and only if either $\frac{\partial p}{\partial v}$ divides $\frac{\partial q}{\partial v}$ or $\frac{\partial q}{\partial v}$ divides $\frac{\partial p}{\partial v}$.

Proof. We have that

$$
\frac{\partial f}{\partial u_{1}} \wedge \cdots \wedge \frac{\partial f}{\partial u_{n-1}} \wedge \frac{\partial f}{\partial v}=\left(\Delta_{1}, \ldots, \Delta_{n-1},-\frac{\partial q}{\partial v}, \frac{\partial p}{\partial v}\right)
$$

where $\Delta_{i}=\frac{\partial q}{\partial v} \frac{\partial p}{\partial u_{i}}-\frac{\partial q}{\partial u_{i}} \frac{\partial p}{\partial v}$.

Assume, for instance, that $\frac{\partial q}{\partial v}=\lambda \frac{\partial p}{\partial v}$ for some function λ. Then, $\Delta_{i}=$ $\mu_{i} \frac{\partial p}{\partial v}$, with $\mu_{i}=\lambda \frac{\partial p}{\partial u_{i}}-\frac{\partial q}{\partial u_{i}}$ and thus, we can take

$$
\nu=\mu_{1} d x_{1}+\cdots+\mu_{n-1} d x_{n-1}-\lambda d x_{n}+d x_{n+1}
$$

Conversely, suppose that there is non-zero 1 -form ν such that $\mathcal{L}=(f,[\nu])$ is integral. Then, there is a function α, such that

$$
\Delta_{i}=\alpha \nu_{i}, i=1, \ldots, n-1, \quad-\frac{\partial q}{\partial v}=\alpha \nu_{n}, \quad \frac{\partial p}{\partial v}=\alpha \nu_{n+1}
$$

and hence,

$$
\alpha \nu_{i}=-\alpha\left(\nu_{n} \frac{\partial p}{\partial u_{i}}+\nu_{n+1} \frac{\partial q}{\partial u_{i}}\right), i=1, \ldots, n-1 .
$$

If $\alpha=0$, we have $\frac{\partial p}{\partial v}=\frac{\partial p}{\partial v}=0$ and the result is obvious. Otherwise, if $\alpha \neq 0$, we have that

$$
\nu_{i}=-\nu_{n} \frac{\partial p}{\partial u_{i}}-\nu_{n+1} \frac{\partial q}{\partial u_{i}}, i=1, \ldots, n-1 .
$$

Since $\nu(0) \neq 0$, then necessarily either $\nu_{n}(0)=0$ or $\nu_{n+1}(0) \neq 0$ so that either $\left.\frac{\partial p}{\partial v} \right\rvert\, \frac{\partial q}{\partial v}$ or $\left.\frac{\partial q}{\partial v} \right\rvert\, \frac{\partial p}{\partial v}$.
Example 3.5. We apply this criterion to see some examples of frontal surfaces:
(1) The swallowtail is $(X, 0)$ is a frontal surface (see the right hand side of fig. 2). In fact, it is parameterised by $f(u, v)=\left(u, v^{3}+u v, v^{4}+\frac{2}{3} u v^{2}\right)$ and we have $\frac{\partial p}{\partial v}=3 v^{2}+u$ and $\frac{\partial q}{\partial v}=\frac{4}{3} v\left(3 v^{2}+u\right)$.
(2) The folded Whitney umbrella is the surface $(X, 0)$ in $\left(\mathbb{C}^{3}, 0\right)$ parameterised by $f(u, v)=\left(u, v^{2}, u v^{3}+v^{5}\right)$ (see fig. 4). This is also a frontal since $\frac{\partial p}{\partial v}=2 v$ and $\frac{\partial q}{\partial v}=v\left(3 u v+5 v^{3}\right)$.
Now we define the codimension of a frontal as the codimension of the Legendrian singularity whose projection is the frontal, with respect to Legendre equivalence. Let us denote $W=P T^{*} \mathbb{C}^{n+1}$ for simplicity and let $\mathcal{L}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(W, w_{0}\right)$ be the integral map germ given by $\mathcal{L}=(f,[\nu])$. We recall the following notations from [5]:
(1) $V I_{\mathcal{L}}$ is the space of all integral infinitesimal deformations of \mathcal{L}, that is, germs of vector fields along \mathcal{L} which preserve the contact structure.
(2) $V L_{W, w_{0}}$ is the space of all germs of Legendre vector fields in $\left(W, w_{0}\right)$.

