
GAUSS WORDS AND THE TOPOLOGY OF MAP GERMS

FROM R3 TO R3
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Abstract. The link of a real analytic map germ f : (R3, 0) → (R3, 0)
is obtained by taking the intersection of the image with a small enough
sphere S2

ϵ centered at the origin in R3. If f is finitely determined, then
the link is a stable map γ from S2 to S2. We define Gauss words which
contains all the topological information of the link in the case that the
singular set S(γ) is connected and we prove that in this case they provide
us with a complete topological invariant.

1. Introduction

Let f : (R3, 0) → (R3, 0) be a finitely determined map germ. By the
Mather-Gaffney criterion [11], we can consider a small enough representative
f : U → V such that f−1(0) = {0} and f is stable on U \ {0}. Moreover, by
shrinking U if necessary, we can also assume that f has no 0-dimensional
stable singularities (A3, A2A1 or A3

1) on U \ {0}. The topological structure
of f is determined by the so-called link of f , which is obtained by taking the
intersection of the image of f with a small enough sphere centered at the
origin S2

ϵ . We use a theorem due to Fukuda [2], which ensures that the link
of f is a stable map from S2 to S2 and that f is topologically equivalent to
the cone on its link.

Here, we want to study the topological classification of finitely determined
map germs, f : (R3, 0) → (R3, 0), by looking at the topological type of their
link. A natural open question is to determine whether given a stable map
γ : S2 → S2, there exists a finitely determined map germ f : (R3, 0) →
(R3, 0) which is topologically equivalent to the cone on γ.

Given a stable map γ : S2 → S2, then the singular set S(γ) is a 1-
dimensional closed submanifold of S2 and its image, the discriminant ∆(γ),
is a union of curves with only simple cusps or transverse double points. The
restriction γ : γ−1(∆(γ)) → ∆(γ) contains all the topological information
of γ, although in general we have also to take into account the embedding
types of γ−1(∆(γ)) and ∆(γ) in S2. In order to overcome that problem,
we restrict ourselves to the case that S(γ) is connected. Then, we will use
an adapted version of Gauss words to classify such stable maps. We prove
that, with this additional hypothesis, they become a complete topological
invariant. In the case that S(γ) is not connected, the Gauss words are not
enough to classify stable maps and we need to use some other global type
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invariants (see [4, 12]). Combining the adapted version of Gauss words (that
we call Gauss paragraphs) and Fukuda’s theorem we prove that two finitely
determined map germs f, g : (R3, 0) → (R3, 0) such that S(f) and S(g) are
smooth and distinct from the origin, are topologically equivalent if and only
if the Gauss paragraphs of their links are equivalent (see theorem 3.9).

We should notice that the techniques used in this paper have been already
used in previous papers [5, 6, 8]. We will use the results here in a forthcoming
paper [9] to obtain topological classifications of corank 1 map germs from R3

to R3. All map germs considered are real analytic except otherwise stated.
We adopt the notation and basic definitions that are usual in singularity
theory (e.g., A-equivalence, stability, finite determinacy, etc.), as the reader
can find in Wall’s survey paper [11].

2. Stability, finite determinacy and the link of a germ

In this section we recall the basic definitions and results that we will need,
including the characterization of stable maps from R3 to R3, the Mather-
Gaffney finite determinacy criterion and the link of a map germ.

Two smooth map germs f, g : (R3, 0) → (R3, 0) are A-equivalent if there
exist diffeomorphism germs ϕ, ψ : (R3, 0) → (R3, 0) such that g = ψ◦f ◦ϕ−1.
If ϕ, ψ are homeomorphisms instead of diffeomorphisms, then we say that
f, g are topologically equivalent.

We say that f : (R3, 0) → (R3, 0) is k-determined if any map germ g with
the same k-jet is A-equivalent to f . We say that f is finitely determined if
it is k-determined for some k.

Let f : U → V be a smooth proper map, where U, V ⊂ R3 are open
subsets. We denote by S(f) = {p ∈ U : Jfp = 0} the singular set of f ,
where Jf is the Jacobian determinant. Following Mather’s techniques of
classification of stable maps, it is well known (see for instance [3]) that f is
stable if and only if the following two conditions hold:

(1) Its only singularities are folds (A1), cusps (A2) and swallowtails (A3).
(2) f |S1,0,0(f) is an immersion with normal crossings: curves of double

points (A2
1) and isolated triple points (A3

1), f |S1,1,0(f) is an injective
immersion and the images of both restrictions intersect transversally
(A1A2).

