q-CONCAVITY AND RELATED PROPERTIES ON SYMMETRIC SEQUENCE SPACES.

OSCAR BLASCO AND TERESA SIGNES

Abstract

We introduce a new property between the q-concavity and the lower q-estimate of a Banach lattice and we get a general method to construct maximal symmetric sequence spaces that satisfies this new property but fails to be q-concave. In particular this gives examples of spaces with the Orlicz property but without cotype 2.

1. Introduction.

The reader is referred to [LT2] for the following notions from the theory of Banach lattices.

Let $1 \leq q<\infty$. A Banach lattice X is said to be q-concave if there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq C\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X.
A Banach lattice X is said to satisfy a lower q-estimate if there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq C\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X.
Obviously the q-concavity implies the lower q-estimate. The converse is false. For example, the Lorentz spaces $L_{q, p}$ with $1 \leq p<q$ satisfies a lower q-estimate (see [Cre] Prop. 3.2) but is not q-concave (see [Cre] Prop. 3.1). The first example of a Banach lattice satisfying a lower q estimate, $q \geq 2$, but not being q-concave is due to G. Pisier (see [LT2], examples 1.f. 19 and 1.f.20). The reader is referred to [CT] and [KMP]

The research was partially supported by the Spanish grant DGESIC PB98-1426, DGES (PB97-0254) and FP-95 of Ministerio de Educación y Ciencia, respectively.
for more information on the case $p<1$ or more general Lorentz spaces respectively.

Two related concepts from the theory of general Banach spaces are the following:

A Banach space X is said to have cotype q if there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq C \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} r_{k}(t)\right\| d t
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X, where r_{k} stand for the Rademacher functions.
X is said to have the q-Orlicz property if $i d: X \rightarrow X$ is $(q, 1)$ summing, that is, there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq C \sup _{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X.
Let us recall that Kintchine's inequalities (see [DJT] 1.16) tell us that only trivial spaces have cotype $q<2$ and that, using an extension of the Dvoretzky-Rogers Theorem (see [DJT], Thm. 10.5), we get that only finite dimensional Banach spaces have q-Orlicz property for $1 \leq q<2$.

Let us mention the relationship between all these notions.
On the one hand, taking into account that

$$
\sup _{t \in[0,1]}\left\|\sum_{k=1}^{n} x_{k} r_{k}(t)\right\| \approx \sup _{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|,
$$

one actually has that cotype q implies the q-Orlicz property and that the q-Orlicz property implies a lower q-estimate.

On the other hand Banach lattices X which are q-concave for some $1 \leq q<\infty$ satisfy the so-called Maurey-Kintchine inequalities (see [DJT], Thm. 16.11)

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}\right\| \approx \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} r_{k}(t)\right\| d t .
$$

Using this, one can easily sees that a Banach lattice X is 2-concave if and only if it has cotype 2 . Hence we have the following chain of implications

2-concavity \Leftrightarrow cotype $2 \Rightarrow$ 2-Orlicz property \Rightarrow lower 2-estimate.

The converses of the two last implications are false. In the setting of Banach lattices M. Talagrand (see [T2]) constructed an example with
the 2-Orlicz property but without cotype 2. Actually this author (see [T3]) was even able to construct a symmetric sequence space with the 2-Orlicz property which is not 2-concave. The reader is referred to [BS] for some modifications of [T3].

It is rather interesting to mention that in the setting of rearrangement invariant (r.i.) spaces defined over $[0,1]$ (see [LT1] for definitions) the notions of cotype 2 and the 2-Orlicz properties coincide. This result is due to E. M. Semenov and A. M. Shteinberg (see [SS]). They actually showed that the Lorentz space $L_{2,1}([0,1])$ satisfies a lower 2-estimate but fails to have the 2-Orlicz property.

The situation for $2<q<\infty$ is a bit different. B. Maurey (see [M] or [DJT], Cor. 16.7) showed that if a Banach lattice has the q-Orlicz property then it also has cotype q. Actually he proved (see $[\mathrm{M}]$ or [DJT], Cor. 16.15) that X satisfies a lower q-estimate if and only if X has cotype q. Some years later M. Talagrand (see [T2]) showed that the equivalence between q-Orlicz property and cotype q for $2<q<\infty$ holds true for any Banach space.

