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Abstract. Given an irreducible surface germ (X, 0) ⊂ (C3, 0) with 1-
dimensional singular set Σ, we denote by δ1(X, 0) the delta invariant of a
transverse slice. We show that δ1(X, 0) ≥ m0(Σ, 0), with equality if and
only if (X, 0) admits a corank 1 parameterisation f : (C2, 0) → (C3, 0)
whose only singularities outside the origin are transverse double points
and semicubic cuspidal edges. Then, we use the local Euler obstruction
Eu(X, 0) in order to characterize those surfaces which have finite codi-
mension with respect to A -equivalence or as a frontal type singularity.

1. Introduction

Any irreducible complex plane curve singularity (Y, 0) can be parame-
terised, that is, it can be seen as the image of a finite and generically 1-1
map germ γ : (C, 0) → (C2, 0). Then, we can look at it either as a finitely
determined map germ with respect to the A -equivalence or also as a frontal
type singularity (using Zakalyukin’s terminology [16]) of finite codimension
in some sense. This phenomenon becomes explicit when we consider a suit-
able deformation Yt, parameterised by a stable map γt. In the first case, Yt
is a Morsification of Y , since the degenerated singularity splits into a finite
number of nodes, that is, transverse double points A1. In the second case,
besides the nodes, we also allow the birth of simple cusps A2, which are
stable singularities in this context. As an example, we see in fig. 1 the two
deformations of the E6 singularity, parameterised by γ(v) = (v3, v4).

Figure 1

The total space of the deformation (X, 0) is an irreducible surface in
(C3, 0) with 1-dimensional singular locus Σ which has special properties. It
can be parameterised as the image of a map germ f : (C2, 0)→ (C3, 0) given
by f(u, v) = (u, γu(v)). If γu is a Morsification, then f is A -finite, that is, it
has finite codimension with respect to the A -equivalence. Otherwise, if γu
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is a deformation as a frontal, then f is itself a frontal type surface of finite
codimension as a frontal (see Section 3). We show in fig. 2 the two surfaces
constructed with the two deformations of E6. On the left hand side, we have
the P3(c) singularity of D. Mond [12] and on the right hand side we have
the swallowtail.

Figure 2

Another interesting property of (X, 0) is the equality δ1(X, 0) = m0(Σ, 0),
where δ1(X, 0) is the transverse delta invariant (i.e., the delta invariant of a
generic plane section) and m0(Σ, 0) is the multiplicity of its singular locus.
Since this is the minimal possible value for δ1(X, 0), we say that (X, 0) is a
δ1-minimal surface. In fact, we show in theorem 2.1 that for any irreducible
surface (X, 0) with non isolated singularity, we have δ1(X, 0) ≥ m0(Σ, 0),
with equality if and only if (X, 0) admits a corank 1 parameterisation f :
(C2, 0)→ (C3, 0) and such that the only singularities outside the origin are
transverse double points or semicubic cuspidal edges.

In the last part of the paper, we use the local Euler obstruction Eu(X, 0)
in order to characterize those surfaces among the δ1-minimal ones which
are stable unfoldings of plane curves or frontals. We show that if (X, 0) is
δ1-minimal, then

1 ≤ Eu(X, 0) ≤ m0(X, 0).

Moreover, we deduce (see corollary 4.3):

(1) (X, 0) is the image of a corank 1 A -finite map germ if and only if it
is δ1-minimal and Eu(X, 0) = 1.

(2) (X, 0) is the image of a corank 1 frontal of finite codimension if and
only if it is δ1-minimal and Eu(X, 0) = m0(X, 0).

Note that Jorge-Pérez and Saia proved in [8] that if (X, 0) is the image of a
corank 1 A -finite map germ, then Eu(X, 0) = 1. The results presented here
are also related to those of [11], where we consider the classification and the
invariants of corank 1 A -finite map germs f : (C2, 0) → (C3, 0) by looking
at the transverse slice.

