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Abstract

Let (Ω, Σ, µ) be a finite measure space, 1 ≤ p < ∞, X be a Banach space X and
B : X × Y → Z be a bounded bilinear map. We say that an X-valued function f
is p-integrable with respect to B whenever sup‖y‖=1

∫
Ω ‖B(f(w), y)‖pdµ < ∞. We

identify the spaces of functions integrable with respect to the bilinear maps arising
from Hölder’s and Young’s inequalities, and also present an analogue to Hölder’s
inequality in this setting. We apply the theory to give conditions on X-valued kernels
for the boundedness of integral operators TB(f)(w) =

∫
Ω′ B(k(w, w′), f(w′))dµ′(w′)

from Lp(Y ) into Lp(Z), extending the results known in the operator-valued case,
corresponding to B : L(X,Y )×X → Y given by B(T, x) = Tx.
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1 Introduction

In this paper we shall consider spaces of X-valued functions which are in-
tegrable with respect to bilinear maps, that is to say functions f satisfying
the condition B(f, y) ∈ L1(Z) for all y ∈ Y for some bounded bilinear map
B : X × Y → Z. The motivation for our study comes from two different sour-
ces: On the one hand, the recent paper by M. Girardi and L. Weiss [9], where
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conditions on operator-valued kernels K : Ω × Ω′ → L(X, Y ) for the integral
operator

TK(f)(w) =
∫

Ω′

K(w, w′)(f(w′))dµ′(w′)

to be bounded from Lp(X) to Lp(Y ) were given, and, on the other hand, the
papers [3–5] where the notion of convolution by means of bilinear maps was
introduced and applied in different contexts.

Operator-valued multipliers and operator-valued singular integrals has been
considered by different authors. An introduction to the general theory and its
applications can be found in [1,8]. We shall deal here with more general bili-
near maps in our study and present a basic introduction to the spaces which
can be defined with this notion of integrability. These will allow, among other
things, to get that the conditions appearing on the kernels for the boundedness
of integral operators can be understood as certain integrability conditions with
respect to the corresponding bilinear maps. This approach also shows that be-
tween the class of Pettis integrable functions and the Bochner integrable ones,
there are many others, corresponding to integrable with respect to other bili-
near maps. These classes are the natural ones where the results on convolution
by means of bilinear maps obtained in [3–5] still hold true.

The paper is organized as follows: First we introduce the spaces, consider basic
properties on the triples (Y, Z, B) formed by two Banach spaces Y and Z and
a bounded bilinear map B : X × Y → Z which play some important role
in the development of the theory and present the examples of natural triples
that naturally appear for any Banach space X. The second section is devoted
to present some version of Hölder’s inequality in this setting. In section 3 we
identify the spaces of p integrable functions with respect to concrete examples
of bilinear mapas based on Hölder’s and Young’s inequalities and also use
some inequalities borrowed from the theory of Hardy spaces to understand
the Poisson kernel r → Pr as a function in our spaces for certain bilinear
maps . The last section concludes with the analogues of the results in [9] in
our more general situation.

Throughout the paper 1 ≤ p < ∞, (Ω, Σ, µ) stands for a finite complete
measure space and X denotes a Banach space over K (R or C). Recall that
an X-valued function f : Ω → X is said to be strongly measurable if there
exists a sequence of simple functions, (sn)n ⊆ S(X), which converges to f
a.e. and to be weakly measurable if 〈f, x∗〉 is measurable for any x∗ ∈ X∗. In
the case of dual spaces X∗ a function is called weak∗-measurable if 〈x, f〉 is
measurable for any x ∈ X. We denote by L0(X), L0

weak(X) and L0
weak∗(X

∗)
the spaces of strongly, weakly measurable and weak∗-measurable functions. We
write Lp(X), Lp

weak(X) and Lp
weak∗(X

∗) for the space of functions in L0(X),
L0

weak(X) and L0
weak∗(X

∗) such that ‖f‖ ∈ Lp(µ), 〈f, x∗〉 ∈ Lp(µ) for x∗ ∈ X∗

and 〈x, f〉 ∈ Lp(µ) for x ∈ X respectively. Finally we use the notation P p(X)
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for the space of Pettis p-integrable functions P p(X) = Lp
weak(X) ∩ L0(X).

2 Integrablility with respect to bilinear maps.

Definition 1 Let Y and Z be Banach spaces and let B : X × Y → Z be
a bounded bilinear map. We say that f : Ω → X is (Y, Z, B)-measurable if
B(f, y) ∈ L0(Z) for any y ∈ Y . We shall denote the class of such functions
by L0

B(X).

Given a Banach space X there are many standard ways to find triples Y, Z
and B where B : X × Y → Z becomes a bounded bilinear map.

The basic ones are:

BX = B : X ×K→ X, B(x, λ) = λx. (1)

DX = D : X ×X∗ → K, D(x, x∗) = 〈x, x∗〉. (2)

Note that L0
B(X) = L0(X) and L0

D(X) = L0
weak(X).

Natural generalizations of (1) and (2) are the following: For any other Banach
space Y one has

πY : X × Y → X⊗̂Y, πY (x, y) = x⊗ y. (3)

ÕY : X × L(X,Y ) → Y, ÕY (x, T ) = T (x). (4)

In the case of dual spaces X∗ we have also

D1,X = D1 : X∗ ×X → K, D1(x
∗, x) = 〈x, x∗〉. (5)

Note that L0
D1

(X∗) = L0
weak∗(X).

A generalization of (5) correspond to the case X = L(Y, Z) which plays an
important role in what follows: Denote consider

OY,Z : L(Y, Z)× Y → Z, OY,Z(T, y) = T (y). (6)

In the particular case Y = Z one can also consider,

CE : L(E, E)× L(E,E) → L(E, E), CE(T, S) = TS. (7)
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Actually (7) is just the product on a Banach algebra A:

Pr : A× A → A, Pr(a, b) = ab. (8)

Given a bounded bilinear map B : X × Y → Z, we can define the ”adjoint”
B∗ : X × Z∗ → Y ∗ by the formula

〈y, B∗(x, z∗)〉 = 〈B(x, y), z∗〉.

Note that

B∗ = D, (πY )∗ = ÕY ∗ and (OY,Z)∗(T, z∗) = OZ∗,Y ∗(T
∗, z∗).

Definition 2 We write L
p
B(X) for the space of functions f in L0

B(X) such
that

‖f‖Lp
B

(X) = sup{‖B(f, y)‖Lp(Z) : ‖y‖ = 1} < ∞.