Definition 3.6. We define the $\mathscr{\mathscr { F }}_{e}$-codimension of f as

$$
\mathscr{F}_{e}-\operatorname{codim}(f)=\operatorname{dim}_{\mathbb{C}} \frac{V I_{\mathcal{L}}}{\left\{d \mathcal{L} \circ \xi+\tilde{\eta} \circ \mathcal{L}: \xi \in V_{n}, \tilde{\eta} \in V L_{\left.W, w_{0}\right\}}\right\}}
$$

If the $\mathscr{F}_{e^{-}}$-codimension is finite, we say that f is \mathscr{F}-finite and if the $\mathscr{F}_{e^{-}}$ codimension is zero, then we say that f is \mathscr{F}-stable.

According to [5], the space $V I_{\mathcal{L}}$ can be interpreted as the space of all infinitesimal integral deformations of \mathcal{L} and the subspace

$$
\left\{d \mathcal{L} \circ \xi+\tilde{\eta} \circ \mathcal{L}: \xi \in V_{n}, \tilde{\eta} \in V L_{W, w_{0}}\right\}
$$

should be understood as the extended tangent space to the orbit of \mathcal{L} under the action of Legendre equivalences. It follows from the definition that f is \mathscr{F}-stable if and only if \mathcal{L} is infinitesimally Legendre stable in the sense of [5]. By [5, 4.1], any corank $1 \mathscr{F}$-stable frontal is the projection of an open Whitney umbrella.

All the above definitions are also valid if instead of germs we consider multigerms $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, y\right)$, where $S \subset \mathbb{C}^{n}$ is any finite set and $y \in \mathbb{C}^{n+1}$. We use the above remark to classify the \mathscr{F}-stable singularities of curves and surfaces. Note that all the \mathscr{F}-stable singularities of frontal surfaces except folded Whitney umbrellas are generic fronts and their classification is well known (see for instance [1]).

Proposition 3.7. (1) The \mathscr{F}-stable singularities of a frontal curve are cusps and nodes.
(2) The \mathscr{F}-stable singularities of a frontal surface are either: semicubic cuspidal edges, swallowtails, folded Whitney umbrellas or their transverse self-intersections (see fig. 4).

Figure 4
The following property is an adapted version of the Mather-Gaffney finite determinacy criterion for frontals (see [15]).
Proposition 3.8. A frontal $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is \mathscr{F}-finite if and only if there is a proper and finite-to-one representative $f: U \rightarrow V$ such that $f^{-1}(0)=\{0\}$ and the multigerm at any point $y \in V \backslash\{0\}$ is \mathscr{F}-stable.

By shrinking the neighbourhoods U, V if necessary, all the isolated \mathscr{F} stable singularities can be avoided. Then, we have the following direct consequence of propositions 3.7 and 3.8.

Corollary 3.9. (1) A frontal curve is \mathscr{F}-finite if and only if it has isolated singularity.
(2) A frontal surface of corank 1 is \mathscr{F}-finite if and only if the only singularities outside the origin are transverse double points and semicubic cuspidal edges.

Recall that if $(X, 0)$ is δ_{1}-minimal then $0 \leq \kappa \leq m_{0}(X, 0)-1$, where κ is the number of cusps. Then, we have the following property, which is, in some sense, dual to Proposition 2.5.

Proposition 3.10. Let $(X, 0)$ be a δ_{1}-minimal surface parameterised by $f(u, v)=\left(u, \gamma_{u}(v)\right)$, where $x=0$ is a generic plane. The following statements are equivalent:
(1) $\kappa=m_{0}(X, 0)-1$,
(2) f is a \mathscr{F}-finite frontal,
(3) f is a frontal unfolding of γ_{0} and for each $t \neq 0, \gamma_{t}$ is \mathscr{F}-stable.