2. δ1-minimal surfaces

Let (X, 0) ⊂ (C3, 0) be a singular surface. Given 0 ∈ H ⊂ C3 a generic
plane we consider the plane curve Y = X ∩ H and we call it a transverse
slice of X. The delta invariant of Y at 0 is an invariant of (X, 0) which is
independent of the choice of H. We denote δ1(X, 0) := δ(Y, 0) and call it
the transverse delta invariant.
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Given an analytic set germ (V, 0) ⊂ (Cn, 0) we denote by m0(V, 0) its
multiplicity. We recall that this can be computed by means of a generic linear
projection ` : Cn → Cd, where d = dim(V, 0). Then m0(V, 0) = #V ∩ Ht

where Ht = `−1(t) and t ∈ Cd is a generic value.

Theorem 2.1. Let (X, 0) ⊂ (C3, 0) be an irreducible surface with singular
locus (Σ, 0) of dimension 1, then

δ1(X, 0) ≥ m0(Σ, 0).

Moreover, the equality holds if and only if (X, 0) admits a corank 1 param-
eterisation f : (C2, 0) → (C3, 0) such that the only singularities outside the
origin are transverse double points and semicubic cuspidal edges.

Proof. We consider a linear projection ` : C3 → C such that H = `−1(0) is
a generic plane and Y = X ∩ H is a transverse slice of X. Moreover, for
each t ∈ C we can take Ht = `−1(t) in such a way that Yt = X ∩Ht defines
a flat deformation of (Y, 0).

Since (X, 0) is irreducible, it has a normalization n : (X̃, 0) → (X, 0),

where (X̃, 0) is a normal surface and n is finite and generically 1-1. By

taking the composition p̃ = p ◦ n : (X̃, 0) → (C, 0) we have also a flat

deformation of Ỹ = n−1(Y ).
We use now a result of Lejeune-Lê-Teissier [6] (see also [3, 4.1.14]): for

any t 6= 0 small enough,

(1) δ(Y, 0) = δ(Ỹ , 0) +
∑

p∈S(Yt)

δ(Yt, p),

where S(Yt) denotes the singular set of Yt. Obviously, S(Yt) = Yt ∩ Σ =
Ht ∩ Σ and for each p ∈ S(Yt), δ(Yt, p) ≥ 1. Therefore,

δ(Y, 0) ≥ #Ht ∩ Σ = m0(Σ, 0).

We have the equality in the case that (X, 0) admits a corank 1 parameter-
isation f : (C2, 0) → (C3, 0) and the only singularities of (X, 0) outside the
origin are transverse double points and semicubic cuspidal edges. In fact,
after taking a linear coordinate change in C3 and after reparameterisation,
we can assume that f is given in the form

f(u, v) = (u, p(u, v), q(u, v)),

for some function germs p, q and such that generic plane is x = 0 (here we

denote by (x, y, z) the coordinates in C3). Then Ỹ is the curve u = 0 which

is smooth and thus δ(Ỹ , 0) = 0.
On the other hand, for each t 6= 0, the deformation Yt is given by x = t.

The only singularities of Yt are cusps and nodes, both having delta invariant
equal to 1. By (1), δ(Y, 0) = m0(Σ, 0).

We see now the converse. If δ(Y, 0) = m0(Σ, 0), we deduce from (1) that

δ(Ỹ , 0) = 0 and δ(Yt, p) = 1 for each t 6= 0 and p ∈ S(Yt). In other words,

Ỹ is smooth at 0 and the only singularities of Yt are cusps and nodes when
t 6= 0.

Since δ(Ỹ , 0) = 0, we have from (1) that Yt is a delta constant family
of curves in the sense of Teissier. By [3, 7.1.3], Yt admits a normalization

in family. But the unicity of the normalization implies that X̃ is smooth
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at 0 and we can assume X̃ = C2. Thus, (X, 0) is the image of f = i ◦ n :
(C2, 0)→ (C3, 0), where i denotes the inclusion map.