Therefore for Banach lattices and $2<q<\infty$ we have that q-concavity \Rightarrow cotype $q \Leftrightarrow q$-Orlicz property \Leftrightarrow lower q-estimate
The aim of this paper is to introduce, in the setting of symmetric sequence spaces, a property between the q-concavity and the lower q estimate, which will allow us to analyze all the cases $1<q<\infty$ in a unified way. We shall get a general method, introduced by Talagrand in [T3], to construct maximal symmetric sequence spaces which are not q-concave, but still have this new property. The definition is as follows.

Definition 1.1. Let $1 \leq q<\infty$ and let X, X_{1} be two Banach lattices such that $X \subset X_{1}$ (with continuous inclusion). X is said to be q concave with respect to $X_{1}\left(l^{1}\right)$ if there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{\frac{1}{q}} \leq C \max \left\{\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|_{X_{1}},\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|_{X}\right\}
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X.
Obviously if X is q-concave then X is q-concave with respect to $X_{1}\left(l^{1}\right)$ for any X_{1} such that $X \subset X_{1}$ and if there exists X_{1} such that X is q-concave with respect to $X_{1}\left(l^{1}\right)$ then X satisfies a lower q-estimate.

Let us recall that a maximal symmetric sequence space ($X,\|\cdot\|$) (see [J] [LT2]) is a Banach space of sequences such that
(a) $l^{1} \subset X \subset l^{\infty}$, and $\|x\|_{\infty} \leq\|x\| \leq\|x\|_{1}$,
(b) $|x| \leq|y|, y \in X \Longrightarrow x \in X$, and $\|x\| \leq\|y\|$,
(c) $y \in X, \sigma \in \Pi(\mathbb{N}) \Longrightarrow x \cdot \sigma \in X$, and $\|x \cdot \sigma\|=\|x\|$,
(d) $\|x\|=\sup _{n \in \mathbb{N}}\left\|P_{n}(x)\right\|$ where $P_{n}(x)=\sum_{k=1}^{n} x_{k} e_{k}$ if $x=\left(x_{k}\right)$.

Using that $\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|_{\infty}=\sup _{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|_{\infty}$, one has that a maximal symmetric sequence space X is q-concave with respect to $\ell^{\infty}\left(l^{1}\right)$ if and only if there exists a constant $C>0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q}} \leq C \max \left\{\sup _{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|_{\infty},\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|\right\}
$$

for every choice of elements $x_{1}, x_{2}, \ldots, x_{n}$ in X. In particular, for $2 \leq$ $q<\infty$ the q-concavity with respect to $\ell^{\infty}\left(l^{1}\right)$ implies the q-Orlicz property.

We shall consider the following method of constructing maximal symmetric sequence spaces generated by a family of sequences.

Let \mathcal{F} be a family of non-negative sequences in the unit ball of l^{∞} with the following properties:
(i) If $f \in \mathcal{F}$ and $0 \leq g \leq f$ then $g \in \mathcal{F}$.
(ii) If $f \in \mathcal{F}$ and $\sigma \in \Pi(\mathbb{N})$ then $f \cdot \sigma \in \mathcal{F}$.
(iii) There exists $f \in \mathcal{F}$ such that $\max _{i \in \mathbb{N}} f(i)=1$.

We call it a generating family.
Let h be a non-negative, non-increasing sequence in $c_{0}(\mathbb{N}), h(1)=1$ and denote by $\mathcal{H}=\{h . \sigma, \sigma \in \Pi(\mathbb{N})\}$. For each $m \in \mathbb{N}$ we write

$$
\mathcal{H}_{m}=\left\{0 \leq f \leq \sum_{l \geq 0} 2^{-l} \sum_{j \leq m^{l}} \alpha_{j, l} h_{j, l}: \sum_{j \leq m^{l}} \alpha_{j, l} \leq 1, \forall l \geq 0, h_{j, l} \in \mathcal{H}\right\} .
$$

