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Abstract. We consider finitely determined map germs f : (R3, 0) → (R2, 0) with
f−1(0) = {0} and we look at the classification of this kind of germs with respect to
topological equivalence. By Fukuda’s cone structure theorem, the topological type of
f can be determined by the topological type of its associated link, which is a stable
map from S2 to S1. We define a generalized version of the Reeb graph for stable maps
γ : S2 → S1 which turns out to be a complete topological invariant. If f has corank 1,
then f can be seen as a stabilization of a function h0 : (R2, 0)→ (R, 0) and we show that
the Reeb graph is the sum of the partial trees of the positive and negative stabilizations
of h0. Finally, we apply this to give a complete topological description of all map germs
with Boardman symbol Σ2,1.

1. Introduction

The classification problem of singular points of smooth map germs is one of the most
important problems in Singularity theory. The classical classification is done via A-
equivalence, where we take diffeomorphisms in the source and the target. However, this is
a difficult problem and it presents a lot of rigidity. Then it seems natural to investigate the
classification of mappings up to weaker equivalence relations. Here we consider topological
equivalence or C0-A-equivalence, where the changes of coordinates are homeomorphisms
instead of diffeomorphisms. Even that, Nakai showed in [19] that they appear moduli in
the topological classification of polynomial map germs f : (R3, 0)→ (R2, 0).

This paper is devoted to the topological classification of smooth map germs from R3

to R2 which are finitely determined. Finite determinacy is a key notion in Singularity
theory because if f : (R3, 0) → (R2, 0) is finitely determined, then it may be assumed
polynomial. Restricted to the class of finitely determined map germs from R3 to R2 of a
given degree, it follows from Thom or Nishimura’s works (cf. [20, 25]) that the number of
topological types is finite. In other words, this problem is tame in the sense that it does
not have topological moduli.

The topological structure of a finitely determined map germ f : (R3, 0) → (R2, 0) is
given by the so-called link of f (cf. [7]). The link of f is obtained by taking a small enough
representative f : U ⊂ R3 → R2 and the intersection of its image with a small enough
sphere S1

δ centered at the origin in R2. When f has isolated zeros (i.e., f−1(0) = {0}),
the link is a stable map γ : S2 → S1 and f is topologically equivalent to the cone of
γ. As a consequence, two finitely determined map germs f, g : (R3, 0) → (R2, 0) are
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topologically equivalent if their associated links are topologically equivalent. Then, some
open questions arise in a natural way related to our classification problem:

(1) Find a good combinatorial model to describe the topology of stable maps from S2

to S1.
(2) Show that if f, g are topologically equivalent then their associated links are also

topologically equivalent.
(3) Find relations between the analytic invariants of f (e.g. corank, Boardman symbol,

etc.) and the topological invariants of the link.
(4) Characterize all the stable maps which can be realized as the link of a finitely

determined map germ f : (R3, 0)→ (R2, 0).

Inspired by the works of Arnold, Prishlyak or Sharko (see [1, 21, 24]) we introduce in
Section 3 an adapted version of the Reeb graph to answer question (1). The classical Reeb
graph is defined for a Morse function γ : M → R, but here we have to extend it to the
case that the map takes values on S1 instead of R. Then, our generalized version of the
Reeb graph turns out to be a complete topological invariant for stable maps γ : S2 → S1

(see Corollary 3.9). Moreover, the Reeb graph is also the key tool which gives the answer
to question (2) (Corollary 3.12).

In Section 4 we take special attention to the case that f has corank 1. In this case, f can
be written as f(x, y, z) = (x, hx(y, z)) and gives a stabilization of h0 : (R2, 0) → (R, 0).
The topology of f is now determined by the two stabilizations h+

x , with x > 0 and h−x ,
with x < 0. We introduce the notion of partial trees associated to h+

x and h−x and show
that the sum of the partial trees is equivalent to the Reeb graph of the link of f (Theorem
4.10). In the last part we give a complete description of those map germs with Boardman
symbol Σ2,1 and provide a complete topological classification of this type of map germs
up to multiplicity 6 (Theorem 4.13). This partially answers the questions (3) and (4).

The case where f has non isolated zeros (i.e., f−1(0) 6= {0}) is more complicated. In
that case, the link is a stable map γ : M → S1, where now M is a compact surface with
boundary and genus zero. However, we need a generalized version of the cone to describe
the topology of f (see [3]). The topological classification of map germs with non isolated
zeros will be considered in a forthcoming paper [2].

Some recent papers treat the topological classification of finitely determined map germs
f : (Rn, 0) → (Rp, 0) by looking at the topological type of the link (see, for instance,
[3, 13, 16, 17, 18]). However, as far as we know, this is the first time where it is considered
the case n > p.

All map germs considered are real analytic except otherwise stated. We adopt the usual
notation and basic definitions that are usual in Singularity theory (e.g., A-equivalence,
finite determinacy, stability, bifurcation set, etc.) as the reader can find in Wall’s survey
paper [26].

2. Finite determinacy and the link of a map germ

Two smooth map germs f, g : (R3, 0) → (R2, 0) are A-equivalent if there exist diffeo-
morphism germs ψ : (R3, 0) → (R3, 0) and φ : (R2, 0) → (R2, 0) such that f = φ ◦ g ◦ ψ.
If φ, ψ are homeomorphisms instead of diffeomorphisms, then we say that f and g are
topologically equivalent (or C0-A-equivalent).

We say that f : (R3, 0)→ (R2, 0) is k-determined if for any map germ g with the same
k-jet, we have that g is A-equivalent to f . We say that f is finitely determined if it is
k-determined for some k.
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Let f : U → R2 be a smooth map, where U ⊂ R3 is an open subset. We denote by
S(f) = {p ∈ U | Jf(p) does not have rank 2} the singular set of f , where Jf(p) is the
Jacobian matrix of f . We also denote the discriminant set of f by ∆(f) = f(S(f)).

When we start a classification of generic singularities, the first step is know the stable
singularities. The characterization of stable singularities of maps from R3 to R2 is well
known (cf. [8]) and it is given by:

Proposition 2.1. A smooth map f : U ⊂ R3 → R2 is stable if only if the following
conditions are satisfied:

(1) For every p ∈ U , the germ of f at p is A-equivalent to one of the following germs:
• (x, y) if p is a regular point;
• (x, y2 + z2) if p is a definite fold point D;
• (x, y2 − z2) if p is an indefinite fold point I;
• (x, y3 + xy + z2) if p is a cusp point.

(2) For every q ∈ ∆(f), f−1(q) ∩ S(f) consists of at most two points. Moreover, if
f−1(q)∩ S(f) consists of two points, then the multi-germ of f at f−1(q)∩ S(f) is
A-equivalent to one of the following three multi-germs:
• (x1, y

2
1 + z2

1), (y2
2 + z2

2 , x2) called nodefold D&D;
• (x1, y

2
1 + z2

1), (y2
2 − z2

2 , x2) called nodefold D&I;
• (x1, y

2
1 − z2

1), (y2
2 − z2

2 , x2) called nodefold I&I.

From the global point of view, it is a consequence of Levine’s work [12] that f is stable
if and only if:

(G1) If p ∈ U is a cusp point, then f−1(f(p)) ∩ S(f) = {p},
(G2) f |(S(f)− {cusp points}) is an immersion with normal crossings.