Because of Ỹ is smooth at 0, f must have corank 1. Moreover, the
only singularities of f outside the origin will be semicubic cuspidal edges
and transverse double points (having as transverse slice cusps and nodes,
respectively). �

Definition 2.2. We say that a surface (X, 0) ⊂ (C3, 0) is δ1-minimal if it
is irreducible with 1-dimensional singular locus Σ and δ1(X, 0) = m0(Σ, 0).

It follows from the proof of theorem 2.1 that the following statements are
equivalent:

(1) (X, 0) is δ1-minimal.
(2) (X, 0) admits a corank 1 parameterisation f : (C2, 0)→ (C3, 0) such

that the only singularities outside the origin are semicubic cuspidal
edges and transverse double points.

(3) (X, 0) is the image of an unfolding of a plane curve with only cusps
and nodes.

Example 2.3. Let (X, 0) be the surface parameterised by the double fold
map germ f : (C2, 0) → (C3, 0) given by f(u, v) = (u2, v2, u5 + v5 + 2u3v3)
(see [10]). Then (X, 0) is irreducible, its singular set Σ has dimension 1
and all the singularities outside the origin are semicubic cuspidal edges and
transverse double points (see fig. 3). But since f has corank 2, we expect
to get δ1(X, 0) > m0(Σ, 0).

Figure 3

In fact, according to [10], Σ is the curve in (C3, 0) given by the zeros of
the 3× 3 minors of the following matrix:

−z x2 y2 2xy
x3 −z 2x2y y2

y3 2xy2 −z x2

2x2y2 y3 x3 −z


With the aid of the computer algebra system Singular [4], we compute
m0(Σ, 0) = 13. On the other hand, (X, 0) is given by the determinant of the
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above matrix:

x10 − 8x8y3 + 16x6y6 − 2x5y5 − 2x5z2 − 16x4y4z

− 8x3y8 − 8x3y3z2 + y10 − 2y5z2 + z4 = 0.

In order to compute the transverse slice, we just substitute z = ax+ by for
some generic coefficients a, b ∈ C. Again with the aid of Singular we get
δ1(X, 0) = 14.

We can associate two invariants to each δ1-minimal surface (X, 0). Let
` : C3 → C be a generic linear projection and put Ht = `−1(t) and Yt =
X ∩ Ht. Since (X, 0) is δ1-minimal, the only singularities of Yt for t 6= 0
small enough are cusps and nodes.

Definition 2.4. We define the numbers of transverse cusps and transverse
nodes of (X, 0), respectively as:

• κ = number of cusps (A2) of Yt,
• ν = number of nodes (A1) of Yt.

It is obvious that the numbers κ, ν are well defined and do not depend on
the choice of the linear projection ` nor the parameter t. Moreover, we also
deduce from the proof of theorem 2.1 that

κ+ ν = δ1(X, 0).

If (X, 0) admits a corank 1 parameterisation f : (C2, 0) → (C3, 0), then
after taking a linear coordinate change in C3 and after reparameterisation,
we can assume that f is given in the form

f(u, v) = (u, γu(v)),

where γu(v) is the parameterisation of the plane curve Yu = X ∩ {x = u}.

Proposition 2.5. Let (X, 0) be a δ1-minimal surface, parameterised by
f(u, v) = (u, γu(v)), where x = 0 is a generic plane. The following state-
ments are equivalent:

(1) κ = 0,
(2) f is A -finite,
(3) for each t 6= 0, γt is A -stable.