See figure 1 for local pictures of the discriminant set of the stable singulari-
ties.

Both the stability criterion and the classification of the singular stable
points are also true if we consider a holomorphic proper map f : U → V ,
with U, V being open subsets of C3. So we consider now a holomorphic
map germ f : (C3, 0) → (C3, 0) and we recall the Mather-Gaffney finite
determinacy criterion [11]. Roughly speaking, f is finitely determined if and
only if it has an isolated instability at the origin. To simplify the notation,
we state the Mather-Gaffney theorem only in the case of map germs from
(C3, 0) to (C3, 0), although it is true in a more general form for map germs
from (Cn, 0) to (Cp, 0).
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Theorem 2.1. Let f : (C3, 0) → (C3, 0) be a holomorphic map germ. Then
f is finitely determined if and only if there is a representative f : U → V ,
where U, V are open subsets of C3 such that

(1) f−1(0) = {0},
(2) f : U → V is proper,
(3) the restriction f |U\{0} is stable.

From condition (3), the A3, A1A2 and A3
1 singularities are isolated points

in U \ {0}. By the curve selection lemma [7], we deduce that they are also
isolated in U . Thus, we can shrink the neighbourhood U if necessary and get
a representative such that f |U\{0} is stable with only folds, cuspidal edges
and double fold curves.

Coming back to the real case, we consider now an analytic map germ
f : (R3, 0) → (R3, 0). If we denote by f̂ : (C3, 0) → (C3, 0) the complexi-

fication of f , it is well known that f is finitely determined if and only if f̂
is finitely determined. So, we have the following immediate consequence of
the Mather-Gaffney finite determinacy criterion.

Corollary 2.2. Let f : (R3, 0) → (R3, 0) be a finitely determined map germ.
Then there is a representative f : U → V , with U, V being open subsets of
R3 such that

(1) f−1(0) = {0},
(2) f : U → V is proper,
(3) the restriction f |U\{0} is stable with only fold planes, cuspidal edges

and double fold point curves.

We finish this section with an important result due to Fukuda, which tells
us that any finitely determined map germ, f : (Rn, 0) → (Rp, 0), with n ≤ p,
has a conic structure over its link. The link is obtained by intersecting the
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image of a representative of f with a small enough sphere centered at the
origin of Rp. In order to simplify the notation, we only state the result in
our case n = p = 3.

We denote by Jr(R3,R3) the r-jet space and if s ≥ r we have the natural
projection πsr : J

s(R3,R3) → Jr(R3,R3).

Theorem 2.3. Let f : (R3, 0) → (R3, 0) be a finitely determined map germ.
Then, up to A-equivalence, there is a representative f : U → V and ϵ0 > 0,
such that, for any ϵ with 0 < ϵ ≤ ϵ0 we have:

(1) S̃2
ϵ = f−1(S2

ϵ ) is diffeomorphic to S2.

(2) The map f |
S̃2
ϵ
: S̃2

ϵ → S2
ϵ is stable.

(3) f is topologically equivalent to the cone on f |
S̃2
ϵ
.

Proof. Assume that f is r-determined for some r and let W = {jrf(0)},
where jrf(0) denotes the r-jet of f . By Fukuda’s theorem [2], there is s ≥ r,
and a closed semi-algebraic subset ΣW of (πsr)

−1(W ) having codimension
≥ 1 such that for any C∞ mapping g : R3 → R3 with jsg(0) belonging to
(πsr)

−1(W )\ΣW , there exists ϵ0 > 0 such that (1), (2) and (3) hold, for any ϵ
with 0 < ϵ ≤ ϵ0. Since (π

s
r)

−1(W )\ΣW ̸= ∅, we can take a map g : R3 → R3

with jsg(0) ∈ (πsr)
−1(W ) \ ΣW . This implies that jrg(0) = jrf(0) and g is

A-equivalent to f . �
Definition 2.4. Let f : (R3, 0) → (R3, 0) be a finitely determined map

germ. We say that the stable map f |
S̃2
ϵ
: S̃2

ϵ → S2
ϵ is the link of f , where f

is a representative such that (1), (2) and (3) of theorem 2.3 hold for any ϵ
with 0 < ϵ ≤ ϵ0. This link is well defined, up to A-equivalence.