Proof. Since $(X, 0)$ is δ_{1}-minimal, the only singularities outside the origin are transverse double points and semicubic cuspidal edges. Moreover, for each t, the transverse slice Y_{t} is parameterised by $\gamma_{t}(v)=(p(t, v), q(t, v))$ and it has only cusps and nodes if $t \neq 0$. By 3.7 and 3.9 , in order to show the equivalence between the three statements, we only need to show that $\kappa=m_{0}(X, 0)-1$ if and only if f is a frontal.

Given $h \in \mathcal{O}_{2}$, we denote by $o_{v}(h)$ the order of h in v, that is, the order of $h(0, v) \in \mathcal{O}_{1}$. Assume that $o_{v}(p)=m$ and $o_{v}(q)=k$ with $m \leq k$. Then, because of the genericity assumption, we have that $m_{0}(X, 0)=m$.

For a fixed small enough $t \neq 0, \kappa$ is equal to the number of solutions of $p_{v}(t, v)=q_{v}(t, v)=0$ in v. If $h=\operatorname{gcd}\left(p_{v}, q_{v}\right)$, then κ is less than or equal to the number of solutions of $h(t, v)=0$ in v. In particular,

$$
\kappa \leq o_{v}(h) \leq o_{v}\left(p_{v}\right)=m-1=m_{0}(X, 0)-1
$$

Thus, we have the following equivalences:

$$
\kappa=m_{0}(X, 0)-1 \Longleftrightarrow o_{v}(h)=o_{v}\left(p_{v}\right) \Longleftrightarrow p_{v} \mid q_{v} \Longleftrightarrow f \text { is a frontal. }
$$

4. Local Euler obstruction

The local Euler obstruction was first introduced by McPherson [9] as an ingredient in the construction of characteristic classes of singular algebraic varieties. Here we prefer to use the approach of Lê-Teissier [7] in terms of polar multiplicities. Given an analytic set germ $(V, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ of dimension d, its local Euler obstruction is computed as an alternate sum

$$
\operatorname{Eu}(V, 0)=\sum_{i=0}^{d-1}(-1)^{i} m_{i}(V, 0)
$$

where $m_{i}(V, 0)$ denotes the i th-polar multiplicity (see [7] for definitions and details). In particular, for a surface $(X, 0)$,

$$
\operatorname{Eu}(X, 0)=m_{0}(X, 0)-m_{1}(X, 0)
$$

and hence, $\operatorname{Eu}(X, 0) \leq m_{0}(X, 0)$.
In the next theorem, we compute the local Euler obstruction of a $\delta_{1^{-}}$ minimal surface in terms of the number of transverse cusps κ. To do this,
we first characterize the number ν of transverse nodes in terms of the number of vanishing cycles of the transverse slice Y_{t}.

Lemma 4.1. Let $(X, 0)$ be a δ_{1}-minimal surface. Then, for each $t \neq 0$ small enough, the Euler characteristic of Y_{t} is

$$
\chi\left(Y_{t}\right)=1-\nu
$$

Proof. Let us denote $\delta=\delta_{1}(X, 0)=\delta(Y, 0)$. Since $(X, 0)$ is δ_{1}-minimal, we have seen in the proof of theorem 2.1 that $(Y, 0)$ is irreducible and hence its Milnor number is $\mu(Y, 0)=2 \delta$ (by Milnor's formula).

On the other hand, $\chi\left(Y_{t}\right)$ is related to the Milnor number by the following formula [3]:

$$
\mu(Y, 0)-\sum_{p \in S\left(Y_{t}\right)} \mu\left(Y_{t}, p\right)=\operatorname{dim}_{\mathbb{C}} H^{1}\left(Y_{t} ; \mathbb{C}\right)=1-\chi\left(Y_{t}\right)
$$

For each $t \neq 0$ small enough, the only singularities of Y_{t} are simple cusps, with Milnor number 2, and nodes, with Milnor number 1. Hence, we obtain

$$
\mu(Y, 0)-\sum_{p \in S\left(Y_{t}\right)} \mu\left(Y_{t}, p\right)=2 \delta-(2 \kappa+\nu)=\nu
$$