Proof. The equivalence between (1) and (3) follows from the fact that the
only A -stable singularities of plane curves are nodes. The equivalence be-
tween (1) and (2) is a consequence of the Mather-Gaffney determinacy crite-
rion: the map germ f : (C2, 0)→ (C3, 0) is A -finite if and only if there is a
proper representative f : U → V such that f−1(0) = {0} and the restriction
to U \ {0} is A -stable. But since the cross-caps and the transverse triple
points are isolated, by shrinking U if necessary, this is equivalent to that f
has only transverse double points on U \ {0}. �

Example 2.6. Let (X, 0) be an irreducible surface with 1-dimensional sin-
gular set whose transverse slice has type E6. We parameterise the curve by
γ(v) = (v3, v4) and take the mini-versal deformation:

Γ(v; a, b, c) = (v3 + av, v4 + bv2 + cv).
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Then, after a linear coordinate change, (X, 0) admits a parameterisation of
the form

f(u, v) = (u, v3 + a(u)v, v4 + b(u)v2 + c(u)v),

for some a, b, c ∈ C{u}, with a(0) = b(0) = c(0) = 0.
The discriminant of the deformation ∆ is the set of points (a, b, c) ∈ C3

such that the curve γa,b,c(v) = (v3 + av, v4 + bv2 + cv) is not A -stable.
According to [11], ∆ has equation P1P2P3 = 0, where:

P1 = 16a3 − 48a2b+ 36ab2 + 27c2,

P2 = 32a3 − 48a2b+ 24ab2 − 4b3 + 27c2,

P3 = a− b.

The three factors P1, P2, P3 correspond to the strata of singular points, self-
tangencies and triple points, respectively.

If we also denote Pi = Pi(a(u), b(u), c(u)), we have three types of δ1-
minimal surfaces:

(1) (X, 0) is δ1-minimal with κ = 0 and ν = 3 if and only if P1P2P3 6= 0.
(2) (X, 0) is δ1-minimal with κ = 1 and ν = 2 if and only if P1 = 0, but

(c, 2a− 3b) 6= (0, 0) and P2P3 6= 0.
(3) (X, 0) is δ1-minimal with κ = 2 and ν = 1 if and only if (c, 2a−3b) =

(0, 0), but P2P3 6= 0.

3. Frontals

In this section, we consider frontal type singularities. This concept was
introduced by Zakalyukin and Kurbatskĭı in [16] and it is the generalization
of a front. Roughly speaking, a frontal is the projection of a Legendrian
submanifold with singularities. We refer also to Ishikawa’s paper [5] for
basic definitions and notations about Legendre singularities.

Let PT ∗Cn+1 be the projectivized cotangent bundle of Cn+1 with the
canonical contact structure defined by the contact form α and denote the
projection by π : PT ∗Cn+1 → Cn+1. By definition, a holomorphic map
germ L : (Cn, 0) → PT ∗Cn+1 is said to be integral if L∗α ≡ 0. This is
means that L = (f, [ν]) where f : (Cn, 0) → Cn+1 is a holomorphic map
germ and ν : (Cn, 0) → T ∗Cn+1 is a holomorphic non-zero 1-form along f
such that ν(df ◦ ξ) = 0, for any ξ ∈ Vn, the space of all germs of vector

fields in (Cn, 0). If ν is given in coordinates by ν =
∑n+1

j=1 νjdxj , this is also
equivalent to

n+1∑
j=1

νj
∂fj
∂ui

= 0, ∀i = 1, . . . , n.

Definition 3.1. We say that a map germ f : (Cn, 0)→ (Cn+1, 0) is a frontal
map germ if there is an integral map germ L : (Cn, 0)→ PT ∗Cn+1 such that
π ◦ L = f . If in addition L is an embedding, then we say that f is a front.

When L is an integral embedding, then its image in PT ∗Cn+1 is called
a Legendrian submanifold. If it is not an embedding, then it is usual to
call the image a Legendrian submanifold with singularities. A hypersurface
singularity (X, 0) in (Cn+1, 0) is called a frontal (resp. front) if there is
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a frontal (resp. front) map germ f : (Cn, 0) → (Cn+1, 0) whose image is
(X, 0).

Remark 3.2. If the map germ f is itself an embedding, then it is always a
frontal and the class [ν] is determined univocally by the components of the
cross product:

∂f

∂u1
∧ · · · ∧ ∂f

∂un
.