Clearly ‖f +g‖Lp
B

(X) ≤ ‖f‖Lp
B

(X) +‖g‖Lp
B

(X) and ‖λf‖Lp
B

(X) = |λ|‖f‖Lp
B

(X) for
f, g in Lp(B) and λ ∈ K, but in general the ‖f‖Lp

B
(X) = 0 does not imply f = 0

a.e. (It suffices to take B such that there exists x 6= 0 for which B(x, y) = 0
for all y ∈ Y , and select f = x1Ω).

Observe that Lp(X) ⊂ Lp
B(X) for any bounded bilinear map B. Also one has

Lp
B(X) = Lp(X), Lp

D(X) = Lp
weak(X) and Lp

D1
(X∗) = Lp

weak∗(X
∗).

Remark 3 Observe that simple functions, say s =
∑n

k=1 xk1Ak
, xk ∈ X,and

pairwise disjoint sets Ak, belong to Lp
B(X). Actually

‖s‖Lp
B

(X) = sup{(
n∑

k=1

‖B(xk, y)‖pµ(Ak))
1
p : ‖y‖ = 1}

A simple duality argument gives

‖s‖Lp
B

(X) = sup{‖
n∑

k=1

B∗(xk, z
∗
k)µ(Ak)

1
p‖ : (

n∑

k=1

‖z∗k‖p′)
1
p′ = 1}.

Definition 4 A function f ∈ L
p
B(X) is said to belong to Lp

B(X) if there exists
a sequence of simple functions (sn)n ∈ S(X) such that

sn → f a.e. and ‖sn − f‖Lp
B

(X) → 0.

For f ∈ Lp
B(X) we write ‖f‖Lp

B
(X) instead of ‖f‖Lp

B
(X). Clearly one has that

‖f‖Lp
B

(X) = lim
n→∞ ‖sn‖Lp

B
(X).
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Remark 5 Let Ω = [0, 1] with the Lebesgue measure. Let f =
∑∞

k=1 2kxk1Ik

where xk ∈ X and Ik = (2−k, 2−k+1] for k ∈ N.

It is elementary to see that f ∈ Lp
B(X) if and only if sup‖y‖=1

∑∞
k=1 ‖B(xk, y)‖p <

∞. From this it follows that if limN→∞ sup‖y‖=1

∑∞
k=N ‖B(xk, y)‖p = 0 then

f ∈ Lp
B(X).

Remark 6 (i) Lp(X) ⊆ Lp
B(X) for any B and Lp

B(X) = Lp
B(X) = Lp(X).

(ii) Lp
D(X) = P p(X) (see [10], page 54 for the case p = 1).

(iii) Lp
B(X) ( Lp

B(X) (see [6] page 53, for the case B = D).

(iv) Let f : Ω → L(X, Y ) belong to L1
OX,Y

(L(X, Y )) and denote f(w) = Tw.
Then, for any A ∈ Σ, there exists TA ∈ L(X, Y ) such that TAx =

∫
Ω Ttxdµ for

x ∈ X.

As expected the bilinear map B defines the smallest space in the scale {Lp
B(X) :

B bilinear and bounded }. One might expect the space of Pettis p-integrable
functions, Lp

D(X), to be the biggest in the scale. We shall now see that the
inclusion Lp

B(X) ⊂ P p(X) holds true only among certain class of bilinear
maps.

Given x ∈ X and y ∈ Y we shall be denoting by Bx ∈ L(Y, Z) and By ∈
L(X, Z) the corresponding linear operators

Bx(y) = B(x, y) and By(x) = B(x, y).

Definition 7 Let Y and Z be Banach spaces and B : X×Y → Z be a bounded
bilinear map. We shall say that the triple (Y, Z, B) is admissible for X if the
map x → Bx is injective from X → L(Y, Z), i.e. B(x, y) = 0 for all y ∈ Y
implies x = 0.

Notice that if (Y, Z, B) is admissible for X if and only if (Z∗, Y ∗,B∗) is.

It is elementary to see that examples in (1)-(7) are admissible triples. In the
example (8) the admissibility condition becomes “no zero divisors” and holds
true for Banach algebras with identity or with bounded approximation of the
identity.

Definition 8 Let Y and Z be Banach spaces and let B : X × Y → Z be a
bounded bilinear map. X is said to be (Y, Z, B)-normed (or normed by B) if
there exists C > 0 such that for all x ∈ X

‖x‖ ≤ C‖Bx‖.

This simply means X can be understood as a subspace of L(Y, Z) and that
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|||x||| = ‖Bx‖ defines an equivalent norm on X.

Remark 9 (i) If X is (Y, Z, B)-normed then (Y, Z, B) is an admissible triple.

(ii) X is (Y, Z, B)-normed if and only if it is (Z∗, Y ∗,B∗)-normed.

Remark 10 Let X be (Y, Z, B) normed and f ∈ Lp
B(X). Then the function

f̃ : Ω → L(Y, Z) given by f̃(w) = Bf(w) belongs to Lp
OY,Z

(L(Y, Z)). Moreover

‖f̃‖Lp
OY,Z

(L(Y,Z)) = ‖f‖Lp
B

(X).

Proposition 11 Let X, Y and Z be Banach spaces and let B : X × Y → Z
be a bounded bilinear map. The following are equivalent:

(1) X is (Y, Z, B)-normed.
(2) For each x∗ ∈ X∗ there exists a functional ϕx∗ ∈ L(Y, Z)∗ such that

〈x, x∗〉 = ϕx∗(Bx) for all x ∈ X.

PROOF. Assume that X is (Y, Z, B)-normed and denote by X̂ = {Bx :
x ∈ X} ⊆ L(Y, Z). By assumption X̂ is a closed subspace of L(Y, Z). Given
x∗ ∈ X∗ the map Bx → 〈x∗, x〉 defines bounded functional in (X̂)∗. Now, by
the Hahn-Banach theorem there is an extension ϕx∗ to (L(Y, Z))∗.
The converse is immediate. 2

Of course, given a Banach space X there are many triples (Y, Z, B) for which X
is (Y, Z, B)-normed. In particular the ones considered in the examples (1)-(7).

However it is also easy to produce examples of admissible triples which are
not (Y, Z, B)-normed:

Example 12 Let X = `p for 1 ≤ p < 2, Y = `2, Z = `1 and B : `p × `2 → `1

given by

B((αn)n, (βn)n) = (αnβn)n.

Then `p is not (Y, Z, B)-normed.