Since any finitely determined map germ is topologically equivalent to the
cone on its link, we have the following immediate consequence.

Corollary 2.5. Let f, g : (R3, 0) → (R3, 0) be two finitely determined map
germs whose associated links are topologically equivalent. Then f and g are
topologically equivalent.

We will see that the converse of this corollary is also true at the end of the
following section, if we assume that the singular sets S(f), S(g) are smooth.

3. Gauss words

We recall that a Gauss word is a word which contains each letter exactly
twice, one with exponent +1 and another one with exponent −1. They were
introduced originally by Gauss to describe the topology of closed curves
in the plane R2 or in the sphere S2 (see for instance [10]). Here, we use
the same terminology of Gauss word to represent a different type of word,
adapted to our particular case of stable maps S2 → S2.

Along this section, we assume that γ : S2 → S2 is a stable map, that is,
such that all its singularities are folds and cusp points and that γ|S(γ) only
presents simple cusps and transverse double points. Moreover, we assume
that S(γ) and hence its image ∆(γ) are connected.
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Lemma 3.1. Let γ : S2 → S2 be a stable map such that S(γ) is connected.
Then:

(1) γ−1(∆(γ)) is also connected,
(2) the restriction of γ to each connected component of S2 \ γ−1(∆(γ))

is a diffeomorphism.

Proof. If S(γ) is empty, then γ−1(∆(γ)) is also empty. Moreover, γ is a local
diffeomorphism and hence a d-fold covering, for some d ≥ 1. Then,

2 = χ(S2) = dχ(S2) = 2d,

so d = 1 and γ is a diffeomorphism.
Assume that S(γ) is non empty, then S(γ) and γ−1(∆(γ)) are both non-

empty graphs in S2. Since S(γ) is connected, ∆(γ) is also connected and
hence, S2 \∆(γ) is a disjoint union of open discs. We show that γ−1(∆(γ))
is connected by showing that S2 \ γ−1(∆(γ)) is also a disjoint union of open
discs by Alexander duality.

Let C be a connected component of S2 \ γ−1(∆(γ)) and let D = γ(C)
be the corresponding connected component of S2 \ ∆(γ). The restriction
γ|C : C → D is again a d-fold covering, for some d ≥ 1. Therefore,

1− β1(C) = χ(C) = dχ(D) = d ≥ 1,

where β1(C) is the first Betti number of C. Hence, β1(C) = 0 and d = 1.
We deduce that C is an open disc and γ|C : C → D is a diffeomorphism. �

Now we look at the structure of the singular curves. We split γ−1(∆(γ))
as γ−1(∆(γ)) = S(γ) ∪X(γ) where

X(γ) = γ−1(∆(γ)) \ S(γ).
The local structure of these curves at a cusp or at a transverse double point
is shown in figure 2. In general X(γ) may have several components, that is,
it is equal to a finite union of closed curves with cusps or transverse double
points. We denote such components by X1(γ), . . . , Xk(γ).

∆(γ)

X(γ)

X(γ)

S(γ)

∆(γ)

X(γ)

S(γ)

X(γ)

Figure 2
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We now choose orientations on the spheres S2 (we may take different
orientations on each S2). Then there are natural orientations induced on
the singular curves:

• S(γ): we have on the left the positive region (where γ preserves the
orientation).

• ∆(γ): we have on the left the region of bigger multiplicity (the
number of inverse images of a value).

• Xj(γ): we have on the left the region of bigger premultiplicity (the
premultiplicity of a point is the multiplicity of its image).

At a transverse double point we have two oriented branches. One branch
is called positive if the other branch crosses from right to left at the double
point, otherwise we call it negative. We always have a positive and a negative
branch meeting at a double point (see figure 3).