Given an increasing sequence $\left(m_{k}\right) \subseteq \mathbb{N}, m_{0}=1$, we define

$$
\begin{aligned}
\mathcal{F}=\mathcal{F}\left(h,\left(m_{k}\right)\right)=\left\{f: 0 \leq f \leq \sum_{r=0}^{\infty} \beta_{r} f_{r},\right. & \sum_{r=0}^{\infty} \beta_{r} \leq 1, \\
& \left.\left\|f_{r}\right\|_{\infty} \leq 2^{-r}, f_{r} \in \mathcal{H}_{m_{r}}\right\}
\end{aligned}
$$

Let H be a non-decreasing sequence of positive real numbers and let us denote by ℓ_{H} the space of sequences $(x(n))$ such that

$$
\sum_{n \in A}|x(n)| \leq H(\operatorname{card}(A))
$$

for all finite sets $A \subseteq \mathbb{N}$.
Starting with a fixed sequence h and a fixed sequence $\left(m_{k}\right)$ we shall produce a way to find families $\mathcal{F} \subseteq \ell_{H}$ where $H(n)=\sum_{k=1}^{n} h(k)$.

Lemma 1.2. Let h, H and $\left(m_{k}\right)$ be as above.Then $\mathcal{F}=\mathcal{F}\left(h,\left(m_{k}\right)\right)$ is a generating family and $\mathcal{F} \subseteq \ell_{H}$.

Proof. The properties (i), (ii) and (iii) in the definition are immediate. To see that $\mathcal{F} \subseteq \ell_{H}$ it suffices to see that $\mathcal{H} \subseteq \ell_{H}$ and this follows from

$$
\sum_{k \in A} h(k) \leq \sum_{i=1}^{\operatorname{card}(A)} h(i)=H(\operatorname{card}(A)) .
$$

Lemma 1.3. Let $m, n \in \mathbb{N}$ and $f \in \mathcal{H}_{m}$. Then there exists a set $B \subseteq \mathbb{N}$ with card $(B)=n$ and $\left\|f \chi_{B^{c}}\right\|_{\infty} \leq \frac{H(n)}{n}$.
Proof. Take i_{1} such that $f\left(i_{1}\right)=\max _{i \in \mathbb{N}} f(i)$ (this exists since $f \in$ $\left.c_{0}(\mathbb{N})\right)$ and, inductively, choose i_{k} so that $f\left(i_{k}\right)=\max _{i \in \mathbb{N} \backslash\left\{i_{1}, \ldots, i_{k-1}\right\}} f(i)$. Let $B=\left\{i_{1}, \ldots, i_{n}\right\}$. Now it is clear that if $i \notin B$ then $f(i) \leq f\left(i_{k}\right)$, $k=1, \ldots, n$. Hence

$$
n \sup _{i \notin B} f(i) \leq \sum_{i \in B} f(i) \leq H(n) .
$$

Given $1<q<\infty$ let $X_{q}=X_{q}(\mathcal{F})$ be the space of sequences such that

$$
\|x\|_{X_{q}}=\sup _{f \in \mathcal{F}}\langle | x\left|, f^{\frac{1}{q^{\prime}}}\right\rangle<\infty
$$

where $\langle x, f\rangle$ means $\sum_{i \in \mathbb{N}} x(i) f(i)$.
It is easy to see that X_{q} is a maximal symmetric sequence space.
Our main theorem can be now stated as follows
Theorem 1.4. Given $1<q<\infty$. There exists a generating family \mathcal{F}_{q} such that $X_{q}\left(\mathcal{F}_{q}\right)$ is q-concave with respect to $\ell^{\infty}\left(l^{1}\right)$ but is not q concave.

As a corollary we have that $X_{q}\left(\mathcal{F}_{q}\right)$, for $2<q<\infty$, are examples of spaces of cotype q which are not q-concave, $X_{2}\left(\mathcal{F}_{2}\right)$ satisfies the 2 Orlicz property but is not of cotype 2 , and $X_{q}\left(\mathcal{F}_{q}\right)$, for $1<q<2$, satisfies a lower q-estimate but fails to be q-concave.