When f : (R3, 0) → (R2, 0) is not stable but it is finitely determined, then roughly
speaking, f has an isolated instability at the origin. This is known as Mather-Gaffney
finite determinacy criterion [26]. In fact, the Mather-Gaffney criterion is valid for holo-
morphic map germs f : (Cn, 0) → (Cp, 0), but we can obtain some consequences of this
criterion in the real case as follows.

Theorem 2.2. A holomorphic map germ f : (Cn, 0) → (Cp, 0) is finitely determined if
and only if there is a representative f : U ⊂ Cn → Cp such that

i) S(f) ∩ f−1(0) = {0},
ii) the restriction f |U − {0} is stable.

Since the case of our interest is n = 3 and p = 2, from the condition ii), the cusps
are isolated points in U − {0}. Then we can shrink the neighborhood U if necessary in
Theorem 2.2 to get a representative f : U ⊂ C3 → C2 such that the restriction f |U −{0}
is stable with only simple folds. The word simple here means that the folds are not double
points.

Coming back to real case, we consider now an analytic map germ f : (R3, 0)→ (R2, 0).
If fC : (C3, 0) → (C2, 0) is the complexification of f , it follows from Wall’s survey paper
[26] that f is finitely determined if and only if its complexification fC is finitely determined.
Then we have as consequence of the Theorem 2.2 the following real criterion:

Corollary 2.3. Let f : (R3, 0)→ (R2, 0) be a finitely determined map germ. Then there
exists a representative f : U ⊂ R3 → R2 such that

i) S(f) ∩ f−1(0) = {0},
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ii) the restriction f |U − {0} is stable with only definite and indefinite simple folds.

If f is finitely determined, then its discriminant ∆(f) is a plane curve with an isolated
singularity at the origin. The number of half branches of ∆(f) will play a crucial role in
the analysis of the Reeb graph associated to link of f and consequently, in the topological
classification of f .

Denote by Jr(n, p) the r-jet space from (Rn, 0) to (Rp, 0). For positive integers r
and s with s ≥ r, let πsr : Js(n, p) → Jr(n, p) be the canonical projection defined by
πsr(j

sf(0)) = jrf(0). For a positive number ε > 0 we set

Dn
ε = {x ∈ Rn | ‖x‖2 ≤ ε}, Bn

ε = {x ∈ Rn | ‖x‖2 < ε} and Sn−1
ε = {x ∈ Rn | ‖x‖2 = ε}.

We denote Dn, Bn and Sn−1 the standard disk, ball and sphere of radius 1, respectively.
T. Fukuda has proved the following cone structure theorem in his papers [6, 7]:

Theorem 2.4. For any semialgebraic subset W of Jr(n, p), there exist an integer s (s ≥ r)
depending only n, p and r, and there exists a closed semialgebraic subset ΣW of (πsr)

−1(W )
having codimension ≥ 1 such that for any C∞ mapping f : Rn → Rp with jsf(0) belonging
to (πsr)

−1(W ) \ ΣW we have the following properties:

(A) f−1(0) = {0} there is ε0 > 0 such that for any number ε with 0 < ε ≤ ε0 we have:

(A-i) the set S̃n−1
ε = f−1(Sp−1

ε ) is a C∞ submanifold without boundary, which is
diffeomorphic to the standard unit sphere Sn−1.

(A-ii) The restricted mapping f |S̃n−1
ε : S̃n−1

ε → Sp−1
ε is topologically stable (C∞

stable if (n, p) is a nice pair in Mather’s sense).
(A-iii) If D̃n−1

ε = f−1(Dp−1
ε ), then the restricted mapping f |D̃n−1

ε : D̃n−1
ε → Dp

ε is
topologically equivalent to the cone of f |S̃n−1

ε .

(B) f−1(0) 6= {0} for any sufficiently small positive numbers ε and δ, the upper bound
of ε depending of f and the upper bound of δ depending of ε and f , we have:

(B-i) f−1(0)∩ Sn−1
ε is an (n− p− 1)-dimensional manifold and it is diffeomorphic

to f−1(0) ∩ Sn−1
ε0

.

(B-ii) Dn
ε ∩ f−1(Sp−1

δ ) is a C∞ manifold, in general with boundary and it is diffeo-

morphic to Dn
ε0
∩ f−1(Sp−1

δ0
).

(B-iii) the restriction f |Dn
ε ∩ f−1(Sp−1

δ ) : Dn
ε ∩ f−1(Sp−1

δ ) → Sp−1
δ is a topologically

stable map (C∞ stable if (n, p) is a nice pair in Mather’s sense) and its topo-
logical class is independent of ε and δ.

Assuming that f is r-determined for some r and taking W = {jrf(0)}, we can apply
Theorem 2.4 to obtain a representative of f satisfying (A) or (B), depending on if f−1(0) =
{0} or f−1(0) 6= {0}. Note that when n ≤ p we always have f−1(0) = {0} but when n > p
we may have the two possibilities.

Definition 2.5. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ such that
f−1(0) = {0}. We say that the stable map f |S̃2

ε : S̃2
ε → S1

ε is the link of f , where f is a
representative that satisfies the Fukuda’s conditions (A) of Theorem 2.4 adapted for case
n = 3 and p = 2.

It follows from the definition that the link of f is a stable map γ : S2 → S1, that
is, γ has only Morse singularities with distinct critical values. Moreover, the link is well
defined up to A-equivalence and f is topologically equivalent to the cone of γ. Hence, we
have the following immediate consequence.
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Corollary 2.6. Two finitely determined map germs f, g : (R3, 0)→ (R2, 0) with f−1(0) =
{0} = g−1(0) are topologically equivalent if their associated links are topologically equiva-
lent.

Remark 2.7. When f−1(0) 6= {0}, it is also common to call the link of f to the stable
map f |D3

ε ∩ f−1(S1
δ ) : D3

ε ∩ f−1(S1
δ ) → S1

δ , where f is a representative that satisfies the
Fukuda’s conditions (B) of Theorem 2.4 adapted for case n = 3 and p = 2. However, in
this case, f is not topologically equivalent to the cone of the link in the classical sense.
Instead of this, we have to consider a generalized version of the cone which turns out to
be topologically equivalent to f (see [3] for details). The topological classification of this
class of map germs will be considered in a forthcoming paper [2].

3. The generalized Reeb graph

The Reeb graph was introduced by Reeb in [22] and it is well known that it is a complete
topological invariant for Morse functions from S2 to R (see [1, 24]). In this section we
extend the concept of Reeb graph for stable maps from S2 to S1.

Let γ : S2 → S1 be a stable map. Consider the following equivalence relation on S2:
x ∼ y ⇔ γ(x) = γ(y) and x and y are in the same connected component of γ−1(γ(x)).

Proposition 3.1. Let γ : S2 → S1 be a stable map. Then γ is not a regular map.

Proof. Suppose γ is a regular map, then γ(S2) ⊂ S1 would be an open set. Since γ(S2)
is also closed, we get γ(S2) = S1 and hence, γ is surjective. By Ehresmann’s fibration
theorem [4], f is a locally trivial fibration. In particular, if F is a fiber we have that

2 = χ(S2) = χ(S1)χ(F ) = 0,

what is an absurd. �

Proposition 3.2. Let γ : S2 → S1 be a stable map. Then the quotient space S2/ ∼
admits the structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves γ−1(v), where v ∈ S1 is
a critical value;

(2) each edge is formed by points that correspond to connected components of level
curves γ−1(v), where v ∈ S1 is a regular value.