Theorem 13 Let X,Y and Z be Banach spaces and let B : X × Y → Z be a
bounded bilinear map. The following are equivalent:

(1) X is (Y, Z, B)-normed.
(2) Lp

B(X) ⊂ P p(X) for all 1 ≤ p < ∞.
(3) Lp

B(X) ⊂ P p(X) for some 1 ≤ p < ∞.
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PROOF.
(1)⇒(2) Let 1 ≤ p < ∞ and let s =

∑n
k=1 xk1Ak

∈ S(X). Let us write

‖s‖P p(X) = sup{(
n∑

k=1

|〈xk, x
∗〉|pµ(Ak))

1
p : ‖x∗‖ = 1}

= sup{(|〈
n∑

k=1

xkµ(Ak)
1
p αk, x

∗〉| : ‖x∗‖ = 1, ‖α‖`p′ = 1}

For each x∗ ∈ X∗ and ‖α‖`p′ = 1, using Proposition 11 one gets

〈
n∑

k=1

xkµ(Ak)
1
p αk, x

∗〉 = ϕx∗(B∑n

k=1
xkµ(Ak)

1
p αk

).

Hence

‖s‖P p(X)≤ sup{‖ϕx∗‖‖B(
n∑

k=1

αkxkµ(Ak)
1
p , y)‖ : ‖x∗‖ = 1, ‖α‖`p′ = 1, ‖y‖ = 1}

≤ sup{‖ϕx∗‖
n∑

k=1

‖B(xkµ(Ak)
1
p , y)‖ |αk| : ‖x∗‖ = 1, ‖α‖`p′ = 1, ‖y‖ = 1}

= M‖s‖Lp
B

(X)

Now if we take a function f ∈ Lp
B(X) then there exists (sn)n ∈ S(X) con-

vergent to f a.e and in the norm ‖ · ‖Lp
B

(X). Since (|〈sn, x
∗〉|p)n converges to

(|〈f, x∗〉|p) a.e. , Fatou’s Lemma implies that

‖f‖p
P p(X) = sup{

∫

Ω

lim
n
|〈sn(w), x∗〉|pdµ : ‖x∗‖ = 1}

≤ sup{lim inf
n

∫

Ω

|〈sn(w), x∗〉|pdµ : ‖x∗‖ = 1}

≤ lim inf
n

‖sn‖p
P p(X)

≤Mp lim inf
n

‖sn‖p
Lp

B
(X)

≤Mp‖f‖p
Lp

B
(X).

(2)⇒(3) Obvious.

(3)⇒(1) Assume (3), fix x ∈ X and consider the simple function

fx: Ω → X

w 7→ xµ(Ω)−
1
p 1Ω(w)
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Since ‖fx‖P p(X) = ‖x‖ and ‖fx‖Lp
B

(X) = ‖Bx‖ one gets (1). 2

Proposition 14 Let X be a (Y, Z, B)-normed space and f ∈ L1
B(X). For each

E ∈ Σ there exists a unique xE ∈ X such that for any y ∈ Y

B(xE, y) =
∫

E

B(f(w), y)dµ.

The value xE = (B)
∫
E fdµ is called the B-integral of f over E.

PROOF. Note that the uniqueness follows from the bilinearity of B and the
admissibility of the triple.

To show the existence, observe that if f ∈ L1(X) then xE can be taken the
Bochner integral of f over E,

∫
E fdµ, using that By ∈ L(X,Z) and By(xE) =∫

E By(f)dµ for any y ∈ Y .

Now, if f ∈ L1
B(X) and (sn)n is the sequence of simple functions of the defi-

nition then we have
∫

E

B(f(w), y)dµ = lim
n

B(xn,E, y),

for E ∈ Σ and y ∈ Y where xn,E =
∫
E sndµ.

The fact that X is (Y, Z, B)-normed implies that there exists limn xn,E ∈ X,
say xE. Indeed,

‖xn,E − xm,E‖≤C sup{‖Bxn,E−xm,E
(y)‖ : ‖y‖ = 1}

≤C sup{‖B(sn − sm, y)‖L1(Z) : ‖y‖ = 1}
≤C‖sn − sm‖L1

B
(X).

Finally we have
∫
E B(f(w), y)dµ = limn B(xn,E, y) = B(limn xn,E, y) = B(xE, y).

2

Remark 15 If X be (Y, Z, B)-normed space and f ∈ L1
B(X) then

xE = (B)
∫

E

fdµ = (P )
∫

E

fdµ

for any E ∈ Σ where (P )
∫
E fdµ(w) stands for the Pettis integral over E.
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3 A bilinear version of Hölder’s Inequality.

It is well known and easy to see the following analogues of Hölder’s inequality
in the vector-valued setting: Let 1 ≤ p1, p2, p3 ≤ ∞ and 1

p1
+ 1

p2
= 1

p3
.

(1) If f ∈ Lp1

weak(X) and g ∈ Lp2 then fg ∈ Lp3

weak(X).
(2) If f ∈ P p1(X) and g ∈ Lp2 then fg ∈ P p3(X).
(3) If f ∈ Lp1(X) and g ∈ Lp2 then fg ∈ Lp3(X).
(4) If f ∈ Lp1(X) and g ∈ Lp2(X∗) then 〈f, g〉 ∈ Lp3 .
(5) If f ∈ Lp1(L(X, Y )) and g ∈ Lp2(X) then f(w)(g(w)) ∈ Lp3(Y ).

Clearly f ∈ L0
B(X) and g ∈ L0(Y ) implies that B(f, g) ∈ L0(Z). Hence a

natural question that arises is the following: Does B(f, g) belong to Lp3(Z)
for any f ∈ Lp1

B (X) and g ∈ Lp2(Y )?

The answer is negative for any infinite dimensional Banach space X.

Indeed, take p1 = p2 = 2 and p3 = 1, let X be an infinite dimensional Banach
space, Y = X∗ and Z = K and B = D. Take (xn) ∈ `2

weak(X) \ `2(X).
This allows to find (x∗n) ∈ `2(X

∗) such that
∑

n |〈xn, x
∗
n〉| = ∞. Consider

now Ω = [0, 1] with the Lebesgue measure, Ik = (2−k, 2−k+1] and define the

functions f =
∑∞

k=1 2
k
2 xk1Ik

and g =
∑∞

k=1 2
k
2 x∗k1Ik

. It is clear that f ∈ L2
D(X)

with ‖f‖2
L2
D(X) = sup{∑∞

n=1 |〈xn, x
∗〉|2 : ‖x∗‖ = 1} and g ∈ L2(X∗) with

‖g‖2
L2(X∗) =

∑∞
n=1 ‖x∗n‖2 but B(f, g) =

∑∞
k=1 2k〈xk, x

∗
k〉1Ik

/∈ L1.

One might think that the difficulty comes from allowing functions to belong
to Lp1

B (X) instead of Lp1

B (X). Let us then modify the question: Does B(f, g)
belong to Lp3(Z) for any f ∈ Lp1

B (X) and g ∈ Lp2(Y )?