2. Construction of spaces which are not Q-CONCaVe

With the notation in the above section, we can find the following conditions to get maximal symetric sequence spaces $X_{q}(\mathcal{F})$ which are not q-concave.

Theorem 2.1. Let $h \in c_{0}(\mathbb{N}), h \geq 0$ non-increasing, $h(1)=1$ and such that there exists a convex subsequence $\left(n_{k}\right) \subset \mathbb{N}$, i.e. $2 n_{k} \leq$ $n_{k+1}+n_{k-1}, n_{0}=0$, for which

$$
\sup _{k} \frac{H\left(n_{k}\right)}{k H\left(n_{k}-n_{k-1}\right)}=\infty
$$

Let $1<q<\infty,\left(m_{k}\right) \subseteq \mathbb{N}, m_{0}=1$ and $\mathcal{F}=\mathcal{F}\left(h,\left(m_{k}\right)\right)$. Then $X_{q}=X_{q}(\mathcal{F})$ is not a q-concave space.
Proof. Let us fix $\tau \in \mathbb{N}$ and $(x(k))=\left(h^{\frac{1}{q}}(k)\right)_{k \leq n_{\tau}}$. Taking $N=n_{\tau}-$ $n_{\tau-1}$ we consider $\sigma \in \Pi(\mathbb{N})$ given by

$$
\begin{cases}\sigma\left(n_{k}\right)=n_{k-1}+1, & k \in \mathbb{N} \\ \sigma(p)=p+1 & \text { otherwise }\end{cases}
$$

Let us define $x_{j}=x \cdot \sigma^{j}, j=1,2 \ldots, N$ and denote $D_{k}=\left(n_{k-1}, n_{k}\right] \cap \mathbb{N}$, $k \in \mathbb{N}$.

A simple computation shows that

$$
\begin{aligned}
\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}} & \leq \sum_{k=1}^{\tau}\left(\left(\left[\frac{N}{\operatorname{card}\left(D_{k}\right)}\right]+1\right) \sum_{i \in D_{k}} x^{q}(i)\right)^{\frac{1}{q}} \chi_{D_{k}} \\
& \leq 2^{\frac{1}{q}} N^{\frac{1}{q}} \sum_{k=1}^{\tau}\left(\frac{1}{\operatorname{card}\left(D_{k}\right)} \sum_{i \in D_{k}} x^{q}(i)\right)^{\frac{1}{q}} \chi_{D_{k}} .
\end{aligned}
$$

Hence

$$
\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}} \leq C N^{\frac{1}{q}} \sum_{k=1}^{\tau}\left(\frac{1}{\operatorname{card}\left(D_{k}\right)} \sum_{i \in D_{k}} h(i)\right)^{\frac{1}{q}} \chi_{D_{k}}
$$

To show that $X_{q}\left(\mathcal{F}\left(h,\left(m_{k}\right)\right)\right)$ is not q-concave it is enough to see that

$$
\sup _{\tau} \frac{\left(\sum_{j=1}^{N}\left\|x_{j}\right\|^{q}\right)^{\frac{1}{q}}}{\left\|\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|}=\infty .
$$

Since $h \in \mathcal{F}$ then we have

$$
\left\|x_{j}\right\|=\|x\| \geq\langle | x\left|, h^{\frac{1}{q^{\top}}}\right\rangle=H\left(n_{\tau}\right)
$$

for all $j=1,2, \ldots, N$.
On the other hand, if $y=\sum_{k=1}^{\tau}\left(\frac{1}{\operatorname{card}\left(D_{k}\right)} \sum_{i \in D_{k}} h(i)\right)^{\frac{1}{q}} \chi_{D_{k}}$ then, for any $f \in \mathcal{F}$, we have