Proof. Since γ is stable we have a finite number of critical values v1, . . . , vr and for each
i = 1, . . . , r, γ−1(vi) has a finite number of connected components. Then,

γ|S2 − γ−1({v1, . . . , vr}) : S2 − γ−1({v1, . . . , vr})→ S1 − {v1, . . . , vr}
is regular, and the induced map

γ̃ : (S2 − γ−1({v1, . . . , vr}))/ ∼→ S1 − {v1, . . . , vr}
is a local homeomorphism. Each connected component of S1−{v1, . . . , vr} is homeomor-
phic to an open interval, so each connected component of (S2 − γ−1({v1, . . . , vr}))/ ∼ is
also homeomorphic to an open interval.

�

Each vertex of the graph can be of three types, depending on if the connected component
has a maximum/minimum critical point, a saddle point or just regular points. Then, the
possible incidence rules of edges and vertices are given in fig. 1.
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b c

Figure 1

Let v1, . . . , vr ∈ S1 be the critical values of γ. Let us choose a base point v0 ∈ S1 and
an orientation. We can reorder the critical values such that v0 ≤ v1 < . . . < vr and we
label each vertex with the index i ∈ {1, . . . , r}, if it corresponds to the critical value vi.

Definition 3.3. The graph given by S2/ ∼ together with the the labels of the vertices,
as previously defined, is said to be the generalized Reeb graph associated to γ : S2 → S1.

For simplicity, from now on we will just call Reeb graph to the generalized Reeb graph,
unless otherwise specified.

Proposition 3.4. Let γ : S2 → S1 be a stable map. Then the Reeb graph of γ is a tree.

Proof. Let Γ be the Reeb graph of γ. Since Γ is connected, in order to show that Γ is
a tree, we only need to prove that its Euler characteristic is χ(Γ) = 1. We have that
χ(Γ) = V − E, where V,E denote the number of vertices and edges of Γ, respectively.

On one hand, V = M + S + I where M,S, I denote the numbers of vertices of
each type: maximum/minimum, saddle or regular, respectively. Note that V 6= 0 by
Proposition 3.1.

On the other hand, by Euler’s formula E = 1
2

∑
deg(vi) where vi are the vertices of

Γ. Since γ is stable, the degree of each vertex of maximum/minimum type is 1, while of
regular type is 2 and of saddle type is 3 (see fig. 1). Hence,

χ(Γ) = V − E = M + S + I − 1

2
(M + 2I + 3S) =

M − S

2
= 1,

where the last equality follows from the Morse formula: M − S = χ(S2) = 2. �

Remark 3.5. The classical Reeb graph is defined in the same way, but the vertices are just
the connected components of level curves γ−1(v) which contain a critical point. Hence,
our generalized Reeb graph contains some extra vertices corresponding to the regular
connected components of γ−1(v), where v is a critical value. Of course the classical Reeb
graph can be obtained from the generalized one just by eliminating the extra vertices and
joining the two adjacent edges. But in general, the generalized Reeb graph provides more
information.

We present in fig. 2 two examples of stable maps γ1, γ2 : S2 → S1 with their respective
generalized Reeb graphs. Both examples share the same classical Reeb graph, but the
generalized Reeb graphs are different. The example on the left hand side is a non-surjective
map, whilst the map on the right hand side is surjective, therefore the maps are not
topologically equivalent. This shows that the classical Reeb graph is not sufficient to
distinguish between these two examples.

Notice that if γ : S2 → S1 is not surjective, then we can look at γ as a Morse function
from S2 to R (via stereographic projection). In this case, the generalized Reeb graph can



THE REEB GRAPH OF A MAP GERM FROM R3 TO R2 WITH ISOLATED ZEROS 7

be deduced from the classical one just by adding the extra vertices each time that one
passes through a critical value.

S2

1

2

/~

1

2
S2

S1

/~S2

S2
S1

2 2

1 1

2

1

γ

γ

γ

γ

1

1

2

2

_ _

Figure 2

It is obvious that labeling of vertices of the Reeb graph is not uniquely determined,
since it depends on the chosen orientations and the base points on each S1. Different
choices will produce either a cyclic permutation or a reversion of the labeling in the Reeb
graph. This leads us to the following definition of equivalent Reeb graphs.

Let γ, δ : S2 → S1 be two stable maps. Let Γγ and Γδ be their respective Reeb graphs.
Consider γ̄ : Γγ → S1

γ and δ̄ : Γδ → S1
δ the induced quotient maps, where S1

γ , S
1
δ denote

S1 with the graph structure whose vertices are the critical values of γ, δ respectively (as
illustrated in fig. 2).

Definition 3.6. We say that Γγ is equivalent to Γδ and we denote it by Γγ ∼ Γδ, if there
exist graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ , such that the following diagram

is commutative:

Vγ
γ̄|Vγ−−−→ ∆γ

j|Vγ

y yl|∆γ
Vδ

δ̄|Vδ−−−→ ∆δ

where Vγ = {vertices of Γγ}, Vδ = {vertices of Γδ} and ∆γ and ∆δ are their respective
discriminant sets.

Theorem 3.7. Let γ, δ : S2 → S1 be two stable maps. If γ and δ are topologically
equivalent then their respective Reeb graphs are equivalent.

Proof. Since γ and δ are topologically equivalent there exist h : S2 → S2 and k : S1 → S1

homeomorphisms such that k ◦ γ ◦ h = δ. Then h takes critical points into critical points
and k takes critical values into critical values. Hence h induces a graph isomorphism from
Γγ to Γδ and k induces a graph isomorphism from S1

γ to S1
δ which give the equivalence

between the Reeb graphs. �

Theorem 3.8. Let γ, δ : S2 → S1 be two stable maps such that Γγ ∼ Γδ. Then γ is
A-equivalent to δ.
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Proof. This is an adaptation of the proof of [10, Theorem 4.1]. Since Γγ ∼ Γδ, there exist
graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ as in Definition 3.6. We choose a

homeomorphism h : Γγ → Γδ and a diffeomorphism k : S1
γ → S1

δ which realize the graph

isomorphisms j, l respectively and such that δ̄ ◦ h = k ◦ γ̄.
Since k ◦ γ is A-equivalent to γ then by Theorem 3.7 we have Γk◦γ ∼ Γγ. Moreover,

these graphs are the same because k ◦ γ̄ = k ◦ γ. In other words the following diagram is
commutative:

Γδ
δ̄ // S1

Γγ

h

OO

k◦γ

??

For simplicity, we write simply γ instead of k ◦ γ. By construction h(Vγ) = Vδ, but now
γ and δ have the same critical values v1, . . . , vn ∈ S1. We choose a base point and an
orientation in S1 and assume that

v1 < v2 < . . . < vn.

Denote by arc(a, b) the oriented arc from a to b in S1, and by arc(a, b) its closure.
Let wi be the middle point of arc(vi, vi+1), for i = 1, . . . , n with vn+1 = v1 and let
ξ : S1 \ {wn} → R be an orientation preserving diffeomorphism.

