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� 4 � 4Given a sequence of Banach spaces X and a sequence of real numbers pn n n n
� . Ž� 4 � 4.in 1, � , the vector-valued Nakano sequence spaces ll p , X consist of ele-n n

� 4 Ž� � . pnments x in Ł X for which there is a constant � � 0 such that Ý x ��n n n n n n
� �. In this paper we find the conditions on the Banach spaces X and on then

� 4 Ž� 4 � 4.sequence p for the spaces ll p , X to have cotype q or type p. � 2001n n n n
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1. INTRODUCTION

Ž . � �Let � � � be a sequence of Young functions; that is, � : � � �n n n
Ž .is an increasing and convex function such that � x � 0 for x � 0 andn

Ž . �� 0 � 0 for all n � �. Recall that ll denotes the Musielak�Orliczn
Ž . �sequence space, consisting of the sequences � � � which satisfyn n

Ž � �.Ý � � � � � for some � � 0. This becomes a Banach space under then n n
Ž .Luxemburg norm

� ��n
� � inf k � 0 � � 1 .Ž . Ý�n nn ž /½ 5kn

� �The reader is referred to 6, 11, 15 for a general study of these classes. We
Ž .shall be dealing with the Nakano sequence spaces corresponding to � xn

pn Ž . � . Ž� 4. Ž �� x for some sequence p 	 1, � and denoted by ll p see 2, 12,n n n
�.14 .
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Actually we shall deal with the vector-valued situation. Namely, if
Ž . Ž .X is a sequence of Banach spaces, 1 � p � � and p a sequence ofn n n n

pŽ� 4.real numbers with 1 � p � �, then we use the notations ll X for then n
Ž . �Ž . � pspace of elements x in Ł X with the norm x �ll Ž�X 4.n n n n n n n

Ž � � p .1� p Ž� 4 � 4. Ž .Ý x and ll p , X for the space of elements x in Ł XXn n n n n n n nn

Ž . Ž� � .to be also written Ý x 
 e such that the sequence x belongs toXn n n n nn

Ž� 4.ll p .n
Ž� 4 � 4.Our aim is to study the Rademacher type and cotype of ll p , X .n n

Ž � �.Let us recall see 10, 8 that a Banach space X is said to have type p,
Ž .with 1 � p � 2 resp. cotype q, with 2 � q � � , if there exists a constant

C � 0 such that

1�pn N
1 p� �x r t dt � C xŽ .Ý ÝH k k kž /0 k�1 k�1

1�qn N
1q� �resp. x � C x r t dtŽ .Ý ÝHk k kž /ž /0k�1 k�1

for any x , x , . . . , x � X and where r stand for the Rademacher func-1 2 n k
� � Žtions in 0, 1 . The least constant for which the inequality is valid indepen-

. Ž . Ž Ž ..dently of the chosen vectors is denoted by T X resp. C X .p q
� �In the paper 4 , Kaminska and Turett defined in the frame of the spaces´

� Ž . � pL over a nonatomic measure space the conditions � and � for theq
Musielak�Orlicz function �, which turned out to be equivalent to the
Banach space L� to have Rademacher cotype q and type p, respectively.

Ž � �.Later, Katirtzoglou see 7 considered the discrete case, adapted the
forementioned conditions to the sequence space ll �, and got similar
conclusions.

As a consequence, it was shown that if q � lim sup p and p �0 n n 0
Ž� 4.lim inf p , then the Nakano space ll p has cotype q for every q �n n n

� 4 � 4max p , 2 and it does not have cotype q for any q � max q , 2 , while it0 0
� 4has type p for every 1 � p � min p , 2 and does not have type p when0

� 4p � min p , 2 . From our results, it will becomes clear for which sequences0
� 4 Ž� 4.p with q � lim sup p and p � lim inf p the space ll p hasn 0 n n 0 n n n
cotype q and type p .0 0