- +

Figure 3

The next step is to choose a base point on each curve S(γ), ∆(γ) and
Xj(γ). We only need to choose a point in S(γ); this point uniquely deter-
mines a base point on all the other curves: writing for simplicity, X0(γ) =
S(γ), we fix a point z0 ∈ X0(γ) which determines a point γ(z0) ∈ ∆(γ). By
following the orientation in X0(γ), we consider the first point z1 appearing
in the curves X1(γ), . . . , Xk(γ) and we reorder the curves in such a way that
z1 ∈ X1(γ). Now we proceed by induction. Assume we have chosen a base
point zi on each curve Xi(γ), for i = 0, . . . , ℓ, with ℓ < k (after reorder-
ing the curves). We consider the first curve Xi(γ) which intersects one of
the remaining curves Xℓ+1(γ), . . . , Xk(γ) and take zℓ+1 as the first point
of intersection, following the base point and the orientation of Xi(γ). We
reorder the curves Xℓ+1(γ), . . . , Xk(γ) in such a way that zℓ+1 ∈ Xℓ+1(γ).
Since S(γ)∪X(γ) is connected, this procedure will determine a unique base
point zi on each curve Xi(γ), for i = 1, . . . , k.

We see in figure 4 how to choose the base points in an example where
X(γ) has two disjoint components. This corresponds to the inverse image
of the discriminant of example 3.3 (4). We also remark that the algorithm
to choose the base points on the curves X1(γ), . . . , Xk(γ) is not unique.
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Definition 3.2. Assume that ∆(γ) presents r double points and s simple
cusps, which are labeled by r+s letters {a1, a2, . . . , ar+s}. TheGauss word of
∆(γ), denoted byW0, is the sequence of cusps and double points that appear
when traveling around ∆(γ) starting from the base point and following the
orientation. If we arrive to a point ai, then we put a2i if it is a cusp, ai if it

corresponds to the positive branch of a double point or a−1
i if it corresponds

to the negative branch.
For each j = 1, . . . , k, the Gauss word of Xj(γ) is denoted by Wj and is

defined in an analogous way, but we have now more possibilities. Given a
point which is an inverse image of ai, if it belongs to S(γ) we use the same
letter ai to label the point; otherwise we put ai, ai, . . . (we use multiple bars
in order to distinguish between different inverse images). We also use the

same convention with the exponents: a2i , ai
2, ai

2
, . . . for a cusp, ai, ai, ai, . . .

for a positive branch of double point or a−1
i , ai

−1, ai
−1
, . . . for a negative

branch of double point.
We call Gauss paragraph to the list of Gauss words {W0,W1, . . . ,Wk}.

Example 3.3. Let’s examine the link of each of the three stable singulari-
ties.

(1) Let γ : S2 → S2 be the link of the fold f(x, y, z) = (x, y, z2). Then
∆(γ) doesn’t present any simple cusp or double point. The Gauss
paragraph is just {∅} (figure 5).

Figure 5
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(2) Let γ : S2 → S2 be the link of the cuspidal edge f(x, y, z) =
(x, y, xz + z3). Then ∆(γ) presents 2 simple cusps, each one with a
single inverse image. The Gauss paragraph in this case is {a2b2, a2b2}
(figure 6).

a

bb

a

Figure 6

(3) Let γ : S2 → S2 be the link of the swallowtail f(x, y, z) = (x, y, z4+
xz+yz2). Then ∆(γ) present 2 simple cusps, each one with 2 inverse
images, and a double fold point, with 2 inverse images. The Gauss

paragraph is {a−1b2c2a, a−1b
2
c2ac2b2} (figure 7).

a

bc

a
b

c

a c

b

Figure 7

(4) Let γ : S2 → S2 be the link of the germ f(x, y, z) = (x, y, z4 + xz −
y2z2). Then ∆(γ) presents 4 simple cusps, each one with 2 inverse
images, and 2 double fold points, each one with 2 inverse images.
The Gauss paragraph in this case is (figure 8):

a−1b2c2ad−1e2f2d,

ac2b2a−1b
2
c2,

df
2
e2d−1e2f2.
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It is obvious that the Gauss paragraph is not uniquely determined, since
it depends on the labels a1, . . . , ar+s, the chosen orientations in each S2

and the base point z0 ∈ S(γ). Different choices will produce the following
changes in the Gauss paragraph:

(1) a permutation in the set of the letters a1, . . . , ar+s,
(2) a reversion in the Gauss words together with a change in the expo-

nents +1 to −1 and viceversa,
(3) a cyclic permutation in the Gauss words.

We say that two Gauss paragraphs are equivalent if they are related
through these three operations. Under this equivalence, the Gauss para-
graph is now well defined.