For each critical value vi with i = 1, . . . , n, we can choose εi > 0 as in Definition A.5,
and by Theorem A.6, there exists a diffeomorphism

hi : (ξ ◦ γ)−1[ξ(vi)− 2ε2i , ξ(vi) + 2ε2i ]→ (ξ ◦ δ)−1[ξ(vi)− 2ε2i , ξ(vi) + 2ε2i ]

such that ξ ◦ γ = ξ ◦ δ ◦ hi. Since ξ is a diffeomorphism, it follows that γ = δ ◦ hi when
restricted to

γ−1(arc(ξ−1(ξ(vi)− 2ε2i ), ξ
−1(ξ(vi) + 2ε2i ))).

Let ai, a
−
i , bi, b

−
i ∈ S1 be given by

ai = ξ−1(ξ(vi) + 2ε2i ), a−i = ξ−1(ξ(vi)− 2ε2i ),

bi = ξ−1(ξ(vi) + ε2i ), b−i = ξ−1(ξ(vi)− ε2i ).
Since ξ is orientation preserving,

wi < a−i < b−i < vi < bi < ai < wi+1.

Denote by

Ai = γ−1(arc(a−i , ai)), A′i = δ−1(arc(a−i , ai)),

Bi = γ−1(arc(bi, b
−
i+1)), B′i = δ−1(arc(bi, b

−
i+1)),

for i = 1, . . . , n with bn+1 = b1. With this notation, hi : Int(Ai)→ Int(A′i) is a diffeomor-
phism such that γ = δ ◦ hi on Int(Ai), ∀i = 1, . . . , n.

Notice that γ|Bi and δ|B′i are regular maps, for all i = 1, . . . , n. Then by Theorem A.4
there exist diffeomorphisms φi and ψi such that the following diagrams are commutative:

γ−1(bi)× arc(bi, b
−
i+1)

p // arc(bi, b
−
i+1)

Bi

φi

OO

γ|Bi

55
δ−1(bi)× arc(bi, b

−
i+1)

p̃ // arc(bi, b
−
i+1)

B′i

ψi

OO

δ|B′
i

55
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where p and p̃ are the projections in the second coordinate.
Since the Reeb graphs of γ and δ are equivalent, it follows that γ−1(bi) is diffeomorphic

to δ−1(bi). Consequently, Bi is diffeomorphic to B′i via a diffeomorphism which gives the
A-equivalence between γ|Bi and δ|B′i.

Notice that the boundary of Ai is diffeomorphic to a finite union of circles S1. Then the
diffeomorphisms hi when restricted to the boundary of Ai may be assumed orientation
preserving. Hence hi|γ−1(bi) and hi+1|γ−1(b−i+1) are isotopic because both are isotopic to

the identity. Let Fi : γ−1(bi)×arc(ai, a
−
i+1)→ δ−1(bi)×arc(ai, a

−
i+1) be an isotopy between

hi|γ−1(bi) and hi+1|γ−1(b−i+1), for i = 1, . . . , n.

Define βi : γ−1(bi)× arc(bi, b
−
i+1)→ δ−1(bi)× arc(bi, b

−
i+1) by

βi(x, t) =


(hi(x), t), if bi < t ≤ ai,

(Fi(x, t), t), if ai ≤ t ≤ a−i+1,

(hi+1(x), t), if a−i+1 < t ≤ b−i+1,

and let αi : Int(Bi)→ Int(B′i) be given by αi = ψ−1
i ◦ βi ◦ φi, with i = 1, . . . , n.

Since each βi is a diffeomorphism, it follows that αi is also a diffeomorphism. Moreover,
δ ◦ αi = γ on Int(Bi), because:

δ ◦ αi = δ ◦ ψ−1
i ◦ βi ◦ φi = p̃ ◦ βi ◦ φi = p ◦ φi = γ.

We now define a map H : S2 → S2 given by

H(x) =

{
hi(x), if x ∈ Int(Ai), i = 1, . . . , n,

αi(x), if x ∈ Int(Bi), i = 1, . . . , n.

By construction, hi = αi on Int(Ai) ∩ Int(Bi) and αi = hi+1 on Int(Bi) ∩ Int(Ai+1),
∀i = 1, . . . , n. Therefore, H is well defined and smooth. Moreover, H : S2 → S2 is a
diffeomorphism such that γ = δ ◦H.

�

The two theorems 3.7 and 3.8 together give that the Reeb graph is a complete topo-
logical invariant for stable maps from S2 to S1. In fact, we have a little bit more, as we
can see in the following corollary.

Corollary 3.9. Let γ, δ : S2 → S1 be two stable maps. Then the following statements are
equivalent:

(1) γ, δ are A-equivalent,
(2) γ, δ are topologically equivalent,
(3) Γγ ∼ Γδ.

In the last part of this section, we consider the Reeb graph of the link of a finitely
determined map germ with isolated zeros.

Remark 3.10. Let f : (R3, 0)→ (R2, 0) be a finitely determined map germ with f−1(0) =
{0} and let γf : S̃2

ε → S1
ε be the link of f . The critical values of γf are given by S1

ε ∩∆(f).
In fact, if we denote by A1, . . . , Ar the half branches of ∆(f), then by the cone structure
theorem each half branch ofAi intersects S1

ε in a unique critical value vi of γf . Analogously,
the edges of Γγf correspond to the connected components of f−1(αj), where α1, . . . , αr
are the arcs of S1

ε limited by two consecutive half branches of ∆(f).
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Theorem 3.11. Let f, g : (R3, 0) → (R2, 0) be two finitely determined map germs such
that f−1(0) = {0} = g−1(0). If f and g are topologically equivalent then the Reeb graphs
of their links are equivalent.

Proof. By hypothesis, there exist two homeomorphisms germs h, k such that the following
diagram commutes:

(1)

(R3, 0)
f−−−→ (R2, 0)

h

y yk
(R3, 0)

g−−−→ (R2, 0)

We take representatives of f , g, h and k and for any small enough ε > 0, the next diagram
is also commutative:

(2)

S̃2
ε

γf−−−→ S1
ε

h

y yk
Mε

g|Mε−−−→ Pε

where Mε = h(S̃2
ε ) and Pε = k(S1

ε ).
Choose ε0, ε1 > 0 such that γf : S̃2

ε0
→ S1

ε0
and γg : S̃2

ε1
→ S1

ε1
are the links of f and g,

respectively, and S1
ε1
⊂ k(D2

ε0
). From the commutativity of diagram (2) we can associate a

Reeb graph Γg|Mε0
for the map g|Mε0 induced by the Reeb graph Γγf of γf . Furthermore,

Γg|Mε0
∼ Γγf in the sense of Definition 3.6.

Consider A1, . . . , An the half branches of the discriminant ∆(g) ordered in the anti-
clockwise orientation. By the cone structure of f (see Theorem 2.4), each half branch
Ai intersects Pε0 in a unique point vi so that v1, . . . , vn are the critical points of g|Mε0 .
Analogously, each Ai intersects S1

ε1
in a unique point wi, where now w1, . . . , wn are the

critical points of γg. We have a graph isomorphism l : Pε0 → S1
ε1

given by l(vi) = wi,
∀i = 1, . . . , n.