Ž .Our main theorems see Theorems 3.1 and 3.2 below show that the
Ž . Ž� 4 � 4.cotype q resp. type p of the space ll p , X really depends upon0 0 n n

Ž . Ž Ž ..the uniform bound of the constants C X resp. T X together withq n p n0 0
1�Ž pn�q . Žthe existence of a constant 0 � C � 1 such that Ý C � � resp.p � qn1�Ž p�pn. .Ý C � � .p � pn

Ž� 4.In particular, if 1 � p � 2 � q � �, one obtains that ll p has cotypen

Ž . 'q for p � q � 1�log n � 1 but not for p � q � 1� log n � 1 andŽ .n n
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Ž� 4. Ž .also, that ll p has type p for p � p � 1�log n � 1 but not forn n

Ž� 4.'p � p � 1� log n � 1 . In particular, we have that ll p is isomor-Ž .n n
2 Ž .n Ž .phic to ll for p � 2 � �1 �log n � 1 .n

The paper is divided into three sections. In Section 2, we present a
Ž� 4 � 4. Ž� 4 � 4.characterization of the embedding ll p , X 	 ll q , Y that will ben n n n

the key point in our considerations. In Section 3, we give the proof of
the main results. Our proof will be direct and it will not be based upon

� �the characterizations of type and cotype achieved in 7 for general
Musielak�Orlicz spaces. In Section 4, we get some equivalent formulations
of the conditions � and � � p in the setting of Nakano sequence spaces,q
and also we get several equivalent formulations of the cotype q and type p
conditions for these spaces.

2. PRELIMINARIES ON MUSIELAK�ORLICZ SPACES

We shall be using different properties and results from the general
theory on Musielak�Orlicz spaces.

Ž .A condition on � � � which is rather important in the study of thesen
spaces is the so-called condition � . Let us recall that � � � if there exist2 2

Ž . 1K , � positive constants and c � ll of nonnegative numbers such thatn n

� x � � � � 2 x � K� x � c , 1Ž . Ž . Ž . Ž .n n n n

for every n � 1, 2, . . . and x � 0.
A related condition appears when looking at embeddings between

different Musielak�Orlicz spaces.

Ž� �.THEOREM 2.1 11, Theorem 8.11 . Let 	, 
 be two Musielak�Orlicz
functions. The inclusion ll 	 	 ll 
 holds if and only if there exist numbers

Ž .� � 0, K � 0, K � 0, and a sequence a of nonnegati�e numbers with1 2 n n
Ý a � � such thatn n

	 u � � � 
 u � K 	 K u � a ,Ž . Ž . Ž .n n 1 n 2 n

for u � 0 and n � 1, 2, . . . .
Moreo�er, the norm con�ergence in ll 	 is stronger than the norm con�er-

gence in ll 
.

Some useful facts whose obvious proof is left to the reader are included
in the following lemma.

Ž . � . Ž .LEMMA 2.1. Let p 	 1, � , let X be a sequence of Banachn n n n
� �spaces, and let x � X with x � 1 for all n � �.n n n
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Ž . Ž .a The map j gi�en by j x � x 
 e is an isometric embeddingn n n n n
Ž� 4 � 4.from X into the space ll p , X for each n � 1, 2, . . . .n n n

Ž . ŽŽ . .b The map J gi�en by J � � Ý � x 
 e is an isometric em-n n n n n n
Ž� 4. Ž� 4 � 4.bedding from ll p into ll p , X .n n n

The next theorem is essentially known, but we include here a proof for
the sake of completeness.