The answer is again negative. If the result hold true we would have that there
exists M > 0 such that ‖B(s, t)‖L1(Z) ≤ M‖s‖L2

B
(X)‖t‖L2(Y ) for any s ∈ S(X)

and t ∈ S(Y ).

Select X = Y = `2, Z = `1 and B : `2×`2 → `1 given by B((λn)n∈N, , (βn)n∈N) =

(λnβn)n∈N. Let us now consider sN =
∑N

k=1 2
k
2 ek1Ik

where ek is the canonical

basis and Ik are chosen as above. Hence B(sN , y) =
∑N

k=1 2
k
2 βkek1Ik

for y =

(βn)n∈N ∈ `2. Therefore ‖sN‖L2
B

(`2) ≤ 1. Let us also take tN =
∑N

k=1 2
k
2 ek1Ik

which gives ‖tN‖L2(`2) =
√

N . Finally observe that B(sN , tN) =
∑N

k=1 2kek1Ik

and ‖B(sN , tN)‖L1(`1) = N . This contradicts (3).

Modifying the previous argument with Z = K and B = D one can even show
that there exist f ∈ Lp1

B (X) and g ∈ Lp2(Y ) such that B(f, g) /∈ Lp3

weak(Z).
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To establish some bilinear version of Hölder’s inequality we need to put toget-
her different bilinear maps. We shall then study the following general problem:

Problem: Let 1 ≤ p1, p2, p3 ≤ ∞ and 1
p1

+ 1
p2

= 1
p3

and let B : X × Y → Z
be a bounded bilinear map. If B1 : X ×X1 → X2 and B2 : Y × Y1 → Y2 are
bounded bilinear maps, find B3 : Z × Z1 → Z2 such that for any f ∈ Lp1

B1
(X)

and g ∈ Lp2

B2
(Y ) one has B(f, g) ∈ Lp3

B3
(Z).

Definition 16 We say that (B,B1,B2) is a compatible triple if B : X ×Y →
Z, B1 : X ×X1 → X2 and B2 : Y × Y1 → Y2 are bounded bilinear maps and
there exist a Banach space F and two bounded bilinear maps P : X2×Y2 → F
and P̃ : Z × (X1⊗̂Y1) → F such that

P̃(B(x, y), x1 ⊗ y1) = P(B1(x, x1),B2(y, y1))

for all x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1.

A general procedure of construction of such compatible triples of bilinear maps
can be obtained as follows:

Example 17 Let U be a Banach space, B1 : X×X1 → U and B2 : Y ×Y1 →
U∗ be bounded bilinear maps . Define the bilinear map B(B1,B2) = B : X ×
Y → L(X1, Y

∗
1 ) defined by the formula

〈B(x, y)(x1), y1〉 = 〈B1(x, x1),B2(y, y1)〉

for x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1.

Using that L(X1, Y
∗
1 ) = (X1⊗̂Y1)

∗ we also can write

〈B(x, y), x1 ⊗ y1〉 = 〈B1(x, x1),B2(y, y1)〉.

Note that (B(B1, B2), B1, B2) is compatible, selecting F = K, P = D : U ×
U∗ → K and P̃ = D1 : L(X1, Y

∗
1 )× (X1⊗̂Y1) → K.

Let us now give some more concrete examples of admissible triples:

Example 18 (B,BX ,BY ) is a compatible triple for any B : X × Y → Z.

In particular, (DX ,BX ,BX∗) or (OX,Y ,BX ,BY ) are compatible triples.

Indeed, if B : X×Y → Z, B1 = BX : X×K→ X and B2 = BY : Y ×K→ Y
then select F = Z, P = B : X × Y → Z and P̃ = BZ : Z × K → Z. Observe
that P̃(B(x, y), λβ) = P(B(x, λ),B(y, β)). 2

Example 19 (B,B∗,BY ) is a compatible triple.
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Indeed, if B : X × Y → Z, B1 = B∗ : X × Z∗ → Y ∗ given by

〈B1(x, z∗), y〉 = 〈B(x, y), z∗〉

and B2 = BY : Y ×K→ Y then we can select F = K, P = (D1)Y : Y ∗×Y → K
and P̃ = DZ : Z × Z∗ → K. 2

Example 20 (πY ,BX ,OX∗) is a compatible triple.

Indeed, if B = πY : X × Y → X⊗̂Y , B1 = BX : X ×K→ X and B2 = ÕX∗ :
Y × L(Y, X∗) → X∗ then we can take F = K, P = DX : X × X∗ → K and
P̃ = DX⊗̂Y : X⊗̂Y × L(Y, X∗) → K. The compatibility now follows from

P̃(B(x, y), λT ) = 〈x⊗ y, λT 〉 = 〈λx, Ty〉 = P(B1(x, λ),B2(y, T )〉.

2

Example 21 Let B : L(X,Z) × L(Y, Z∗) → L(Y, X∗) be given by (T, S) →
T ∗S. Then (B,OX,Z ,OY,Z∗) is a compatible triple.

Indeed, if B1 = OX,Z : L(X, Z)×X → Z and B2 = OY,Z∗ : L(Y, Z∗)×Y → Z∗

then we can take F = K, P = DZ : Z × Z∗ → K and P̃ = (D1)X⊗̂Y :

L(Y, X∗)×X⊗̂Y → K given by P̃(T, x⊗ y) = 〈x, Ty〉.

Observe that the compatibility follows from the formula

P̃(B(T, S), x⊗ y) = 〈x, T ∗Sy〉 = 〈Tx, Sy〉 = P(B1(T, x), B2(S, y)〉.

2

Theorem 22 (Hölder’s inequality I) Let 1 ≤ p1, p2, p3 < ∞ such that
1
p1

+ 1
p2

= 1
p3

. Assume that (B,B1,B2) is a compatible triple for some F , P

and P̃.

(1) If f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ) then B(f, g) ∈ Lp3

P̃
(Z).

(2) If f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ) then B(f, g) ∈ Lp3

P̃
(Z).

Moreover ‖B(f, g)‖Lp3

P̃
(Z) ≤ ‖P‖‖f‖Lp1

B1
(X)‖g‖Lp2

B2
(Y ).

PROOF. (1) Let us first show that if f ∈ L0
B1

(X) and g ∈ L0
B2

(Y ) then
h = B(f, g) ∈ L0

P̃
(Z).