$$
\begin{array}{ll}
\left\langle y, f^{\frac{1}{q^{\prime}}}\right\rangle & =\sum_{k=1}^{\tau}\left(\frac{H\left(n_{k}\right)-H\left(n_{k-1}\right)}{\operatorname{card}\left(D_{k}\right)}\right)^{\frac{1}{q}} \sum_{i \in D_{k}} f^{\frac{1}{q^{(}(i)}} \\
\text { (Hölder) } & \leq \sum_{k=1}^{\tau}\left(H\left(n_{k}\right)-H\left(n_{k-1}\right)\right)^{\frac{1}{q}}\left(\sum_{i \in D_{k}} f(i)\right)^{\frac{1}{q^{\prime}}} \\
\text { (Lemma 1.2) } & \leq \sum_{k=1}^{\tau}\left(H\left(n_{k}\right)-H\left(n_{k-1}\right)\right)^{\frac{1}{q}}\left(H\left(n_{k}-n_{k-1}\right)\right)^{\frac{1}{q^{\prime}}} \\
\text { (Hölder) } & \leq\left(H\left(n_{\tau}-n_{\tau-1}\right)\right)^{\frac{1}{q^{\tau}}}\left(H\left(n_{\tau}\right)\right)^{\frac{1}{q}} \cdot \tau^{\frac{1}{q^{\prime}}} .
\end{array}
$$

Hence

$$
\begin{aligned}
\frac{\left(\sum_{j=1}^{N}\left\|x_{j}\right\|^{q}\right)^{\frac{1}{q}}}{\left\|\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|} \geq \frac{\|x\|}{C\|y\|} & \geq \frac{H\left(n_{\tau}\right)}{C\left(H\left(n_{\tau}\right)\right)^{\frac{1}{q}}\left(H\left(n_{\tau}-n_{\tau-1}\right)\right)^{\frac{1}{q^{\prime}}} \tau^{\frac{1}{q^{\prime}}}} \\
& =\frac{1}{C}\left(\frac{H\left(n_{\tau}\right)}{\tau H\left(n_{\tau}-n_{\tau-1}\right)}\right)^{\frac{1}{q^{\prime}}}
\end{aligned}
$$

This finishes the proof.
3. Construction of spaces which are q-concave WITH RESPECT TO $\ell^{\infty}\left(l^{1}\right)$.

Theorem 3.1. Let $1<q<\infty,\left(m_{k}\right)$ such that $m_{k} \geq k, m_{0}=1$ and

$$
\sum_{s=1}^{\infty} k_{s} m_{s-1}^{\frac{-1}{q^{\prime}}}<\infty
$$

where $k_{p}=\min \left\{i: \frac{H(i)}{i} \leq 2^{-p}\right\}, p \geq 0$.
If $\mathcal{F}=\mathcal{F}\left(h, m_{k}\right)$ then $X_{q}=X_{q}(\mathcal{F})$ is q-concave with respect to $\ell^{\infty}\left(l^{1}\right)$.

Proof. Let us take N elements $\left(x_{k}\right)_{k=1}^{N}$ such that

$$
\sup _{i \in \mathbb{N}} \sum_{k=1}^{N}\left|x_{k}(i)\right| \leq 1,\left\|\left(\sum_{k=1}^{N}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}\right\| \leq 1
$$

First choose $f_{k} \in \mathcal{F}, k=1,2, \ldots, N$ such that

$$
\left\|x_{k}\right\| \leq \frac{4}{3}\langle | x_{k}\left|, f_{k}^{\frac{1}{q}}\right\rangle .
$$

Let us write $f_{k}=\sum_{r \geq 0} \beta_{k, r} f_{k, r}$ where $\sum_{r \geq 0} \beta_{k, r} \leq 1,\left\|f_{k, r}\right\|_{\infty} \leq 2^{-r}$ and

$$
f_{k, r}=\sum_{l \geq 0} 2^{-l} \sum_{j \leq m_{r}^{l}} \alpha_{j, l, k, r} h_{j, l, k, r}
$$

with $\sum_{j \leq m_{r}^{l}} \alpha_{j, l, k, r} \leq 1$ for all $l \geq 0, r \geq 0$.
For each $k \in\{1,2, \ldots, N\}$, take $s(k)$ so that $k \in\left[m_{s(k)-1}, m_{s(k)}\right)$ and denote

$$
f_{k}^{\prime}=\sum_{r \geq s(k)} \beta_{k, r} f_{k, r} \text { and } f_{k}^{\prime \prime}=\sum_{r<s(k)} \beta_{k, r} f_{k, r}
$$

Let us assume that $\left\|x_{k}\right\|$ is decreasing and let us write $S_{N}^{q}=\sum_{k=1}^{N}\left\|x_{k}\right\|^{q}$. Hence $\left\|x_{k}\right\| \leq S_{N} k^{\frac{-1}{q}}$.