Let C1, . . . , Cr be the connected components of g−1(∆(g))−{0} = ∪ni=1g
−1(Ai). Again

by the cone structure of f , each connected component Cj intersects Mε0 in a unique
connected component Vj of some g−1(vi), so that V1, . . . , Vr are the vertices of Γg|Mε0

.

Finally, each Cj intersects S̃2
ε1

in a unique connected component Wj of g−1(wi), in such
a way that W1, . . . ,Wr are now the vertices of Γγg . We have a bijection ϕ defined by
ϕ(Vj) = Wj, ∀j = 1, . . . , r. In order to have a graph isomorphism between Γg|Mε0

and Γγg
we need to show that ϕ is edge preserving.

Consider U = k(D2
ε0

) − (∆(g) ∪ B2
ε1

), and let Yi be one of its connected components
limited by two consecutive half branches Ai and Ai+1. We denote by αi and βi the arcs
of S1

ε1
and Pε0 respectively, which bound Yi, ∀i = 1, . . . , n (see fig. 3). As pointed out in

Remark 3.10, the connected components of g−1(αi) and g−1(βi) give all the edges of the
graphs Γγg and Γg|Mε0

, respectively.

Take X any connected component of f−1(Yi), for some 1 ≤ i ≤ n. Since g|X : X → Yi is
regular, the induced map g̃ : X/ ∼ → Yi is a local homeomorphism and hence, a covering
space. But Yi is simply connected, so g̃ is in fact a homeomorphism. We deduce that the
boundary of X/ ∼ has two components: one is an edge of Γγg given by the quotient of
X ∩ g−1(αi) and the other is an edge of Γg|Mε0

given by the quotient of X ∩ g−1(βi).
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Figure 3

Notice that all the edges of Γγg and Γg|Mε0
can be obtained in this way, hence we have a

bijection between the edges of Γγg and Γg|Mε0
which is compatible with the above bijection

ϕ defined between the vertices.
�

Again, Theorem 3.11 together with Corollary 2.6 show that the Reeb graph is a complete
topological invariant for map germs from with isolated zeros.

Corollary 3.12. Let f, g : (R3, 0) → (R2, 0) be finitely determined map germs such that
f−1(0) = {0} = g−1(0). Then the following statements are equivalent:

(1) f, g are topologically equivalent,
(2) the Reeb graphs of the links of f, g are equivalent,
(3) the links of f, g are topologically equivalent.

4. Topological classification of corank 1 map germs with f−1(0) = {0}

Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ. After appro-
priate change of coordinates in the source and the target we can write f as f(x, y, z) =
(x, hx(y, z)). In other words, f can be seen as an unfolding of the map germ h0 : (R2, 0)→
(R, 0). In the case that f−1(0) = {0}, this also implies that h−1

0 (0) = {0}.

Lemma 4.1. Let f : (R3, 0)→ (R2, 0) be a corank 1 finitely determined map germ given
by f(x, y, z) = (x, hx(y, z)). Then h0 : (R2, 0)→ (R, 0) is a finitely determined map germ.

Proof. Since f is finitely determined, then its complexification fC is also finitely deter-
mined and vice-versa and by the Mather-Gaffney criterion S(fC)∩f−1

C (0) = {0} (see [26]).
This implies that S((h0)C) ∩ (h0)−1

C (0) = {0} and hence h0 is finitely determined for the
contact group K. But for function germs, is well known that the finite determinacy with
respect the contact group K is equivalent to the finite determinacy with respect to the
group A (see again [26]). �

We get a first important consequence of this lemma in the case that f−1(0) = {0}.

Theorem 4.2. Let f : (R3, 0)→ (R2, 0) be a corank 1 finitely determined map germ with
f−1(0) = {0}. Then the associated link of f is not surjective.

Proof. Consider f written by f(x, y, z) = (x, hx(y, z)), where h0 is also finitely determined
and h−1

0 (0) = {0}. By Fukuda’s theorem 2.4, h−1
0 (S0

ε ) is diffeomorphic to S1, for small
enough ε > 0.
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Suppose that associated link of f is surjective. Then (0, ε) and (0,−ε) belong to image
of the map γf : f−1(S1

ε )→ S1
ε . But

γ−1
f ({(0, ε), (0,−ε)}) = f−1({(0, ε), (0,−ε)}) ' h−1

0 ({ε,−ε}) ' S1,

where ' indicates homeomorphism of sets. This gives a contradiction because S1 is
connected, {(0, ε), (0,−ε)} is not connected and γf is a continuous map. �

Remark 4.3. (1) It follows from Theorem 4.2 that the stable map γ : S2 → S1

presented in the right hand side of fig. 2 cannot be realized as the link of a corank
1 finitely determined map germ f : (R3, 0) → (R2, 0). Up to this moment, we do
not know if in fact, this stable map can be realized or not as the link of a corank
2 map germ.

(2) Another consequence of Theorem 4.2 is that if f has corank 1 and f−1(0) = {0},
then the generalized Reeb graph can obtained from the classical one, since the link
is not surjective (see Remark 3.5). From now on in this section, the Reeb graph
will be referred to the classical version, unless otherwise specified.

Given f(x, y, z) = (x, hx(y, z)), we say that f is a stabilization of h0 if there is a
representative f : U = (−ε, ε)× V → R2 such that for any x, with 0 < |x| < ε, hx : V ⊂
R2 → R is stable (i.e., it is a Morse function with distinct critical values).

Proposition 4.4. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ given by
f(x, y, z) = (x, hx(y, z)). Then, f is a stabilization of h0.

Proof. By Corollary 2.3, if f is finitely determined we can choose a representative f :
U ⊂ R3 → R2 such that S(f) ∩ f−1(0) = {0} and the restriction f |U−{0} is stable with
only simple definite and indefinite folds. By shrinking U is necessary, we can assume U =
(−ε, ε)×V , where V a neighborhood of 0 in R2 and ε > 0. Let us take x0 ∈ (−ε, ε), x0 6= 0.

Suppose that hx0 has a degenerate singularity at p ∈ V , then the Hessian determinant
of hx0 at p is equal to 0. Since p ∈ S(hx0), then (x0, p) ∈ S(f) and (x0, p) is not a fold
of f in U − {0}. Analogously, if hx0 is singular at two distinct points p0, p1 ∈ V , such
that hx0(p0) = hx0(p1), then (x0, p0), (x0, p1) ∈ S(f) and f should have a double fold at
(x0, p0), (x0, p1) ∈ U − {0}. �

Let f : (R3, 0) → (R2, 0) be a finitely determined map germ given by f(x, y, z) =
(x, hx(y, z)). We take a representative f : U = (−ε, ε) × V → R2 such that for any x,
with 0 < |x| < ε, hx : V ⊂ R2 → R is stable. By Lemma 4.1, h0 has isolated singularity.
By shrinking U if necessary, we can also assume that h0 is regular in V −{0}. Moreover,
in the case that f has isolated zero, we also impose that f−1(0) = {0} on U and hence,
h−1

0 (0) = {0} on V .
Because of stability, all the functions hx : V ⊂ R2 → R are A-equivalent if −ε < x < 0

and we will denote by h−x one of these functions. Analogously, all functions hx : V ⊂
R2 → R are A-equivalent if 0 < x < ε and we will denote by h+

x one of these functions.