Indeed, if x1 ∈ X1 and y1 ∈ Y1 then P̃(h, x1 ⊗ y1) = P(B1(f, x1), B2(g, y1)).
Now since B1(f, x1) ∈ L0(X2), B2(g, y1) ∈ L0(Y2) and P is continuous then
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P̃(h, x1 ⊗ y1) ∈ L0(F ). For general ϕ ∈ X1⊗̂Y1, assume ϕ =
∑

n xn
1 ⊗ yn

1 with∑
n ‖xn

1‖‖yn
1 ‖ < ∞. Then, using the continuity of P and P̃, one has

P̃(h, ϕ) = lim
N→∞

N∑

k=1

P̃(B1(f, xk
1),B2(g, yk

1)) ∈ L0(F ).

Assume f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ). Let us show that h ∈ Lp3

P̃
(Z).

If x1 ∈ X1 and y1 ∈ Y1 then

(
∫

Ω

‖P̃(h, x1 ⊗ y1)‖p3dµ)
1

p3 = (
∫

Ω

‖P(B1(f, x1),B2(g, y1))‖p3dµ)
1

p3

≤‖P‖(
∫

Ω

(‖B1(f, x1)‖‖B2(g, y1))‖)p3dµ)
1

p3

≤‖P‖(
∫

Ω

‖B1(f, x1)‖p2dµ)
1

p2 (
∫

Ω

‖B2(g, y1)‖p1dµ)
1

p1

≤‖P‖‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y )‖x1‖‖y1‖.

In general, for each ϕ =
∑

n xn
1 ⊗ yn

1 ∈ X1⊗̂Y1, one has P̃(h,
∑

n xn
1 ⊗ yn

1 ) =∑
n P̃(h, xn

1 ⊗ yn
1 ). Therefore

(
∫

Ω

‖P̃(h,
∑
n

xn
1 ⊗ yn

1 )‖p3dµ)
1

p3 ≤∑
n

(
∫

Ω

‖P(B1(f, xn
1 ),B2(g, yn

1 ))‖p3dµ)
1

p3

≤‖P‖(∑
n

‖xn
1‖‖yn

1 ‖)‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y )

This gives ‖B(f, g)‖Lp3

P̃
(Z) ≤ ‖P‖‖f‖Lp1

B1
(X)‖g‖Lp2

B2
(Y ).

(2) Assume that f and g are simple functions. If f =
∑

k xk1Ek
∈ S(X) and

g =
∑

p yp1Fp ∈ S(Y ) then

h = B(f, g) =
∑

k,p

B(xk, yp)1Ek∩Fp ∈ S(Z).

Now, if we take f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ) then there exists (fn)n ⊆ S(X)

and (gn)n ⊆ S(Y ) such that fn → f a.e., gn → g a.e., ‖fn − f‖L
p1
B1

(X) → 0

and ‖gn − g‖L
p2
B2

(Y ) → 0. Clearly B(fn, gn) are simple functions and converge

to B(f, g) a.e.

12



Due to the previous result

‖B(fn, gn)−B(f, g)‖Lp3

P̃
(Z)≤‖B(fn − f, gn)‖Lp3

P̃
(Z) + ‖B(f, gn − g)‖Lp3

P̃
(Z)

≤‖P‖‖fn − f‖Lp1
B1

(X)‖gn‖Lp2
B2

(Y )

+ ‖P‖‖f‖Lp1
B1

(X)‖gn − g‖Lp2
B2

(Y )

Taking limits the result is completed. 2

Let us point out a little improvement that can be achieved for the compatible
triples of in Example 17. Let us recall the following fact that will be used in
the proof.

Lemma 23 Let X be a Banach space, 1 ≤ p < ∞ and (x∗n)n ⊆ X∗. Then

sup{(∑
n

|〈x∗n, x∗∗〉|p) 1
p : ‖x∗∗‖ = 1} = sup{(∑

n

|〈x, x∗n〉|p)
1
p : ‖x‖ = 1}

Theorem 24 (Hölder’s inequality II) Let X, X1, Y, Y1 and U be a Banach
spaces and 1 ≤ p1, p2, p3 < ∞ such that 1

p1
+ 1

p2
= 1

p3
. Let B1 : X ×X1 → U ,

B2 : Y ×Y1 → U∗ be bounded bilinear maps and let B(B1, B2) = B : X×Y →
L(X1, Y

∗
1 ) be defined by the formula

〈B(x, y)(x1), y1)〉 = 〈B1(x, x1),B2(y, y1)〉.

If f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ) then B(f, g) ∈ P p3(L(X1, Y

∗
1 )).

Moreover ‖B(f, g)‖L
p3
weak

(L(X1,Y ∗1 )) ≤ ‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y ).

PROOF. Assume first that f and g are simple functions. If f =
∑

k xk1Ek
∈

S(X) and g =
∑

p yp1Fp ∈ S(Y ) then h = B(f, g) =
∑

k,p B(xk, yp)1Ek∩Fp ∈
S(L(X1, Y

∗
1 )). Note that L(X1, Y

∗
1 ) = (X1⊗̂Y1)

∗. Hence from Lemma 23

‖h‖L
p3
weak

((X1⊗̂Y1)∗) = sup{(∑
k,p

|〈B(xk, yp), ψ〉|p3µ(Ek ∩ Fp))
1

p3 : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

= sup{(∑
k,p

|〈ϕ, B(xk, yp)〉|p3µ(Ek ∩ Fp))
1

p3 : ‖ϕ‖X1⊗̂Y1
= 1}

= ‖h‖L
p3
weak∗((X1⊗̂Y1)∗).

13



We conclude, using Theorem 22, that

‖h‖L
p3
weak

(L(X1,Y ∗1 )) ≤ ‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y ).

Now, if we take f ∈ Lp1

B1
(X) and g ∈ Lp2

B2
(Y ) then there exists (fn)n ⊆ S(X)

and (gn)n ⊆ S(Y ) such that fn → f a.e., gn → g a.e., ‖fn− f‖L
p1
B1

(X) → 0 and

‖gn − g‖L
p2
B2

(Y ) → 0. Clearly B(fn, gn) → B(f, g) a.e. and therefore B(f, g) is

strongly measurable and

|〈B(fn, gn), ψ)〉|p3 → |〈B(f, g), ψ)〉|p3 a.e.

for all ψ ∈ (X1⊗̂Y1)
∗∗.

To see that B(f, g) ∈ P p3(L(X1, Y
∗
1 )) it suffices to show that B(f, g) ∈

Lp3

weak(L(X1, Y
∗
1 )).

Then using Fatou’s Lemma and the inequality for simple functions we have
that

‖B(f, g)‖p3

L
p3
weak

((X1⊗̂Y1)∗) = sup{
∫

Ω

|〈B(f, g), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

= sup{
∫

Ω

lim
n
|〈B(fn, gn), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

≤ sup{lim inf
n

∫

Ω

|〈B(fn, gn), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

≤ lim inf
n

‖B(fn, gn)‖p3

L
p3
weak

((X1⊗̂Y1)∗∗)

≤ lim inf
n

‖fn‖p3

L
p1
B1

(X)
‖gn‖p3

L
p2
B2

(Y )

= ‖f‖p3

L
p1
B1

(X)
‖g‖p3

L
p2
B2

(Y )
.