Denoting $I_{N}=[1, N] \cap \mathbb{N}$ and $I_{s, N}=\left[m_{s-1}, m_{s}\right) \cap I_{N}$, for all $s \geq 1$ we can write

$$
\begin{aligned}
S_{N}^{q}=\sum_{k=1}^{N}\left\|x_{k}\right\|^{q} & \leq \frac{4}{3} \sum_{k=1}^{N}\left\|x_{k}\right\|^{q-1}\langle | x_{k}\left|, f_{k}^{\frac{1}{q^{\prime}}}\right\rangle \\
& \leq \frac{4}{3} \sum_{k=1}^{N}\langle | x_{k}\left|, \sqrt[q^{\prime}]{f_{k}^{\prime}\left\|x_{k}\right\|^{q}}\right\rangle \\
& +\frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s, N}}\left\|x_{k}\right\|^{q-1}\langle | x_{k}\left|, \sqrt[q^{\prime}]{f_{k}^{\prime \prime}}\right\rangle \\
& =(I)+(I I) .
\end{aligned}
$$

We are going to show that (I) and $(I I)$ are bounded by $C S_{N}^{q-1}$ which will imply $S_{N} \leq C$.
To deal with the first term we use that

$$
\sum_{k=1}^{N}\langle | x_{k}\left|, \sqrt[q^{\prime}]{f_{k}^{\prime}\left\|x_{k}\right\|^{q}}\right\rangle \leq\left\langle\left(\sum_{k=1}^{N}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}},\left(\sum_{k=1}^{N}\left\|x_{k}\right\|^{q} f_{k}^{\prime}\right)^{\frac{1}{q}}\right\rangle .
$$

Now observe that

$$
\begin{aligned}
\sum_{k=1}^{N}\left\|x_{k}\right\|^{q} f_{k}^{\prime} & =\sum_{k=1}^{N} \sum_{r \geq s(k)}\left\|x_{k}\right\|^{q} \beta_{k, r} f_{k, r} \\
& =\sum_{s=1}^{s(N)-1} \sum_{m_{s-1} \leq k<m_{s}}\left(\sum_{r \geq s} \beta_{k, r} f_{k, r}\right)\left\|x_{k}\right\|^{q} \\
& +\sum_{m_{s(N)-1} \leq k \leq N}\left(\sum_{r \geq s} \beta_{k, r} f_{k, r}\right)\left\|x_{k}\right\|^{q} \\
& =\sum_{s=1}^{s(N)} \sum_{r \geq s} \sum_{k \in I_{s, N}} \beta_{k, r} f_{k, r}\left\|x_{k}\right\|^{q} \\
& =\sum_{r=1}^{\infty} \sum_{k \in\left[1, m_{r}\right] \cap I_{N}}\left\|x_{k}\right\|^{q} \beta_{k, r} f_{k, r}
\end{aligned}
$$

Denoting by $\gamma_{k, r}=\frac{\left\|x_{k}\right\|^{q} \beta_{k, r}}{\sum_{k \in\left[1, m_{r}\right] \cap I_{N}}^{\left\|x_{k}\right\|^{q / q} \beta_{k, r}}}$ and $g_{r}=\sum_{k \in\left[1, m_{r}\right] \cap I_{N}} \gamma_{k, r} f_{k, r}$ we get that

$$
\sum_{k=1}^{N}\left\|x_{k}\right\|^{q} f_{k}^{\prime}=\sum_{r=1}^{\infty}\left(\sum_{k \in\left[1, m_{r}\right] \cap I_{N}}\left\|x_{k}\right\|^{q} \beta_{k, r}\right) g_{r} .
$$

Since $\frac{1}{2} g_{r} \in \mathcal{H}_{m_{r}}$ then

$$
\sum_{k=1}^{N}\left\|x_{k}\right\|^{q} f_{k}^{\prime} \leq 2 S_{N}^{q} g \quad \text { for } \quad g \in \mathcal{F}
$$