If f is not an embedding, but it is generically immersive (for instance, when it
is finite and generically 1-1), then the class [ν] is also univocally determined,
if it exists.

Example 3.3. Let us see some examples:

(1) Any irreducible plane curve singularity is always a frontal. Assume
(Y, 0) is parameterised in (C2, 0) by γ(v) = (p(v), q(v)), where

p(v) = anv
n + an+1v

n+1 + . . . ,

q(v) = bmv
m + bm+1v

m+1 + . . .

with an, bm 6= 0 and n ≤ m. Then we take the 1-form:

ν =
1

vn−1
(−q′(v)dx+ p′(v)dy).

Note that (Y, 0) is a front if and only if m = n+ 1.

(2) The double fold surface (X, 0) of Example 2.3 is a corank 2 frontal
surface in (C3, 0). In fact, since

∂f

∂u
∧ ∂f
∂v

= uv(−2u(5u2 + 6v3),−2v(6u3 + 5v2), 4),

we may take

ν = −2u(5u2 + 6v3)dx− 2v(6u3 + 5v2)dy + 4dz.

(3) Not every parameterised surface (X, 0) ⊂ (C3, 0) is a frontal. For
instance, given the cross-cap f(u, v) = (u, v2, uv) we have

∂f

∂u
∧ ∂f
∂v

= (−2v2,−u, 2v).

There is no a non-zero holomorphic 1-form ν such that

ν

(
∂f

∂u

)
= ν

(
∂f

∂v

)
= 0.

In general, we have the following criterion for corank 1 hypersurfaces.

Proposition 3.4. Consider a hypersurface (X, 0) ⊂ (Cn+1, 0) parameterised
by a corank 1 map germ f(u, v) = (u, p(u, v), q(u, v)), with u ∈ Cn−1, v ∈ C.

Then (X, 0) is a frontal if and only if either ∂p
∂v divides ∂q

∂v or ∂q
∂v divides ∂p

∂v .

Proof. We have that

∂f

∂u1
∧ · · · ∧ ∂f

∂un−1
∧ ∂f
∂v

=

(
∆1, . . . ,∆n−1,−

∂q

∂v
,
∂p

∂v

)
where ∆i = ∂q

∂v
∂p
∂ui
− ∂q

∂ui

∂p
∂v .
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Assume, for instance, that ∂q
∂v = λ∂p

∂v for some function λ. Then, ∆i =

µi
∂p
∂v , with µi = λ ∂p

∂ui
− ∂q

∂ui
and thus, we can take

ν = µ1dx1 + · · ·+ µn−1dxn−1 − λdxn + dxn+1.

Conversely, suppose that there is non-zero 1-form ν such that L = (f, [ν])
is integral. Then, there is a function α, such that

∆i = ανi, i = 1, . . . , n− 1, −∂q
∂v

= ανn,
∂p

∂v
= ανn+1,

and hence,

ανi = −α
(
νn

∂p

∂ui
+ νn+1

∂q

∂ui

)
, i = 1, . . . , n− 1.

If α = 0, we have ∂p
∂v = ∂p

∂v = 0 and the result is obvious. Otherwise, if
α 6= 0, we have that

νi = −νn
∂p

∂ui
− νn+1

∂q

∂ui
, i = 1, . . . , n− 1.

Since ν(0) 6= 0, then necessarily either νn(0) = 0 or νn+1(0) 6= 0 so that

either ∂p
∂v |

∂q
∂v or ∂q

∂v |
∂p
∂v . �

Example 3.5. We apply this criterion to see some examples of frontal
surfaces:

(1) The swallowtail is (X, 0) is a frontal surface (see the right hand side of
fig. 2). In fact, it is parameterised by f(u, v) = (u, v3+uv, v4+ 2

3uv
2)

and we have ∂p
∂v = 3v2 + u and ∂q

∂v = 4
3v(3v2 + u).