2

Corollary 25 Let 1 ≤ p1, p2, p3 < ∞ such that 1
p3

= 1
p1

+ 1
p2

.
Let B : X × Y → Z be a bounded bilinear map.

(1) If f ∈ Lp1(X) and g ∈ Lp2(X∗) then 〈f, g〉 ∈ Lp3.
(2) If f ∈ Lp1(X) and g ∈ Lp2

B̃∗
(Y ) then B(f, g) ∈ Lp3

weak(Z), where

B̃∗ : Y × Z∗ → X∗ is given by 〈x, B̃∗(y, z∗)〉 = 〈B(x, y), z∗〉.
(3) If f ∈ Lp1

B (X) and g ∈ Lp2(Z∗) then B∗(f, g) ∈ Lp3

weak∗(Y
∗), where

B∗ : X × Z∗ → Y ∗ is given by 〈y, B∗(x, z∗)〉 = 〈B(x, y), z∗〉.
(4) If f ∈ Lp1

ÕY ∗
(X) and g ∈ Lp2(Y ) then f ⊗ g ∈ Lp3

weak(X⊗̂Y ).
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(5) If f ∈ Lp1

OX,Z
(L(X, Z)) and g ∈ Lp2

OY,Z∗ (L(Y, Z∗)) and if we put f ∗(t) =

f(t)∗ ∈ L(Z∗, X∗) then f ∗g ∈ Lp3

weak∗(L(Y,X∗)).

4 Some concrete examples.

We now will see more concrete examples of spaces and bilinear maps where
the theory can give nice applications.

Example 26 (Hölder’s bilinear map) Let (Ω1, η) be a σ-finite measure
space, let 1 ≤ p1, p2, p3 ≤ ∞ and 1

p3
= 1

p1
+ 1

p2
and consider

Hp1,p2 : Lp1(η)× Lp2(η) → Lp3(η), (f, g) → fg.

It is clear that Lp1(η) is (Lp2(η), Lp3(η),Hp1,p2)-normed.

In particular for Ω1 = N with the counting measure, one has for p = p3:

Proposition 27 Let 1 ≤ p1 < ∞, 1 ≤ p2 ≤ ∞, 1
p3

= 1
p1

+ 1
p2

and Hp1,p2 :

`p1 × `p2 → `p3. If f = (fn) ∈ Lp3

Hp1,p2
(`p1) then

‖f‖Lp3
Hp1,p2

(`p1) = ‖(fn)‖`p1 (Lp3 ).

PROOF. Note that

‖f‖Lp3
Hp1,p2

(`p1 ) = sup{(
∫

Ω

‖(fn(w)βn)n‖p3

`p3
dµ)

1
p3 : ‖(βn)n‖`p2

= 1}

= sup{(
∞∑

n=1

(‖fn‖Lp3(µ)|βn|)p3)
1

p3 : ‖(βn)n‖`p2
= 1}

= ‖(‖fn‖Lp3 )n‖`p1
= ‖(fn)n‖`p1 (Lp3 (µ))

2

Example 28 (Young’s bilinear map) Let G be locally compact abelian
group, 1 ≤ p1, p2 ≤ ∞ and 1/p1 + 1/p2 ≥ 1. Let 1 ≤ p3 ≤ ∞ with 1

p3
=

1
p1

+ 1
p2
− 1 and consider

Yp1,p2 : Lp1(G)× Lp2(G) → Lp3(G), (f, g) → f ∗ g.

Proposition 29

(1) Lp(R) is (L1(R), Lp(R),Yp,1)-normed for any 1 ≤ p < ∞.
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(2) (L2(R), L2(R),Y1,2) is an admissible triple for L1(R) but L1(R) is not
(L2(R), L2(R),Y1,2)-normed.

PROOF. (1) Since L1(R) has a bounded approximation of the identity then

‖f‖p = sup{‖f ∗ g‖p : ‖g‖1 = 1} = sup{‖Yp,1(f, g)‖p : ‖g‖1 = 1}.

(2) Note that

sup{‖f ∗ g‖2 : ‖g‖2 = 1} = sup{‖Y1,2(f, g)‖p : ‖g‖2 = 1} = ‖f̂‖∞
which is not equivalent to ‖f‖1. 2

In particular for G = R with the Lebesgue measure, the norm in the spaces
Lp
Yp1,p2

(Lp1) can be easily described in some cases.

Proposition 30 Let 1 ≤ p1 < ∞, 1 ≤ p2 ≤ ∞ with 1
p1

+ 1
p2
≥ 1. Let

1 ≤ p3 ≤ ∞ with 1
p3

= 1
p1

+ 1
p2
− 1.

(1) Lp
Yp1,1

(Lp1(R)) = Lp(Lp1(R)) for any 1 ≤ p < ∞.

Moreover ‖f‖Lp
Yp1,1

(Lp1 (R)) = ‖f‖Lp(Lp1 (R)).

(2) If f ∈ L0(L1(R)) then

‖f‖L2
Y1,2

(L1(R)) = sup
x∈R

(
∫

Ω

|f̂w(x)|2dµ)
1
2 .

PROOF. (1) Assume f ∈ L0
Yp1,1

(Lp1(R)) then, Proposition 29 and Theorem

13 give that f is weakly measurable and, due to the separability of Lp1(R),
we conclude that f ∈ L0(Lp1(R)). Assuming that f : Ω → Lp1(R) is given by
w 7→ fw and taking a bounded approximation of the identity in L1(R), say gn,
one has

‖f‖Lp(Lp1(R)) = (
∫

Ω

‖fw‖p
Lp1 (R)dµ)

1
p

= (
∫

Ω

lim
n→∞ ‖fw ∗ gn‖p

Lp1 (R)dµ)
1
p

≤ sup{(
∫

Ω

‖fw ∗ g‖p
Lp1(R)dµ)

1
p : ‖g‖L1(R) = 1}

= ‖f‖Lp
Yp1,1

(Lp1 (R))
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The other inclusion and inequality of norms are always true.