Given a finitely determined map germ f : (R3, 0)→ (R2, 0), we denote by X(f) the set
germ in (R3, 0) defined by the closure of f−1(∆(f))−S(f). By Corollary 2.3, since f has
only folds outside the origin, f is transverse to ∆(f) and hence, X(f) is a smooth surface
outside the origin.

Lemma 4.5. Let f : (R3, 0)→ (R2, 0) be a finitely determined corank 1 map germ given
by f(x, y, z) = (x, hx(y, z)). Then S(f), X(f) and ∆(f) are transverse to the planes
{x} × R2 and to the lines {x} × R, respectively, with 0 < |x| < ε and ε small enough.
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Proof. It follows from Proposition 4.4 that there exists ε > 0 small enough and V ⊂ R2

an open neighborhood of 0 such that hx : V → R is stable for all x, with 0 < |x| < ε.
Suppose (x0, y0, z0) ∈ S(f) ∩ {x0} × R2 and consider a parametrization of S(f) near

(x0, y0, z0) given by α(t) = (x(t), y(t), z(t)). We only need to show that x′(t) 6= 0.
For simplicity we write H(x, y, z) = hx(y, z). Then S(f) is given by the implicit equa-

tions ∂H
∂y

= ∂H
∂z

= 0. By taking partial derivatives of these equations:

x′
∂2H

∂x∂y
+ y′

∂2H

∂y2
+ z′

∂2H

∂y∂z
= 0, x′

∂2H

∂x∂z
+ y′

∂2H

∂y∂z
+ z′

∂2H

∂z2
= 0.

If x′ = 0, since (y′, z′) 6= (0, 0) we get that

∂2H

∂y2

∂2H

∂z2
−
(
∂2H

∂y∂z

)2

= 0.

But this is the hessian of hx at the singular point (y, z), which contradicts the fact that
hx is a Morse function.

Note that ∆(f) is parametrized by f(α(t)) = (x(t), H(x(t), y(t), z(t)) near f(x0, y0, z0).
Since x′(t) 6= 0, we also have that ∆(f) is transverse to {x0} × R at f(x0, y0, z0).

Finally, let (x0, y
′
0, z
′
0) ∈ X(f)∩{x0}×R2 be a point such that f(x0, y0, z0) = f(x0, y

′
0, z
′
0).

Then the transversality between X(f) to {x0} ×R2 is a consequence that f is transverse
to ∆(f) and that X(f) = f−1(∆(f)) and {x0} × R2 = f−1({x0} × R) near that point.

�

Let f : (R3, 0)→ (R2, 0) be a corank 1 finitely determined map germ with f−1(0) = {0},
given by f(x, y, z) = (x, hx(y, z)). By Lemmas 4.1 and 4.5, we consider small enough
representatives f : (−ε, ε)×V → R2 such that for any 0 < |x| < ε, hx : V → is stable and
moreover S(f), X(f),∆(f) are transverse to {x} × R2, {x} × R, respectively.

We fix x0 ∈ R such that 0 < |x0| < ε and take δ > 0 small enough such that
(hx0)−1([−δ, δ]) ⊂ V and [−δ, δ] intersects all the positive (resp. negative) half branches
of ∆(f) if x0 > 0 (resp. if x0 < 0).

Consider the following equivalence relation on (hx0)−1([−δ, δ]): v ∼ w if and only if
hx0(v) = hx0(w) with v and w in the same connected component of h−1

x0
(hx0(v)). Then

the quotient (hx0)−1([−δ, δ])/ ∼ has a graph structure whose the vertices are:

(1) The connected components of h−1
x0

(v), where v is any critical value of hx0 .
(2) The connected components of the boundary of (hx0)−1([−δ, δ]). This type of vertex

will be called the boundary vertex and will be denoted by the symbol “◦”.

Moreover, we denote by v1 < · · · < vn the ordered set of critical values of hx0 together
with the value corresponding to the boundary vertex. We assign to each vertex the label
i ∈ {1, . . . , n} if it has value vi. The graph (hx0)−1([−δ, δ])/ ∼ together with the labels of
the vertices is called the Reeb graph of hx0 .

Definition 4.6. We define the partial tree of h+
x as being the Reeb graph of hx0 if x0 > 0

and the partial tree of h−x as being the Reeb graph of −hx0 if x0 < 0.

Example 4.7. Consider the map germ f : (R3, 0) → (R2, 0) given by f(x, y, z) =
(x, hx(y, z)), where hx(y, z) = y4 + xy2 + 3x5 + z2. Here hx has 3 critical values for
x < 0, but only 1 critical value for x > 0. The partial trees of h+

x and h−x are shown in
fig. 4.

We remark that the partial trees h+
x and h−x do not depend on of the choice of the

representatives, the choice of x0 nor the choice of the interval [−δ, δ]. This follows from
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Figure 4

the fact that the functions hx : V → R are all A-equivalent if either −ε < x < 0 or
0 < x < ε. Then we can use the same arguments of that of the proof of Theorem 3.7.

Consider the partial trees of h+
x and h−x . Assume that u1 < . . . < ur and v1 < . . . < vs

are the critical values of h+
x and h−x , respectively. Since f−1(0) = {0}, the link γf is not

surjective and, without loss of generality, we can assume that (0, ε) is a regular value which
belongs to the image of the link. Consequently, ur and vs correspond to the boundary
vertices of h+

x and h−x , respectively.

Definition 4.8. Let Γx>0 and Γx<0 be the graphs corresponding to the partial trees of
h+
x and h−x , respectively. Consider Γ the graph obtained by connecting the upper edge of

Γx>0 − {ur} to the lower edge of Γx<0 − {vs}. We relabel each vertex vs−i by ur+(i−1),
where i = 1, . . . , s− 1. We say that Γ is the sum of partial trees of h+

x and h−x .

Example 4.9. The sum of the partial trees of the map germ in Example 4.7 is also shown
in the right hand side of fig. 4.

The main result of this Section is the following:

Theorem 4.10. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ
with f−1(0) = {0}, given by f(x, y, z) = (x, hx(y, z)). Then, the sum of partial trees of
h+
x and h−x is equivalent to the Reeb graph of the associated link of f .

Proof. Take ε > δ > 0 small enough and V ⊂ R2 a neighborhood of origin such that the
following four conditions are satisfied:

i) γf : S̃2
δ → S1

δ is the link of f ;
ii) The function hx|V : V → R is stable for all x ∈ (−ε, ε), x 6= 0;
iii) {x} × V intercepts all half branches of S(f) with the same sign of x;
iv) S̃2

δ ⊂ (−ε, ε)× V .
v) h−1

0 (0) = {0} and h0 is regular on V − {0}.
We have from v) that S(f) ∩ ({0} × R2) = {0} and ∆(f) ∩ ({0} × R) = {0}. Hence

(0, δ) and (0,−δ) are regular values of γf : S̃2
δ → S1

δ . Moreover, since the link of f is not
surjective just one of the points (0,−δ), (0, δ) belongs to the image of link. We assume
here that (0, δ) ∈ Im(γf ).

Let A1, . . . , An be the half branches of ∆(f) considered in the anti-clockwise orientation
and such that (0,−δ) is the base point. We also assume that A1, . . . , Ar are on the half
plane x > 0 and that Ar+1, . . . , An are on the half plane x < 0.