Ž . Ž . � . Ž . Ž .THEOREM 2.2. Let p , q 	 1, � and let X , Y be twon n n n n n n n
families of Banach spaces. Then

� 4 � 4 � 4 � 4ll p , X 	 ll q , YŽ . Ž .n n n n

if and only if there exist 0 � C � 1 such that

C pn qn �Ž pn�q n. � �Ý
p �qn n

� �and inclusions i : X � Y such that sup i � �.n n n n n

Ž� 4 � 4. Ž� 4 � 4.Proof. Assume first that ll p , X 	 ll q , Y . Let I be then n n n
inclusion map between those spaces and let us assume it has norm A.
Using Lemma 2.1, we construct i : X � Y as the composition � Ij ,n n n n n

Ž� 4 � 4.where � is the canonical projection from ll q , Y onto Y . Clearly,n n n n
� �i � A for n � 1, 2, . . . .n

Ž . Ž� 4. Ž� 4.Part b of Lemma 2.1 allows us to get that ll p 	 ll q . Now, byn n

Ž . Ž . 1Theorem 2.1, there exist K , K , � � 0 and a � 0 such that a � ll1 2 n n n n
verifying

pnp qn n0 � x � � � x � K K x � a ,Ž .1 2 n

for every n � 1, 2, . . . .
1We may assume without loss of generality K � K � K � 1 and � � .1 2 K

Then

� qn pn�1 pn �Ž1 � pn.4a � max x � K x : 0 � x � K .n

Ž . qn pn�1 pnWe put f x � x � K x .n
Ž .For n � � with p � q , the inequality is redundant, because f x isn n n

� �negative in 0, 1 .
Ž .For n � � with p � q , it is clear that f x is nonnegative in then n n

� Ž pn�1 .1�Ž pn�q n. �interval 0, 1�K and it reaches its maximum at the point
Ž pn�1 .1�Ž pn�q n. �Ž1� pn.x � q �p K , which holds 0 � x � K .max, n n n max, n
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Then

a � max f x : 0 � x � K�Ž1 � pn.Ž .� 4n n

Ž .1� p �qn nqn� fn p �1nž /ž /p Kn

Ž .q � p �qn n nq qn n� 1 �p �1 ž /nž / pp K nn

Ž .p q � p �qŽ . n n n nq � p �q 1� q �1� pn n n n nq q 1 1n n� � .1�1� pž / nž / ž /p q pKn n n

x �Ž1�x . � � 1� x � .Using the behavior of the functions x in 0, 1 and x in 1, � ,
we easily get

Ž .q � p �qn n nqn�1e � � 1ž /pn

and

1 q1� qn�1 � pn q1� qn e1� e
n n� � � .2 1�1� pn K KK K

From these facts, we can find constants C and C such that1 2

1 1
p q �Ž p �q .n n n nC C � � f x � a .Ž .1 2 n max, n nž /q pn n

Therefore, we have

1 1
p q �Ž p �q .n n n nC � � �.Ý 2 ž /q pn np �qn n

� 4If the set n � �: p � q is finite, then there is nothing to prove.n n
Otherwise, taking 0 � C � C , we can say that the series2

C1�Ž1� qn�1 � pn.Ý
p �qn n

converges.
For the converse, let us assume that series Ý C pn qn �Ž pn�q n. con-p � qn n

Ž . Ž� 4.verges for some 0 � C � 1 and take a � ll p . Therefore, theren n n
Ž � � . pnexists K � 0 such that Ý a �K � 1 for any K � K .0 n� � n 0

Ž . Ž� 4. Ž � � .qnIn order to see that a � ll q , we shall show that Ý a �Tn n n n� � n
� � for any T � K �C.0
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For such a purpose, let us consider

� � pn �Ž pn�q n.A � n � �: p � q , a � TC� 4n n n

and
� � pn �Ž pn�q n.B � n � �: p � q , a � TC ,� 4n n n

and now let us split the sum as follows:
q q q qn n n n� � � � � � � �a a a an n n n� � � .Ý Ý Ý Ýž / ž / ž / ž /T T T Tp �qn�� n�A n�Bn n