Theorem 4.2. Let $(X, 0)$ be a δ_{1}-minimal surface. Then,

$$
\operatorname{Eu}(X, 0)=1+\kappa
$$

In particular, $1 \leq \operatorname{Eu}(X, 0) \leq m_{0}(X, 0)$.
Proof. We use a formula of Brasselet-Lê-Seade [2] which is valid whenever $(X, 0)$ is equidimensional and has 1-dimensional singular locus Σ. We take $t \neq 0$ small enough and assume that $Y_{t} \cap \Sigma=\left\{x_{1}, \ldots, x_{m}\right\}$. Then,

$$
\operatorname{Eu}(X, 0)=\chi\left(Y_{t}\right)-m+\sum_{i=1}^{m} \operatorname{Eu}\left(X, x_{i}\right)
$$

Note that $Y_{t} \cap \Sigma$ is the singular locus of Y_{t} and since each singular point has delta invariant 1, we have $m=\delta_{1}(X, 0)=\kappa+\nu$. By lemma 4.1, $\chi\left(Y_{t}\right)=1-\nu$. For each $i=1, \ldots, m, \operatorname{Eu}\left(X, x_{i}\right)=2$ either if X is a semicubic cuspidal edge or a transverse double point at x_{i}. Thus,

$$
\operatorname{Eu}(X, 0)=1-\nu-(\kappa+\nu)+2 \kappa+2 \nu=1+\kappa
$$

As a consequence, we arrive to the following result which characterizes those surfaces that are stable unfoldings of plane curves or frontals.

Corollary 4.3. Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be an irreducible surface with singular locus of dimension 1. Then:
(1) $(X, 0)$ is the image of a corank $1 \mathscr{A}$-finite germ if and only if it is δ_{1}-minimal and $\operatorname{Eu}(X, 0)=1$.
(2) $(X, 0)$ is the image of a corank $1 \mathscr{F}$-finite front if and only if it is δ_{1}-minimal and $\mathrm{Eu}(X, 0)=m_{0}(X, 0)$.

Proof. It follows directly from 2.1, 2.5, 3.10 and 4.2.

We finish with a last result, where we consider irreducible surfaces with 1-dimensional locus in any ambient space and without any finiteness assumption. Given a space curve $(Y, 0) \subset\left(\mathbb{C}^{N}, 0\right)$, the first polar multiplicity was introduced by the author and Tomazella in [14]:

$$
m_{1}(Y, 0):=\mu\left(\left.\ell\right|_{(Y, 0)}\right)
$$

where $\ell: \mathbb{C}^{N} \rightarrow \mathbb{C}$ is a generic linear form and $\mu\left(\left.\ell\right|_{(Y, 0)}\right)$ is the Milnor number in the sense of Mond and van Straten [13]. Then, it is showed that

$$
\begin{equation*}
m_{1}(Y, 0)=\mu(Y, 0)+m_{0}(Y, 0)-1 \tag{2}
\end{equation*}
$$

where $\mu(Y, 0)$ is now the Milnor number of a space curve as defined by Buchweitz and Greuel [3].
Proposition 4.4. Let $(X, 0) \subset\left(\mathbb{C}^{N+1}, 0\right)$ be a equidimensional surface with 1 -dimensional singular set Σ. Then for $t \neq 0$,

$$
m_{1}(X, 0)=m_{1}(Y, 0)-\sum_{x \in S\left(Y_{t}\right)} m_{1}\left(Y_{t}, x\right)
$$

where Y_{t} is the transverse slice of $(X, 0)$.
Proof. This is a consequence again of the Brasselet-Lê-Seade formula together with (2):

$$
\begin{aligned}
m_{1}(X, 0) & =m_{0}(X, 0)-\operatorname{Eu}(X, 0) \\
& =m_{0}(X, 0)-\chi\left(Y_{t}\right)+\sum_{x \in S\left(Y_{t}\right)}(\operatorname{Eu}(X, x)-1) \\
& =m_{0}\left(Y_{0}, 0\right)-1+\left(1-\chi\left(Y_{t}\right)\right)+\sum_{x \in S\left(Y_{t}\right)}\left(m_{0}\left(Y_{t}, x\right)-1\right) \\
& =m_{0}\left(Y_{0}, 0\right)-1+\mu\left(Y_{0}, 0\right)-\sum_{x \in S\left(Y_{t}\right)}\left(\mu\left(Y_{t}, x\right)-m_{0}\left(Y_{t}, x\right)+1\right) \\
& =m_{1}\left(Y_{0}, 0\right)+\sum_{x \in S\left(Y_{t}\right)} m_{1}\left(Y_{t}, x\right)
\end{aligned}
$$

Corollary 4.5. With the above hypothesis, the following statements are equivalent:
(1) $m_{1}(X, 0)=0$.
(2) $(X, 0)$ defines a m_{1}-constant deformation of $(Y, 0)$.