(2) Now if f ∈ L0(L1(R)) then f : Ω → L1(R) given by w 7→ fw and we have
(using Plancherel’s identity and Fubini’s theorem) that

‖f‖L2
Y1,2

(L1(R)) = sup{(
∫

Ω

‖fw ∗ g‖2
L2(R)dµ)

1
2 : ‖g‖L2(R) = 1}

= sup{(
∫

Ω

‖f̂w ∗ g‖2
L2(R)dµ)

1
2 : ‖g‖L2(R) = 1}

= sup{(
∫

Ω

∫

R

|f̂w(x)ĝ(x)|2dxdµ)
1
2 : ‖ĝ‖L2(R) = 1}

= sup{(
∫

R

(
∫

Ω

|f̂w(x)|2dµ)|ĝ(x)|2dx)
1
2 : ‖ĝ‖L2(R) = 1}

= sup{(
∫

R

(
∫

Ω

|f̂w(x)|2dµ) |h(x)|dx)
1
2 : ‖h‖L1(R) = 1}

= sup
x∈R

(
∫

Ω

|f̂w(x)|2dµ)
1
2

2

We now show two interesting examples given in terms of the Poisson kernel.

Let Pr(θ) = 1−r2

|1−r eiθ |2 for 0 ≤ r < 1 denote the Poisson kernel in D. Due to the

facts ‖Pr‖1 = 1 for all 0 < r < 1 and ‖Pr‖∞ = 1+r
1−r

one gets, for 1 < p < ∞,

the estimate ‖Pr‖p ≤ (1+r
1−r

)
− 1

p′ .

Definition 31 Let 1 ≤ p ≤ ∞ and write Pp : [0, 1) → Lp(T) for the function
Pp(r) = Pr

Clearly Pp is continuous on [0, 1) but unbounded for 1 < p ≤ ∞. Actually it
is well known that

C1(1− r)
− 1

p′ ≤ ‖Pp(r)‖p ≤ C2(1− r)
− 1

p′ .

This shows that Pp /∈ Lp′([0, 1), Lp(T)). Nevertheless we can define some bili-
near maps B such that Pp belongs to Lp

B([0, 1), Lp(T)).

For such a purpose we will apply two important inequalities from the theory
of Hardy spaces. We refer the reader to [7] for the non explained notation.

Proposition 32 Let 1 ≤ p < ∞ and let H : Lp(T)×Hp′(D) → C be defined
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by

H(φ, f) =

π∫

−π

φ(eiθ)f(eiθ)
dθ

2π
.

Then Pp ∈ Lp′
H([0, 1), Lp(T)).

PROOF. Observe first that H is a bounded bilinear map but (Hp′(D),C,H)
is not an admissible triple.

Since Pr ∗ f(θ) = f(r eiθ) for any f ∈ Hp(D) then f(r) = Pr ∗ f(0) and hence
H(Pp(r), f) = f(r) for f ∈ Hp′(D). Then, applying Fèjer-Riesz’s inequality
(see [7] page 46)

(

1∫

0

|H(Pp(r), f)|p′dr)
1
p′ = (

1∫

0

|f(r)|p′dr)
1
p′ ≤ C‖f‖p′ .

Hence ‖Pp‖Lp′
H([0,1),Lp(T))

≤ C. 2

Proposition 33 Let 1 ≤ p1 < p2 < ∞ and take p such that 1
p′ = 1

p1
− 1

p2
. Let

us define C : Lp(T)×Hp1(D) → Hp2(D) by

C(φ, f) = φ ∗ f.

Then Pp ∈ Lp′
C (dµp1,p2,p′ , L

p(T)) with the measure dµp1,p2,p′(r) = (1−r)
p′( 1

p1
− 1

p2
)−1

dr.

PROOF. Observe that Young’s inequality implies that C is a bounded bili-
near map because 1

p2
= 1

p
+ 1

p1
−1, but (Hp1(D), Hp2(D), C) is not an admissible

triple.

If f ∈ Hp1(D) then we have C(Pp(r), f) = fr where fr(e
iθ) = f(r eiθ).

Recall that Hardy-Littlewood’s inequality (see [7] page 87) establishes that
for 1 ≤ p < q < ∞ and λ ≥ p, there exists a constant C > 0 such that

(

1∫

0

(1− r)λ( 1
p
− 1

q
)−1Mq(f, r)λdr)

1
λ ≤ C‖f‖Hp(D) for all f ∈ Hp(D)

where Mp(f, r) = ‖fr‖p.

Therefore, applying the previous inequality for λ = p′, p = p1 and q = p2, one
gets
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(

1∫

0

‖C(Pp(r), f)‖p′
Hp2 (D)dµp1,p2,p′(r))

1
p′ = (

1∫

0

‖fr‖p′
Hp2(D)dµp1,p2,p′(r))

1
p′

= (

1∫

0

Mp′
p2

(f, r)(1− r)
p′( 1

p1
− 1

p2
)−1

dr)
1
p′

≤C‖f‖Hp1(D).

Therefore ‖Pp‖Lp′
C (dµp1,p2,p′ ,Lp(T))

≤ C. 2

5 Integral operators by means of bilinear maps.

Throughout this section (Ω, Σ, dµ(w)) and (Ω′, Σ′, dµ′(w′)) are finite complete
measure spaces, X is a Banach space and k : Ω× Ω′ → X belong to L0

B(Ω×
Ω′, X) for some (Y, Z, B) is an admissible triple for X. Our objective is to
study the boundedness of the integral operator associated to B given by

TB
k : Lp(Ω′, Y ) → Lp(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(w,w′), g(w′))dµ′(w′)

As usual, denote by

kw = k(w, ·): Ω′ → X

w′ 7→ k(w, w′)

kw′ = k(·, w′): Ω → X

w 7→ k(w, w′)
.

We also write K(w) = kw and K′(w′) = kw′ .

We now introduce similar conditions to the ones appearing in [9] in our more
general setting.

Definition 34 We say that k : Ω× Ω′ → X satisfies the condition (CB
0 ) if

(1) kω ∈ L1
B(Ω′, X) a.e. in Ω, and

(2) for each y ∈ Y and E ∈ Σ′ the function

TB
k (y, E): Ω → Z

ω 7→
∫

E

B(k(ω, ω′), y)dµ′(w′)

belongs to L0(Ω, Z) .
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Remark 35 If the kernel k satisfies (CB
0 ) then the operator

TB
k : S(Ω′, Y ) → L0(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

is well defined.

Remark 36 If K ∈ L0(Ω, L1
B(Ω′, X)) then k satisfies (CB

0 ).

Definition 37 We say that k : Ω× Ω′ → X satisfies the condition (CB
1 ) if

(1) kω′ ∈ L1
B(Ω, X) a.e. in Ω′,

(2) there exists a constant CB
1 > 0 such that

µ′({ω′ ∈ Ω′ : ‖kω′‖L1
B

(Ω,X) > CB
1 } = 0.