(2) The folded Whitney umbrella is the surface (X, 0) in (C3, 0) param-
eterised by f(u, v) = (u, v2, uv3 + v5) (see fig. 4). This is also a

frontal since ∂p
∂v = 2v and ∂q

∂v = v(3uv + 5v3).

Now we define the codimension of a frontal as the codimension of the
Legendrian singularity whose projection is the frontal, with respect to Le-
gendre equivalence. Let us denote W = PT ∗Cn+1 for simplicity and let
L : (Cn, 0) → (W,w0) be the integral map germ given by L = (f, [ν]). We
recall the following notations from [5]:

(1) V IL is the space of all integral infinitesimal deformations of L, that
is, germs of vector fields along L which preserve the contact struc-
ture.

(2) V LW,w0 is the space of all germs of Legendre vector fields in (W,w0).

Definition 3.6. We define the Fe-codimension of f as

Fe − codim(f) = dimC
V IL

{dL ◦ ξ + η̃ ◦ L : ξ ∈ Vn, η̃ ∈ V LW,w0}
.

If the Fe-codimension is finite, we say that f is F -finite and if the Fe-
codimension is zero, then we say that f is F -stable.

According to [5], the space V IL can be interpreted as the space of all
infinitesimal integral deformations of L and the subspace

{dL ◦ ξ + η̃ ◦ L : ξ ∈ Vn, η̃ ∈ V LW,w0}
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should be understood as the extended tangent space to the orbit of L under
the action of Legendre equivalences. It follows from the definition that f is
F -stable if and only if L is infinitesimally Legendre stable in the sense of
[5]. By [5, 4.1], any corank 1 F -stable frontal is the projection of an open
Whitney umbrella.

All the above definitions are also valid if instead of germs we consider
multigerms f : (Cn, S) → (Cn+1, y), where S ⊂ Cn is any finite set and
y ∈ Cn+1. We use the above remark to classify the F -stable singularities
of curves and surfaces. Note that all the F -stable singularities of frontal
surfaces except folded Whitney umbrellas are generic fronts and their clas-
sification is well known (see for instance [1]).

Proposition 3.7. (1) The F -stable singularities of a frontal curve are
cusps and nodes.

(2) The F -stable singularities of a frontal surface are either: semicu-
bic cuspidal edges, swallowtails, folded Whitney umbrellas or their
transverse self-intersections (see fig. 4).

Figure 4

The following property is an adapted version of the Mather-Gaffney finite
determinacy criterion for frontals (see [15]).

Proposition 3.8. A frontal f : (Cn, 0)→ (Cn+1, 0) is F -finite if and only
if there is a proper and finite-to-one representative f : U → V such that
f−1(0) = {0} and the multigerm at any point y ∈ V \ {0} is F -stable.

By shrinking the neighbourhoods U, V if necessary, all the isolated F -
stable singularities can be avoided. Then, we have the following direct con-
sequence of propositions 3.7 and 3.8.

Corollary 3.9. (1) A frontal curve is F -finite if and only if it has iso-
lated singularity.
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(2) A frontal surface of corank 1 is F -finite if and only if the only singu-
larities outside the origin are transverse double points and semicubic
cuspidal edges.

Recall that if (X, 0) is δ1-minimal then 0 ≤ κ ≤ m0(X, 0) − 1, where κ
is the number of cusps. Then, we have the following property, which is, in
some sense, dual to Proposition 2.5.

Proposition 3.10. Let (X, 0) be a δ1-minimal surface parameterised by
f(u, v) = (u, γu(v)), where x = 0 is a generic plane. The following state-
ments are equivalent:

(1) κ = m0(X, 0)− 1,
(2) f is a F -finite frontal,
(3) f is a frontal unfolding of γ0 and for each t 6= 0, γt is F -stable.