By the cone structure of f , each half branch Ai intersects S1
δ in a unique point vi, so that

v1 < · · · < vn are the critical points of γf in the chosen orientation. By the transversality
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of ∆(f) to the vertical lines {x} × {R}, given δ < x < ε we have that each half branch
Ai also intersects {x}×{R} in a unique point wi. But now w1 < · · · < wr are the critical
values of h+

x and wn < · · · < wr+1 the critical values of h−x .
Since we are considering the classical version of the Reeb graph, each critical value

corresponds to a unique vertex. Thus, there is a bijection given by ϕ(vi) = wi for i ∈
{1, . . . , n} between the vertices of Γγf and the vertices of Γ, the sum of the partial trees
of h+

x and h−x . Moreover, the bijection is compatible with the labels of the vertices as
defined in Definition 4.8.

To finish the proof, we only need to show that there is also a bijection between the
edges compatible with ϕ. Consider the following sets (fig. 5):

• Ui the set of points limited by Ai, Ai+1, S1
δ and {x} × R;

• αi the arc of S1
δ limited by Ai and Ai+1;

• βi the segment of line of {x} × R limited by Ai and Ai+1;
• Yi = Ui ∪ αi ∪ βi

with δ < x < ε if 1 ≤ i < r and −ε < x < −δ if r + 1 ≤ i < n.

Ui

S1
δ

α

β

A

Ai

i+1

i

i

x

Figure 5

Each one of the connected components of f−1(αi) and f−1(βi) gives an edge for the
graphs Γγf and Γ, respectively.

Let X be any connected component of f−1(Yi). Notice that f |X : X → Yi is regular.

So, the induced map f̃ : X/ ∼→ Yi is a local homeomorphism and hence, a covering map.

Since Yi is simply connected and X is connected we have that f̃ is a homeomorphism.
Hence, X/ ∼ contains only one edge of Γγf corresponding to X ∩ f−1(αi), and also only
one edge of Γ corresponding to X ∩ f−1(βi).

Moreover, since f−1(0, δ) is diffeomorphic to S1, the arc of S1
δ delimited by As and As+1

corresponds to a unique edge of Γγf . We associate this edge with the edge of Γ used to
join the partial trees of h+

x and h−x .
In this way, we can define a bijection φ between the edges of Γγf and the edges of Γ,

which is compatible with ϕ. Hence the graphs Γγf and Γ are equivalent. �

4.1. Classification of germs with Boardman symbol Σ2,1.

Next, we state a result due Rieger and Ruas ([23]) which gives a classification of corank
1 map germs according to its 2-jet. We denote by Σ1J2(3, 2) the space of 2-jets of corank
1 map germs from (R3, 0) to (R2, 0) and A2 denotes the space of 2-jets of diffeomorphisms
in the source and target.
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Lemma 4.11. There exist the following orbits in Σ1J2(3, 2) under the action of A2:

(x, y2 + z2), (x, y2 − z2), (x, xy + z2), (x, xy − z2), (x, z2), (x, 0)

The germ f(x, y, z) = (x, y2 ± z2) is 2-A-determined. Thus, if a map germ has 2-jet
equivalent to (x, y2 ± z2) then it is in fact A-equivalent to the definite or indefinite fold.
Hence, we do not need consider this case. The orbits distinct to (x, 0) have Boardman
symbol Σ2,1.

Now, we center our attention in corank 1 finitely determined map germs f : (R3, 0)→
(R2, 0), with f−1(0) = {0} and Boardman symbol Σ2,1. By Splitting Lemma [23], we
can choose coordinates in the source an the target such that f is given by f(x, y, z) =

(x, h̃x(y) + z2). Moreover, h̃0 is A-equivalent to yk, for some k even and by using the
versal unfolding of yk we can assume that

h̃x(y) = yk + ak−2(x)yk−2 + ...+ a1(x)y.

Notice that k is the multiplicity of h̃0.
We want to construct the partial trees of h+

x and h−x , where hx(y, z) = h̃x(y) + z2. The
Jacobian and Hessian matrices of hx(y, z) are, respectively:

J =
(
h̃′x(y) 2z

)
, H =

(
h̃′′x(y) 0

0 2

)
.

Hence the critical points of hx are those of the form (y, 0), where y is a critical point of

h̃x. Moreover, (y, 0) is a saddle point of hx if an only if y is a maximum of h̃x and (y, 0)

is a maximum or minimum of hx if an only if y is a minimum of h̃x.

Example 4.12. Let f : (R3, 0)→ (R2, 0) be a corank 1 finitely determined map germ with
f−1(0) = {0} with Boardman symbol Σ2,1 and multiplicity 4. After change of coordinates
in the source and target, we can assume f is given by

f(x, y, z) = (x, y4 + a(x)y2 + b(x)y + z2).

Notice that the bifurcation set B of the versal unfolding of h0 in this case is given in the
(a, b)-plane by by b(−4a3b−27b3) = 0 (see fig. 6), which permits us to choose appropriate
functions a(x) and b(x) such that we can obtain all types of possible trees.

Figure 6

Then, there are 3 possibilities to the Reeb graph of the link of f , according to the
number of saddles:

• 0 saddle, f is topologically equivalent to (x, y4 + x2y + z2) (see fig. 7);
• 1 saddle, f is topologically equivalent to (x, y4 + xy2 + 3x5y + z2) (see fig. 8);
• 2 saddles, f is topologically equivalent to (x, y4 − x2y2 + x5y + z2). (see fig. 9);
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2

1

hx<0 hx>0 Sum of the 
partial trees

~ ~

1 1

2 2

+

partial tree
of hx<0

~ partial tree
of hx>0

~

Figure 7

2

1

hx<0 hx>0 Sum of the 
partial trees

3
4

1 1

2

+

 partial tree
of hx<0

~ partial tree
of hx>0

~

2

3
4

~~

Figure 8

2
1hx<0 hx>0

Sum of the 
partial trees

3

4

5
6

1

+

partial tree
of hx<0

~ partial tree
of hx>0

~

2

3
4

1

4

~ ~

2

3

Figure 9

Theorem 4.13. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ,
f−1(0) = {0} with Boardman symbol Σ2,1 and multiplicity ≤ 6. Then all the possibilities
for the Reeb graph of the link of f are realized and are presented in Table 1.

Proof. Assume that f is given by

f(x, y) = (x, y6 + a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + z2).

Notice that h̃x may have 0, 1 or 2 saddles as shown in fig. 10. All the possibilities for the

0 saddles 1 saddle 2 saddles

Figure 10

partial trees of the link of f are given in fig. 11.
In this way, all the Reeb graphs of the link of f can be obtained by taking all possible

combinations among these six models of partial trees. Note that (a) + (a) is equivalent to
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1

23

45

1

2
3

45

1

2

3 45

1

2

34 5

1

2
31

(a) (b) (c) (d) (e) (f )

Figure 11

the Reeb graph of (x, y2 + z2); (a) + (b) and (b) + (b) are equivalent to the Reeb graphs
given in the Example 4.12.