Now, observe that
q pn n� � � �a an n� � 1,Ý Ýž / ž /T Tp �q n��n n

qn� �an 1�Ž1� q �1� p .n n� C � �Ý Ýž /T p �qn�A n n

and
q p q �pn n n n� � � � � �a a an n n�Ý Ýž / ž / ž /T T Tn�B n�B

p pn n� �a 1n� Ý ž /ž /T Cn��

pn� �an� � 1.Ý ž /CTn��

Ž� 4. Ž� 4.Therefore, are have ll p 	 ll q .n n
Finally, if we have the inclusions i : X � Y uniformly bounded, thenn n n

Ž .the map Ý x 
 e � Ý i x 
 e is a bounded inclusion,n n n n n n n

i x 
 e � i x eŽ . Ž .Ý Ý Yn n n n n nn
Ž� 4 � 4. Ž� 4.ll q , Y ll qn nn n n

�� C i x eŽ .Ý Yn n nn
Ž� 4.ll pn n

� � �� C K x eÝ Xn nn
Ž� 4.ll pn n

�� C K x 
 eÝ n n
Ž� 4 � 4.ll p , Xn n n

�for some constants C and K.
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Ž � � . Ž . Ž . � .COROLLARY 2.1 see 12 for the scalar case . Let p , q 	 1, �n n n n
Ž . Ž .and let X , Y be two families of Banach spaces. Then we ha�en n n n

Ž� 4 � 4. Ž� 4 � 4. �
ll p , X � ll q , Y if and only if X � Y and there exist 0 � K , Kn n n n n n
� � such that

� � � � � � �K x � x � K x ,X Y Xn n nn n n

Ž . Ž� 4 � 4.for all n � � and x � ll p , X and there exists 0 � C � 1 suchn n n n
that

C1� �1� qn�1 � pn � � �.Ý
p �qn n

Ž . � .COROLLARY 2.2. Let 1 � p � �, p 	 1, � . Then:n n

Ž . Ž� 4. p 1�Ž pn�p .i ll p 	 ll � �0 � C � 1�Ý C � �.n p � pn

Ž . p Ž� 4. 1�Ž p�pn.ii ll 	 ll p � �0 � C � 1�Ý C � �.n p � pn

3. PROOF OF THE MAIN THEOREM

Let us start by getting a useful necessary condition on the Nakano
sequence spaces having cotype q.

Ž� 4 � 4.LEMMA 3.1. Let 2 � q � �. If ll p , X has cotype q, thenn n

Ž . Ž .i X has cotype q for all n � 1, 2, . . . with sup C X � �, andn n q n

Ž .ii there exists a constant A � 0 such that
p �qn k� �ak

inf � � 0: � 1 � A ,Ý ž /½ 5�k

Ž . � � Ž .for all a such that Ý a � 1 and all n 	 �.n k k k k

Ž� 4.Proof. From Lemma 2.1, it is obvious that ll p and X have cotypen n
Ž . Ž Ž� 4..q for n � 1, 2, . . . . Moreover, C X and C ll p are bounded byq n q n

Ž Ž� 4 � 4..C ll p , X for n � 1, 2, . . . .q n n
Ž . Ž . � � qLet n 	 � and let � be any real sequence with Ý � � 1.k k k k k k

Ž� 4.Applying the condition of cotype for the vectors x � � 
 e in ll p ,k k n nk

we have
1�q 1q� �1 � � � C r t � e dt � C � e .Ž .Ý Ý ÝHk k k n k nž / k k

0k k k

Hence
pn k� �1 �k� � e � inf � � 0: � 1 .Ý Ýk nk ž /½ 5C �k k
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� � qUsing now the notation a � � , k � 1, 2, . . . , the proof is finishedk k
1� qtaking A � 1�C .