Remark 38 If K′ ∈ L∞(Ω′, L1
B(Ω, X)) then k satisfies (CB

1 ) with

CB
1 ≤ ‖K′‖L∞(Ω′,L1

B
(Ω,X)).

Proposition 39 Let B : X × Y → Z bounded bilinear map and let k : Ω ×
Ω′ → X a kernel satisfying (CB

0 ). If k satisties (CB
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L1(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to L1(Ω′, Y ) and with norm bounded by CB
1 .

PROOF. Let g =
∑n

k=1 yk1Ek
. Then

TB
k (g)(w) =

n∑

k=1

∫

Ek

B(k(ω, ω′), yk)dµ′(w′)

Therefore

∫

Ω

‖TB
k (g)(w)‖dµ(w)≤

∫

Ω

n∑

k=1

∫

Ek

‖B(k(ω, ω′), yk)‖dµ′(w′)dµ(w)

=
n∑

k=1

‖yk‖
∫

Ek

(
∫

Ω

‖B(k(ω, ω′),
yk

‖yk‖)‖dµ(w))dµ′(w′)
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≤
n∑

k=1

‖yk‖
∫

Ek

‖kw′‖L1
B

(Ω,X)dµ′(w′)

≤CB
1

n∑

k=1

‖yk‖µ′(Ek)

Now extend by the density of the simple functions on L1(Ω′, Y ). 2

We can get similar sufficient conditions for the boundedness on vector-valued
Lp-spaces for p > 1.

Definition 40 Let 1 < p < ∞. We say that k : Ω× Ω′ → X satisfies (CB
p ) if

(1) kω′ ∈ Lp
B(Ω, X) a.e. in Ω′,

(2) w′ → ‖kw′‖Lp
B

(Ω,X) belongs to Lp′(Ω′).

Remark 41 If K′ ∈ Lp′(Ω′, Lp
B(Ω, X)) then k satisfies (CB

p ).

Proposition 42 Let 1 < p < ∞ and B : X × Y → Z be a bounded bilinear
map. If k : Ω×Ω′ → X is a kernel satisfying (CB

0 ) and (CB
p ) then the integral

operator

TB
k : S(Ω′, Y ) → Lp(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to Lp(Ω′, Y ).

PROOF. Let g =
∑n

k=1 yk1Ek
and TB

k (g)(w) =
∫
Ω′ B(k(ω, ω′), g(w′))dµ′(w′).

Using Minkowski’s inequality one gets Therefore

(
∫

Ω

‖TB
k (g)(w)‖pdµ(w))

1
p ≤

∫

Ω′

(
∫

Ω

‖B(k(ω, ω′), g(w′))‖pdµ(w))
1
p dµ′(w′)

≤
∫

Ω′

‖kω′‖Lp
B

(Ω,X)‖g(w′)‖dµ′(w′)

≤ (
∫

Ω′

‖kw′‖p′
Lp

B
(Ω,X)dµ(w′))

1
p′ ‖g‖Lp(Ω′,Y )

Now extend by the density of the simple functions on Lp(Ω′, Y ). 2

Recall that B∗ denotes the adjoint B∗ : X×Z∗ → Y ∗ given by 〈y, B∗(x, z∗)〉 =
〈B(x, y), z∗〉. We write k̃ : Ω′ × Ω → X for the map k̃(w′, w) = k(w,w′).
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Proposition 43 Let B : X×Y → Z bounded bilinear map. If k : Ω×Ω′ → X
satisfies (CB

0 ) and k̃ satisfies (CB∗
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to S(Ω′, Y )
L∞(Ω′,Y )

with norm bounded by CB∗
1 .

PROOF. Take g ∈ S(Ω′, Y ). The condition (C0
B) provides the measurability

of the function TB
k (g) : Ω → Z. Then, for those w ∈ Ω for which kw ∈

L1
B(Ω′, X), we have that

‖TB
k (g)(w)‖= sup{|

∫

Ω′

〈B(k(w, w′), g(w′)), z∗〉dµ′(w′)| : ‖z∗‖ = 1}

= sup{|
∫

Ω′

〈g(w′),B∗(k(w, w′), z∗)〉dµ′(w′)| : ‖z∗‖ = 1}

≤‖g‖L∞(Ω′,Y )‖kw‖L1
B∗ (Ω

′,X).

Hence ‖TB
k (g)‖L∞(Ω′,Y ) ≤ CB∗

1 ‖g‖L∞(Ω′,Y ). 2

The boundedness of the operator in the case 1 < p < ∞ can also be deduced
now of the previous propositions by means of interpolation.

Lemma 44 (see [9], page 198).Let 1 < p < ∞ and let T : S(Ω′, Y ) →
L1(Ω, Z) + L∞(Ω, Z) be a linear map and there exist c1, c2 > 0 such that

‖T (g)‖L1(Ω′,Y ) ≤ c1‖g‖L1(Ω′,Y ) and ‖T (g)‖L∞(Ω′,Y ) ≤ c∞‖g‖L∞(Ω′,Y )

for all g ∈ S(Ω′, Y ). Then there exists a linear extension T : Lp(Ω′, Y ) →
Lp(Ω, Z) with norm bounded by c

1
p

1 c
1
p′∞.

Theorem 45 Let 1 < p < ∞, let B : X × Y → Z be a bounded bilinear map.
If k : Ω× Ω′ → X is a kernel satisfying (CB

0 ), k satisfies (CB
1 ) and k̃ satisfies

(CB∗
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to TB
k : Lp(Ω′, Y ) → Lp(Ω, Z) with norm bounded

by (CB
1 )

1
p (CB∗

1 )
1
p′ .
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We finish this section mentioning some results about the extension of the ope-
rator to L∞(Y )) whose proofs can be obtained from the obvious modifications
in the operator-valued case (see [9] ).

Theorem 46 Let B : X×Y → Z be a bounded bilinear map. If k : Ω×Ω′ → X
satisfies (CB

0 ) and k̃ satisfies (CB∗
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g 7→ TB
k (g)(ω) =

∫

Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to SB
k : L∞(Ω′, Y ) → L∞weak∗(Ω, Z∗∗) given by

〈z∗, SB
k (g)(w)〉 =

∫

Ω′

〈B(k(w, w′), g(w′)), z∗〉dµ′(w′)

for each z∗ ∈ Z∗, w ∈ Ω and g ∈ L∞(Ω′, Y ) with norm bounded by CB∗
1 .

Theorem 47 Let B : X × Y → Z be a bounded bilinear map. Assume that
k : Ω × Ω′ → X satisfies (CB

0 ) and k̃ satisfies (CB∗
1 ) and that Z does not

contain a copy of c0. Then TB
k has a continuous extension to TB

k : L∞(Ω′, Y ) →
L∞(Ω, Z).
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