In order to simplify the notation, given a stable map γ : S2 → S2, we
denote by w(γ) the associated Gauss paragraph and by ≃ the equivalence
relation between Gauss paragraphs.

As a consequence of this definition and previous remarks we have the
following important result:

Theorem 3.4. Let γ, δ : S2 → S2 be two stable maps such that S(γ) and
S(δ) are connected and non empty. Then γ, δ are topologically equivalent if
and only if w(γ) ≃ w(δ).

Proof. Let us denote by w(γ) = {W0,W1, . . . ,Wk} the Gauss paragraph of
γ with respect to some labels {a1, a2, . . . , ar+s}, some orientations in the
source and the target S2 and some base point z0 ∈ S(γ).

Suppose that δ is topologically equivalent to γ. Then, there are homeo-
morphisms ϕ, ψ : S2 → S2 such that δ = ψ ◦γ ◦ϕ−1. We use the same labels
{a1, a2, . . . , ar+s} in such a way that if ai is the label of a cusp or double
point of γ, then it is also the label of its image through ψ and if ai, ai, ai, . . .
is the label of an inverse image in γ, then we take the same label for its
image through ϕ. We choose the orientations in the source and the target
S2 induced by the orientations of γ and the homeomorphisms ϕ, ψ. Finally,
we set ϕ(z0) ∈ S(δ) as the base point. With these choices, we have that
w(δ) = {W0,W1, . . . ,Wk} = w(γ).
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We show now the converse. We divide the proof into several cases.

Case 1: w(γ) = w(δ). We can assume that w(γ) = w(δ) ̸= ∅, since
otherwise both maps should be topologically equivalent to the link of the
fold.

We first observe that each stable map γ with w(γ) ̸= ∅ induces a unique
cellular structure on S2 such that γ restricted to each cell is a homeomor-
phism. In the target, the 0-cells are the cusps and double folds and the
1-skeleton is ∆(γ); in the source, the 0-cells are the inverse images of the
cusps and double folds and the 1-skeleton is S(γ) ∪X(γ).

The second fact is that such cellular structure can be deduced in a unique
way from the Gauss paragraph of γ. In the target, the 0-cells are labelled
by the letters a1, . . . , ar+s, each 1-cell is an oriented edge given by two
consecutive letters aϵia

η
j inW0 (including also the edge joining the last to the

first letter) and each 2-cell is a face which is determined by a closed sequence
of oriented edges or their inverses. In the source, we proceed analogously
but this time we take into account all the Gauss words W0, . . . ,Wk.

If w(γ) = w(δ), we write γ : M1 → P1 and δ : M2 → P2 where Mi, Pi
denote S2 with the associated cellular structure in the source or the target
respectively. Since the Gauss word of ∆(γ) is equal to the Gauss word of
∆(δ), we have that P1, P2 are isomorphic as CW-complexes. We choose a
cellular homeomorphism β : P1 → P2. Then we construct another cellular
homeomorphism α : M1 → M2 such that δ ◦ α = β ◦ γ. Given a cell E in
M1, then there is a unique cell E′ in M2 corresponding to the same label in
the Gauss word and such that β(γ(E)) = δ(E′). We define α|E : E → E′ as
α|E = (δ|E′)−1 ◦ β|γ(E) ◦ γ|E .
Case 2: w(γ) ≃ w(δ).

(1) Suppose that w(γ), w(δ) are related through a permutation τ in the
set of the letters a1, a2, . . . , ar+s. The proof is essentially the same
as in case 1, but we construct the homeomorphisms α, β in such a
way that a vertex with label ai is mapped into a vertex with label
aτ(i), and so on.

(2) Assume that w(γ), w(δ) are related through a reversion in the Gauss
words together with a change in the exponents. We take J : S2 −→
S2, with J(x1, x2, x3) = (x1, x2,−x3) such that either w(γ) = w(δ ◦
J), w(γ) = w(J ◦ δ) or w(γ) = w(J ◦ δ ◦ J). Then the result follows
from case 1.

(3) Assume that w(γ), w(δ) are related through cyclic permutations in
the Gauss words. Then we can choose again a homeomorphism
T : S2 → S2 such that w(γ) = w(δ ◦ T ) and apply case 1.

�
Remark 3.5. The equivalence between the Gauss words of ∆(γ) and ∆(δ)
is not enough to guarantee that γ and δ are topologically equivalent. In
fact, even if γ, δ have isomorphic discriminants ∆(γ),∆(δ), they are not
necessarily topologically equivalent in general (see [1]).