This shows that $(I) \leq C S_{N}^{q-1}$.
To deal with ($I I$) observe first that for each $s \in \mathbb{N}$

$$
\operatorname{card}\left(\left\{(k, r): m_{s-1} \leq k<m_{s}, r<s\right\}\right) \leq m_{s}^{2}
$$

which gives

$$
\begin{equation*}
\sum_{k \in I_{s, N}} \sum_{r<s} \beta_{k, r} f_{k, r}\left\|x_{k}\right\|^{q}=\left(\sum_{r<s} \sum_{k \in I_{s, N}} \beta_{k, r}\left\|x_{k}\right\|^{q}\right) 4 h_{s}=4 \gamma_{s} h_{s} \tag{3.1}
\end{equation*}
$$

where $h_{s} \in \mathcal{H}_{m_{s}}$ and $\gamma_{s}=\sum_{r<s} \sum_{k \in I_{s, N}} \beta_{k, r}\left\|x_{k}\right\|^{q}$.
Applying now Lemma 1.3 to $n=k_{s}$ and $m=m_{s}$ we get a set $B_{s} \subset \mathbb{N}$ with $\operatorname{card}\left(B_{s}\right)=k_{s}$ and $\left\|h_{s} \chi_{B_{s}^{s}}\right\|_{\infty} \leq 2^{-s}$. This allows us to split (II)
into two pieces as follows

$$
\begin{aligned}
(I I) & \left.\leq \frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s, N}}\left\|x_{k}\right\|^{q-1}\langle | x_{k} \right\rvert\,,\left(f_{k}^{\prime \prime} \chi_{B_{s}^{s}}{ }^{\left.\frac{1}{q^{\frac{1}{4}}}\right\rangle}\right. \\
& +\frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s, N}}\left\|x_{k}\right\|^{q-1}\langle | x_{k}\left|\chi_{B_{s}},\left(f_{k}^{\prime \prime}\right)^{\left.\frac{1}{q^{\prime}}\right\rangle}\right\rangle \\
& =(I I)^{\prime}+(I I)^{\prime \prime} .
\end{aligned}
$$

Hence

$$
(I I)^{\prime} \leq \frac{4}{3} \sum_{s=1}^{s(N)}\left\langle\left(\sum_{k \in I_{s, N}}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}},\left(\sum_{k \in I_{s, N}}\left\|x_{k}\right\|^{q} f_{k}^{\prime \prime} \chi_{B_{s}^{c}}{ }^{\frac{1}{q^{\prime}}}\right\rangle\right.
$$

Applying Hölder again and using (3.1)

$$
\begin{aligned}
&(I I)^{\prime} \leq \frac{4}{3}\left\langle\left(\sum_{k=1}^{N}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}},\left(\sum_{s=1}^{s(N)} 4 \gamma_{s} h_{s} \chi_{B_{s}^{c}}\right)^{\frac{1}{q^{\prime}}}\right\rangle \\
&=\frac{4}{3}\left(\sum_{s=1}^{s(N)} 4 \gamma_{s}\right)^{\frac{1}{q^{\prime}}}\left\langle\left(\sum_{k=1}^{N}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}},\left(\sum_{s=1}^{s(N)} \gamma_{s}^{\prime} h_{s}^{\prime}\right)^{\frac{1}{q^{\prime}}}\right\rangle
\end{aligned}
$$

where $h_{s}^{\prime}=h_{s} \chi_{B_{s}^{c}} \in \mathcal{H}_{m_{s}},\left\|h_{s}^{\prime}\right\|_{\infty} \leq 2^{-s}$ and $\sum_{s} \gamma_{s}^{\prime} \leq 1$.
Therefore

$$
(I I)^{\prime} \leq C\left(\sum_{s=1}^{s(N)} \sum_{r<s} \sum_{k \in I_{s, N}} \beta_{k, r}\left\|x_{k}\right\|^{q}\right)^{\frac{1}{q^{\prime}}} \leq C S_{N}^{q-1}
$$