Ž . � .LEMMA 3.2. Let p 	 1, � and let q � 2. Then there exists 0 � � � 1n n
such that, whene�er p � q, the functionn

2 x q � x pn , 0 � x � � ,
	 x � �Ž . �n ½ 	 � � 	 � x � � , x � � ,Ž . Ž . Ž .n n

Ž 1� q.is a Young function and 	 x is a conca�e function.n
Ž� 4. qMoreo�er, if ll p 	 ll andn

x pn , p � q ,n
� x �Ž .n ½ 	 x , p � q ,Ž .n n

� Ž� 4. Ž .that ll � ll p with equi�alent norms .n

Proof. Let n � � such that p � q. It is easy to check that then
q pn Ž .function 2 x � x is convex in the interval 0, x , where x �n n

Ž Ž . Ž ..1�Ž pn�q . Ž Ž .2 q q � 1 �p p � 1 , and that 0 � � � inf 2 q q � 1 �n n q � t ��

Ž ..1�Ž t�q.t t � 1 � 1. Hence, if we define

2 x q � x pn , 0 � x � � ,
	 x � �Ž . �n ½ 	 � � 	 � x � � , x � � ,Ž . Ž . Ž .n n

Ž 1� q.then 	 is a Young function. Clearly, we also have that 	 x is an n
concave function.

Ž .Let us now define the Musielak�Orlicz function � � � given byn

x pn , p � q ,n
� x �Ž .n ½ 	 x , p � q.Ž .n n

� Ž� 4.First we shall prove, using Theorem 2.1, that ll 	 ll p . For n � �n
such that p � q, the inequality is obvious. For n � � such that p � q,n n

Ž . q Ž . Ž . q pn� x � � yields 0 � x � � and then we get � x � 	 x � 2 x � xn n n
� x pn.

Ž� 4. qFinally, if we assume ll p 	 ll , we have that there exist � � 1,n 0
Ž . Ž . 1K , K � 0, and a sequence a of nonnegative numbers with a � ll1 2 n n n n

such that, if x pn � � , then0

pnqx � K K x � a .Ž .1 2 n

Ž . �A look at Corollary 2.2 shows that p has to be bounded. Let � ben n
� � max n pn4defined as � � min � , � , and observe now that if p � q and0 n
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x pn � � �, then

pnq p qn� x � 2 x � x � 2 x � 2 K K x � 2 a .Ž . Ž . Ž .n 1 2 n

�Ž� 4.Therefore, ll p 	 ll and the proof is over.n

Ž . � . Ž .THEOREM 3.1. Let 2 � q � �, let p 	 1, � , and let X be an n n n
family of Banach spaces. Then the following assertions are equi�alent:

Ž . Ž� 4 � 4.1 ll p , X has cotype q.n n

Ž . Ž .2 X has cotype q for n � 1, 2, . . . with sup C X � �, and theren n q n
exists 0 � C � 1 such that Ý C1�Ž pn�q . � �.p � qn

Ž� 4 � 4.Proof. Let us assume ll p , X has cotype q. Lemma 2.1 givesn n
Ž� 4. Ž .again that ll p and X have cotype q and sup C X � �. Let usn n n q n

assume now that, for any 0 � C � 1, the series Ý C m n � ��, wheren
Ž . Ž m n .m � 1� p �q � 1 if p � q, and m � �� or C � 0 if p � q.n n n n n

Ž .We shall see that, for any 0 �  � 1, we can find a sequence a suchn n
that

p �qn� �an
� �a � 1 and � 1.Ý Ýn ž /n n

This shows that

p �qk� �ak
inf inf � � 0: � 1 � 0,Ý ž /½ 5�� �Ý a �1k k k

which, according to Lemma 3.1, leads to a contradiction.
Ž . m nGiven  � 0, let a be defined as follows: Since Ý  � �, we cann n n

find k � � so that

k k�11 1
m mn n � and  � .Ý Ý

 n�1 n�1

Let a �  m n for n � 1, 2, . . . , k, a � 1 � Ýk  m n �  m k� 1, andn k�1 n�1
a � 0 for n � k � 2.n