Proof. Since (X, 0) is δ1-minimal, the only singularities outside the origin
are transverse double points and semicubic cuspidal edges. Moreover, for
each t, the transverse slice Yt is parameterised by γt(v) = (p(t, v), q(t, v))
and it has only cusps and nodes if t 6= 0. By 3.7 and 3.9, in order to show
the equivalence between the three statements, we only need to show that
κ = m0(X, 0)− 1 if and only if f is a frontal.

Given h ∈ O2, we denote by ov(h) the order of h in v, that is, the order
of h(0, v) ∈ O1. Assume that ov(p) = m and ov(q) = k with m ≤ k. Then,
because of the genericity assumption, we have that m0(X, 0) = m.

For a fixed small enough t 6= 0, κ is equal to the number of solutions of
pv(t, v) = qv(t, v) = 0 in v. If h = gcd(pv, qv), then κ is less than or equal to
the number of solutions of h(t, v) = 0 in v. In particular,

κ ≤ ov(h) ≤ ov(pv) = m− 1 = m0(X, 0)− 1.

Thus, we have the following equivalences:

κ = m0(X, 0)− 1⇐⇒ ov(h) = ov(pv)⇐⇒ pv|qv ⇐⇒ f is a frontal.

�

4. Local Euler obstruction

The local Euler obstruction was first introduced by McPherson [9] as an
ingredient in the construction of characteristic classes of singular algebraic
varieties. Here we prefer to use the approach of Lê-Teissier [7] in terms of
polar multiplicities. Given an analytic set germ (V, 0) ⊂ (Cn, 0) of dimension
d, its local Euler obstruction is computed as an alternate sum

Eu(V, 0) =

d−1∑
i=0

(−1)imi(V, 0),

where mi(V, 0) denotes the ith-polar multiplicity (see [7] for definitions and
details). In particular, for a surface (X, 0),

Eu(X, 0) = m0(X, 0)−m1(X, 0),

and hence, Eu(X, 0) ≤ m0(X, 0).
In the next theorem, we compute the local Euler obstruction of a δ1-

minimal surface in terms of the number of transverse cusps κ. To do this,
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we first characterize the number ν of transverse nodes in terms of the number
of vanishing cycles of the transverse slice Yt.

Lemma 4.1. Let (X, 0) be a δ1-minimal surface. Then, for each t 6= 0 small
enough, the Euler characteristic of Yt is

χ(Yt) = 1− ν.

Proof. Let us denote δ = δ1(X, 0) = δ(Y, 0). Since (X, 0) is δ1-minimal, we
have seen in the proof of theorem 2.1 that (Y, 0) is irreducible and hence its
Milnor number is µ(Y, 0) = 2δ (by Milnor’s formula).

On the other hand, χ(Yt) is related to the Milnor number by the following
formula [3]:

µ(Y, 0)−
∑

p∈S(Yt)

µ(Yt, p) = dimCH
1(Yt;C) = 1− χ(Yt).

For each t 6= 0 small enough, the only singularities of Yt are simple cusps,
with Milnor number 2, and nodes, with Milnor number 1. Hence, we obtain

µ(Y, 0)−
∑

p∈S(Yt)

µ(Yt, p) = 2δ − (2κ+ ν) = ν.

�

Theorem 4.2. Let (X, 0) be a δ1-minimal surface. Then,

Eu(X, 0) = 1 + κ.

In particular, 1 ≤ Eu(X, 0) ≤ m0(X, 0).

Proof. We use a formula of Brasselet-Lê-Seade [2] which is valid whenever
(X, 0) is equidimensional and has 1-dimensional singular locus Σ. We take
t 6= 0 small enough and assume that Yt ∩ Σ = {x1, . . . , xm}. Then,

Eu(X, 0) = χ(Yt)−m+
m∑
i=1

Eu(X,xi).