Finally to deal with $(I I)^{\prime \prime}$ we use that $\ell^{1} \subset X$ with inclusion norm 1 to obtain

$$
\begin{aligned}
& \sum_{s=1}^{s(N)} \sum_{k \in I_{s, N}}\left\|x_{k}\right\|^{q-1}\langle | x_{k}\left|\chi_{B_{s}},\left(f_{k}^{\prime \prime}\right)^{\frac{1}{q^{\prime}}}\right\rangle \\
& \leq \sum_{s=1}^{s(N)}\left(\max _{k \in I_{s, N}}\left\|x_{k}\right\|^{q-1}\right) \sum_{k \in I_{s, N}}\left\|x_{k} \chi_{B_{s}}\right\| \\
& \quad \leq \sum_{s=1}^{s(N)} S_{N}^{q-1} m_{s-1}^{\frac{-1}{q^{\prime}}} \sum_{k \in I_{s, N}} \sum_{i \in B_{s}}\left|x_{k}(i)\right| \leq S_{N}^{q-1} \sum_{s=1}^{\infty} k_{s} m_{s-1}^{\frac{-1}{q^{\prime}}} .
\end{aligned}
$$

The proof is now finished using the extra assumption on $\left(m_{s}\right)$.
 gives $H(n) \sim(\log (n))^{2}$ and, using that $\frac{p^{2}}{e^{p}} \leq 2^{-p}$ (for p big enough) one gets $k_{p} \leq e^{-p}$. Then it suffices to take $m_{k}=k^{2 q^{\prime}} e^{k q^{\prime}}$ and $n_{k}=e^{k^{2}}$ which satisfy the assumptions in Theorem 2.1 and Theorem 3.1 to obtain an example where $X_{q}(\mathcal{F})$ is q-concave with respect $\ell^{\infty}\left(\ell^{1}\right)$ but not q-concave. .

References

[BS] O. Blasco, T. Signes q-concavity and q-Orlicz property on symmetric sequence spaces, Preprint.
[Cre] J. Creekmore, Type and Cotype in Lorentz $L_{p q}$ spaces, Indag. Math. 43 (1981) 145-152.
[CT] B. Cuartero, M.A. Triana (p, q)-convexity in quasi-Banach lattice and applications,Studia Math. 84 (1986) 113-124.
[DJT] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators. Cambridge University Press, 1995.
[J] M. Junge, Comparing gaussian and Rademacher cotype for operators on the space of continuous functions. Studia Math., 118 (2) (1996) 101-115.
[KMP] A. Kaminska, L. Maligranda, L.E. Persson Convexity, concavity, type and cotype of Lorentz spaces. Indad. Mathema. N.S., 9 (3) (1998) 367-382..
[LT1] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Lecture Notes in Mathematics, vol. 338, Springer-Verlag (1973)
[LT2] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, New York (1979).
[M] B. Maurey, Type et cotype dans les éspaces munis de structures locales inconditionelles. École Polyt. Palaiseau, Sém. Maurey-Schwartz 1973/74, Exp. XXIV-XXV.
[MP] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendentes et propriétés géométriques des éspaces de Banach, Studia Mathematica 58 (1976) 45-90.
[SS] E. M. Semenov, A. M. Shteinberg, The Orlicz property of symmetric spaces. Soviet Math. Dokl. 42 (1991) 679-682.
[T1] M. Talagrand, Cotype of operators from C(K). Invent. Math. 107 (1992) 1-40.
[T2] M. Talagrand, Cotype and (q,1)-summing norm in a Banach space. Invent. Math. 110 (1992) 545-556.
[T3] M. Talagrand, Orlicz property and cotype in symmetric sequences spaces. Isr. J. Math. 87 (1994) 181-192.

Address of the authors:

Oscar Blasco
Departamento de Análisis Matemático
Universidad de Valencia
Doctor Moliner, 50
E-46100 Burjassot (Valencia), Spain

Oscar.Blasco@uv.es
Teresa Signes
Departamento de Análisis Matemático Universidad Complutense de Madrid 28040 Madrid, Spain
teresass@eucmos.sim.ucm.es