Moreover, if $N=2$ and $(X, 0)$ admits a parameterisation, then any of the two above statements is also equivalent to the following one:
(3) $(X, 0)$ is a frontal.

Proof. The equivalence between he two first statements follows directly from 4.4. According to Lê-Teissier [7], the condition $m_{1}(X, 0)=0$ is also equivalent to the fact that $(X, 0)$ has a finite number of limiting tangent planes at the origin. But in the particular case that $(X, 0)$ admits a parameterisation $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$, then this condition is equivalent to that $(X, 0)$ is a frontal.

Acknowledgment: Thanks are due to G. Ishikawa and W.L. Marar for their valuable comments.

References

[1] V.I. Arnol'd, S.M. Gusejn-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts. Monographs in Mathematics, Vol. 82. Boston-Basel-Stuttgart: Birkhäuser. 1985.
[2] J.P. Brasselet, Lê Dũng Tráng, J. Seade, Euler obstruction and indices of vector fields. Topology, 39 (2000), no. 6, 1193-1208.
[3] R.O. Buchweitz, R.O. G.M. Greuel, The Milnor number and deformations of complex curve singularities. Invent. Math., 58 (1980), no. 3, 241-281.
[4] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011).
[5] G. Ishikawa, Infinitesimal deformations and stability of singular Legendre submanifolds. Asian J. Math. 9 (2005), No. 1, 133-166.
[6] M, Lejeune, Lê Dũng Tráng and B. Teissier, Sur un critère d'équisingularité. C. R. Acad. Sci., Paris, Sér. A 271 (1970), 1065-1067.
[7] Lê Dũng Tráng and B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières. Ann. Math. 114 (1981), 457-491.
[8] V.H. Jorge-Pérez and M.J. Saia, Euler obstruction, polar multiplicities and equisingularity of map germs in $\mathcal{O}(n, p), n<p$. Int. J. Math. 17 (2006), no. 8, 887-903.
[9] R. D. McPherson, Chern classes for Singular Algebraic Varieties. Ann. Math. 100 (1974), No. 2, 423-432.
[10] W.L. Marar and J.J. Nuño-Ballesteros, A note on finite determinacy for corank 2 map germs from surfaces to 3 -space. Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 153-163.
[11] W.L. Marar and J.J. Nuño-Ballesteros, Silicing corank 1 map germs from \mathbb{C}^{2} to \mathbb{C}^{3}. Preprint. http://www.uv.es/nuno
[12] D. Mond, On the classification of germs of maps from \mathbb{R}^{2} to \mathbb{R}^{3}. Proc. London Math. Soc. 50 (1985), 333-369.
[13] D. Mond and D. van Straten, Milnor number equals Tjurina number for functions on space curves. J. London Math. Soc. (2) 63 (2001), 177-187.
[14] J.J. Nuño-Ballesteros, J.N. Tomazella, The Milnor number of a function on a space curve germ. Bull. Lond. Math. Soc. 40, No. 1 (2008), 129-138.
[15] C.T.C. Wall, Finite determinacy of smooth map germs, Bull. London. Math. Soc., 13 (1981), 481-539.
[16] V.M. Zakalyukin, A. N. Kurbatskiĭ, Envelope singularities of families of planes in control theory. Proc. Steklov Inst. Math. 262 (2008), no. 1, 66-79

Departament de Geometria i Topologia, Universitat de València, Campus de Burjassot, 46100 Burjassot SPAIN

E-mail address: Juan.Nuno@uv.es

[^0]: 2000 Mathematics Subject Classification. Primary 58K15; Secondary 58K40, 58K65.
 Key words and phrases. Cusps and nodes, frontals, local Euler obstruction.
 Work partially supported by DGICYT Grant MTM2012-33073.