Note that Yt∩Σ is the singular locus of Yt and since each singular point has
delta invariant 1, we havem = δ1(X, 0) = κ+ν. By lemma 4.1, χ(Yt) = 1−ν.
For each i = 1, . . . ,m, Eu(X,xi) = 2 either if X is a semicubic cuspidal edge
or a transverse double point at xi. Thus,

Eu(X, 0) = 1− ν − (κ+ ν) + 2κ+ 2ν = 1 + κ.

�

As a consequence, we arrive to the following result which characterizes
those surfaces that are stable unfoldings of plane curves or frontals.

Corollary 4.3. Let (X, 0) ⊂ (C3, 0) be an irreducible surface with singular
locus of dimension 1. Then:

(1) (X, 0) is the image of a corank 1 A -finite germ if and only if it is
δ1-minimal and Eu(X, 0) = 1.

(2) (X, 0) is the image of a corank 1 F -finite front if and only if it is
δ1-minimal and Eu(X, 0) = m0(X, 0).

Proof. It follows directly from 2.1, 2.5, 3.10 and 4.2. �



12 J.J. NUÑO-BALLESTEROS

We finish with a last result, where we consider irreducible surfaces with
1-dimensional locus in any ambient space and without any finiteness as-
sumption. Given a space curve (Y, 0) ⊂ (CN , 0), the first polar multiplicity
was introduced by the author and Tomazella in [14]:

m1(Y, 0) := µ(`|(Y,0)),

where ` : CN → C is a generic linear form and µ(`|(Y,0)) is the Milnor number
in the sense of Mond and van Straten [13]. Then, it is showed that

(2) m1(Y, 0) = µ(Y, 0) +m0(Y, 0)− 1,

where µ(Y, 0) is now the Milnor number of a space curve as defined by
Buchweitz and Greuel [3].

Proposition 4.4. Let (X, 0) ⊂ (CN+1, 0) be a equidimensional surface with
1-dimensional singular set Σ. Then for t 6= 0,

m1(X, 0) = m1(Y, 0)−
∑

x∈S(Yt)

m1(Yt, x),

where Yt is the transverse slice of (X, 0).

Proof. This is a consequence again of the Brasselet-Lê-Seade formula to-
gether with (2):

m1(X, 0) = m0(X, 0)− Eu(X, 0)

= m0(X, 0)− χ(Yt) +
∑

x∈S(Yt)

(Eu(X,x)− 1)

= m0(Y0, 0)− 1 + (1− χ(Yt)) +
∑

x∈S(Yt)

(m0(Yt, x)− 1)

= m0(Y0, 0)− 1 + µ(Y0, 0)−
∑

x∈S(Yt)

(µ(Yt, x)−m0(Yt, x) + 1)

= m1(Y0, 0) +
∑

x∈S(Yt)

m1(Yt, x).

�

Corollary 4.5. With the above hypothesis, the following statements are
equivalent:

(1) m1(X, 0) = 0.
(2) (X, 0) defines a m1-constant deformation of (Y, 0).

Moreover, if N = 2 and (X, 0) admits a parameterisation, then any of the
two above statements is also equivalent to the following one:

(3) (X, 0) is a frontal.

Proof. The equivalence between he two first statements follows directly from
4.4. According to Lê-Teissier [7], the condition m1(X, 0) = 0 is also equiva-
lent to the fact that (X, 0) has a finite number of limiting tangent planes at
the origin. But in the particular case that (X, 0) admits a parameterisation
f : (C2, 0) → (C3, 0), then this condition is equivalent to that (X, 0) is a
frontal. �



UNFOLDING PLANE CURVES WITH CUSPS AND NODES 13

Acknowledgment: Thanks are due to G. Ishikawa and W.L. Marar for
their valuable comments.

References

[1] V.I. Arnol’d, S.M. Gusejn-Zade, A.N. Varchenko, Singularities of differentiable maps.
Volume I: The classification of critical points, caustics and wave fronts. Monographs
in Mathematics, Vol. 82. Boston-Basel-Stuttgart: Birkhäuser. 1985.
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