Remark 3.6. Note that theorem 3.4 is not true if S(γ) is not connected.
We find in [4, Figure 6] an example of two stable maps from S2 to S2, both
with empty Gauss words, which are not topologically equivalent. In that
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paper, the authors consider other global type invariants, for instance, the
graph associated to the connected components of the complement of S(γ),
but again this is far from being a complete invariant.

Now, we are in position to state and prove the converse of corollary 2.5 in
the case that the singular sets are smooth. In fact, if f : (R3, 0) → (R3, 0)
is a finitely determined map germ such that S(f) is smooth and distinct
from the origin, then the singular set of its link S(f |

S̃2
ϵ
) is connected and

non empty and hence, we can use theorem 3.4.

Theorem 3.7. Let f, g : (R3, 0) → (R3, 0) be two finitely determined map
germs such that S(f) and S(g) are smooth and distinct from the origin.
Then, if f and g are topologically equivalent, their respective links are topo-
logically equivalent.

Proof. Since f and g are topologically equivalent, there are homeomorphisms
ϕ, ψ : (R3, 0) → (R3, 0) such that ψ ◦ f = g ◦ ϕ. We take small enough

representatives and ϵ > 0 such that f |
S̃2
ϵ
is the link of f . Write M = ϕ(S̃2

ϵ )

and P = ψ(S2
ϵ ); there is a commutative diagram

S̃2
ϵ

f |
S̃2
ϵ−−−−→ S2

ϵyϕ yψ
M

g|M−−−−→ P

.

Let us denote by w(f |
S̃2
ϵ
) = {W0,W1, . . . ,Wk} the Gauss paragraph with

respect to some labels {a1, a2, . . . , ar+s}, some orientations in S̃2
ϵ and S

2
ϵ and

a cusp z0 ∈ S(f |
S̃2
ϵ
) as a base point.

We also put R = ϕ(D̃3
ϵ ) and Q = ψ(D3

ϵ ) and consider the restriction
g|R : R → Q. We take δ > 0 small enough such that D3

δ ⊂ Q and g|
S̃2
δ
is

the link of g. Then we consider in R,Q the orientations induced by ϕ, ψ

respectively, in D̃3
δ , D

3
δ the orientations induced as submanifolds of R,Q

respectively and in S̃2
δ , S

2
δ the orientations induced as boundaries of D̃3

δ , D
3
δ

respectively.
For each cusp or double fold in the target of g|

S̃2
δ
we can associate a unique

letter ai in the obvious way: consider the curve of cusps or double folds of g
joining the origin to this point and take the point of such curve in P , which
is the image of a cusp or double fold in the target of f |

S̃2
ϵ
, labelled by ai

(see figure 9). For cusps or double folds in the source of g|
S̃2
δ
we proceed

analogously.
By using the same procedure, we take as a base point the corresponding

cusp z′0 ∈ S(g|
S̃2
δ
) coming from the cusp z0 ∈ S(f |

S̃2
ϵ
).

With these choices it becomes clear that g|
S̃2
δ
has the same Gauss para-

graph w(g|
S̃2
δ
) = {W0,W1, . . . ,Wk} and therefore, it is topologically equiva-

lent to f |
S̃2
ϵ
by theorem 3.4.

�
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P

δ

a
a

a
a

i

i
j

j

S2

Figure 9

Remark 3.8. If S(f) is equal to the origin its associated link γ : S2 → S2

becomes a regular map and hence a diffeomorphism by lemma 3.1. Hence,
in this case we only have one topological class, namely the regular map
f(x, y, z) = (x, y, z).

For example, if we consider the map germ f(x, y, z) = (x, y, x2z + y2z +
1
3z

3), its singular set S(f) is given by the equation x2 + y2 + z2 = 0, so, in
the real case, it only contains the origin. As a consequence f is topologically
equivalent to the regular map.

Putting together theorems 3.4 and 3.7 and corollary 2.5, we have the
following result.

Theorem 3.9. Let f, g : (R3, 0) −→ (R3, 0) be two finitely determined map
germs such that S(f) and S(g) are smooth and distinct from the origin.
Then f and g are topologically equivalent if and only if their links have
equivalent Gauss paragraphs.
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