Germ Associated Tree

(x, y2 + z2)

2

1

(x, y4 + xy2 + 3x5y + z2)

2

1

34

(x, y4 − x2y2 + x5y + z2)
21

3

4
56

(x, y6 + 2xy4 + x2y2 + x4y + z2)

2

1

3 4
56

(x, y6 + 2xy4 + x3y3 − x2y3 − x4y2 + 5
4
x2y2 + x4y + z2)

2

1

34
56

(x, y6 + xy4 + x3y3 + x4y2 + x7y + z2)

2

1

3
4 56

(x, y6 + x3y4 + 1
9
xy4 + x3y3 + 1

9
x4y2 + x6y + z2)

2

1

3
45 6
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(x, y6 − 3
10
x2y4 − 1

15
x3y3 − 1

2
x5y2 − 1

5
x6y + z2) 21

3
4

56
78

(x, y6 + 6x3y4 + 9x6y2 + 9x9y + z2) 21

3
4
5 6

78

(x, y6 − 4x2y4 + x4y3 − 3x5y2 + z2) 21

3
4
5

6 78

(x, y6 − 6x2y4 + xy4 + x4y3 − 6x3y2 − 6x6y + z2) 21

3
4
5

67
8

(x, y6 − 4x4y4 + 4x8y2 − 2x10y + z2) 21
3 4
5 6

78
910

(x, y6 − 93
20
x4y4 + 4x8y2 − 2x10y + z2) 21

34
5 6
7 8

910

(x, y6 + 1
2
xy5 + 1

16
x2y4 + 1

12
x4y3 − 1

8
x7y2 + z2) 2 13

4
5 6

78
910

(x, y6 − 1
10
xy5 − 23

40
x3y4 − 35

32
x5y3 − 441

640
x7y2 + z2) 21

34
5 6
7

8 910

(x, y6 − x2y4 + x4y3 + x6y2 + z2) 21 3
4
5 6
7

8 910

(x, y6 + 1
45
x2y4 − 1

15
x4y3 − 1

20
x6y2 + 1

15
x9y + z2) 21 3

4
5 6
7

89 10

(x, y6 − 3
6
x2y4 + 1

3
x5y3 + 3x6y2 − x9y + z2) 2 13

4
5 6
7

89 10
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(x, y6 − 6x2y5 − 4
5
xy5 + 4x3y4 − 5x8y3 + 15x8y2 + z2) 21 3

4
5 6

78
910

(x, y6 + 6xy5 + 16x3y4 + 14x5y3 + 4x7y2 + z2) 21
34

5 6
78
910

(x, y6 − 27
10
xy5 − 9

5
x3y4 + 33

160
x5y3 + 81

320
x7y2 + 81

80
x10y + z2) 2 13

4
5 6
7

8
910

Table 1

�

Appendix A. Morse functions and Cobordism

In this Appendix we will describe some results about Morse function theory and cobor-
dism theory given by V.I. Arnold, J. Milnor and S.A. Izar (cf. [1, 9, 10, 11, 15]). We
adopt the notation and basic definitions that are usual in Morse theory and cobordism
theory. The reader can use [14, 15] as basic references.

Definition A.1. We say that (M ;V0, V1) is a smooth triad if M is a smooth compact
manifold with boundary and ∂M is the disjoint union of two closed submanifolds V0 and
V1 (see fig. 12).

V V

M

0 1

Figure 12

Definition A.2. A Morse function on a smooth triad (M ;V0, V1) is a smooth function
f : M → [a, b] such that

i) f−1(a) = V0 and f−1(b) = V1;
ii) all critical points of f are interior (lie in M − ∂M) and non-degenerated;

iii) f is injective when restricted to the set of its critical points.

Roughly speaking, by using Morse functions it is possible to express any complicated
cobordism as a composition of simpler cobordisms.

Theorem A.3. ([15]) For every Morse function f on a triad (M ;V0, V1), there exists a
gradient-like vector field ξ for f .
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Theorem A.4. ([15]) If a triad (M ;V0, V1) admits a function without critical points, then
it is a product cobordism, i.e., it is diffeomorphic to the triad (V0×[0, 1], V0×{0}, V0×{1}).

Definition A.5. ([15] Characteristic embedding) Let (M ;V0, V1) be a triad with a Morse
function f : M → R and a gradient-like vector field ξ for f . Suppose p ∈ M is a critical
point of f and let V0 = f−1(c0) and V1 = f−1(c1) be the levels such that c0 < c = f(p) < c1,
where c is the unique critical value of f in [c0, c1].

Since ξ is a gradient-like vector field for f , there exists a neighborhood U of p in M
and a parametrization α : Bn

2ε → U such that f ◦ α(x, y) = f(p)− |x|2 + |y|2 and so that
ξ has coordinates (−x, y) through U , where x = (x1, . . . , xλ), y = (xλ+1, . . . , xn) for some
0 ≤ λ ≤ n and ε > 0. Set Vε = f−1(c + ε2) and V−ε = f−1(c − ε2). We may assume
4ε2 < min{|c − c0|, |c − c1|}, so that V−ε lies between V0 and f−1(c) and Vε lies between
f−1(c) and V1. The situation is represented schematically in fig. 13:

p

cc c0 1c-ε c+ε22

Figure 13

The left characteristic embedding of p is a map φL : Sλ−1 × Bn−λ → V0 obtained as
follows. First define an embedding φ : Sλ−1 ×Bn−λ → V−ε by

φ(u, θv) = α(εu cosh(θ), εv sinh(θ)), u ∈ Sλ−1, v ∈ Sn−λ−1, 0 ≤ θ < 1.

Starting at the point φ(u, θv) in V−ε the integral curve of ξ is a non-singular curve which
leads from φ(u, θv) back to some well-defined point φL(u, θv) in V0. Define the left-hand
sphere SL of p in V0 to be the image φL(Sλ−1×{0}). Notice that SL is just the intersection
of V0 with all integral curves of ξ leading to the critical point p . The left hand-disk DL

is a smoothly embedded disk with boundary SL, defined to be the union of all segments
of these integral curves beginning in SL and ending at p (see fig. 14).

Similarly the right characteristic embedding φR : Bλ × Sn−λ−1 → V1 is obtained by
embedding φ : Bλ × Sn−λ−1 → Vε by

(θu, v) 7→ α(εu sinh(θ), εv cosh(θ)),

and then translating the image to V1. The right-hand sphere SR of p in V1 is defined to
be φR({0} × Sn−λ−1). It is the boundary of the right-hand disk DR, defined as the union
of segments of integral curves of ξ beginning at p and ending in SR.

Theorem A.6. ([10]) Let (M ;V0, V1) and (M ′;V ′0 , V
′

1) be two triads with Morse functions
f : M → [c0, c1] and g : M ′ → [c0, c1], where M and M ′ are compact 2-manifold. Suppose
c0 < c < c1 be the unique critical value of f and g. Moreover, suppose that it corresponds
to a unique critical point p ∈ f−1(c) and q ∈ g−1(c) such that the index of f in p is
equal to index of g in q. Assume that f−1(ci) ≈ g−1(ci), i = 0, 1. Then there exists a
diffeomorphism h : M →M ′ such that f = g ◦ h.
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V

V

0

1

(1,1)(-1,1)

V-ε

Vε

α

φ
(u,θv)

(1,-1)(-1,-1)

(ε u cos hθ, ε u sin hθ)

O

p

φ (u,θv)L

Figure 14
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