� � Ž � � .1� m nNow Ý a � 1 and a � �  hold trivially andn n n

p �q 1�mn n� � � � � �a a a 1n n n
� �� � a  � 1.Ý Ý Ý nž / ž / ž /   n n n

Ž .For the converse, invoke first part i in Corollary 2.2, to deduce that, in
Ž� 4. qour situation, ll p 	 ll . Now applying Lemma 3.2, we can consider an
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Ž . � Ž� 4.Musielak�Orlicz function � � � such that ll � ll p with equiva-n n
Ž � � � � . Ž 1� q.lent norms denoted . and . , respectively and where the � x� n

are concave.
� Ž � �Since the � are convex functions, we have that Ý � x �1 �n n�1 n n

Ž � �.. � � � Ž � Ž . �. �Ý� x � 1 and, therefore, x � 1 � Ý � x n for any x � ll .�n n n�1 n

Ž� 4 � 4. Ž .MLet M � � and let y , y , . . . , y � ll p , X and a be posi-1 2 M n n k k�1

tive scalars with ÝM aq�

� 1, where 1�q � 1�q� � 1. Thenk�1 k

M M 1�q� �a y � a y�Ý Ýk k k kq �1ak �k�1 k�1

M 1�q� C a y�Ý1 k kq �1ak �k�1

M � y nŽ .� Xk nq� C a 1 � � �Ý Ý1 k n q �1ž /ž /akk�1 n�1

M M � y nŽ .� � Xk nq q� C a � a � �Ý Ý Ý1 k k n q �1ž /ž /akk�1 k�1 n�1

1�qq
� M y nŽ .� Xk nq� C 1 � a � ;�Ý Ý1 k n Žq �1.qž /až / 0kn�1 k�1

Ž 1� q.now using that � t are concave functions,n

1�qq
� M y nŽ .� Xk nq� C 1 � � a �Ý Ý1 n k Žq �1.qž /až / 0kn�1 k�1

1�q� M
q� C 1 � � y n .Ž .Ý Ý X1 n k nž /ž /ž /n�1 k�1

Using, for every n � �, the formula of cotype with the elements
Ž . Ž . Ž .y n , y n , . . . , y n of X ,1 2 M n

1�qM M
1q

y n � K r t y n dt ,Ž . Ž . Ž .Ý ÝHXk k knž / 0k�1 k�1 X n
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and with the Minkowski integral inequality,

�1�qM
q

y nŽ .Ý Xk n½ 5ž /
k�1 �n�1

�
M

1
� K r t y n dtŽ . Ž .ÝH k k½ 50 k�1 X n �n�1

�M
1

� K r t y n dt .Ž . Ž .ÝH k k½ 50 k�1 �n�1

This allows us to conclude that there exists a positive constant C such2
1 �� M Ž . Ž .4� � �Ž M � Ž .� q .1� q4�that, if H Ý r t y n dt � C , then Ý y n� X0 k�1 k k n�1 2 k�1 k n�1n

belongs to the unit ball of ll �.
Therefore, the previous estimates show that whenever we have the

1 � M Ž . � Ž M � � q.1� qrelation H Ý r t y dt � C , it holds that Ý y � 2C ,0 k�1 k k 3 k�1 k 1
� � � �where C appears by the isomorphism between the norms � and � .�3

Ž� 4 � 4.Now we can conclude that ll p , X has cotype q.n n

To deal with the notion of type on these spaces, we shall use some
general duality arguments. We first point out the following simple fact.

Ž . Ž . pnLEMMA 3.3. Let � � � gi�en by � x � x . Then � satisfies then n n
Ž .condition � if and only if p is a bounded sequence.2 n n

Ž .Proof. Assume the condition � . Using 1 , one has a constant K � 02
such that

2 pn x pn � Kx pn � cn

whenever 0 � x � � 1� pn. This inequality applied to x � � 1� pn implies that
Ž .p is bounded.n n

For the converse implication, take � � 1, c � 0 for all n � � andn
sup � p 4n nK � 2 .

Remark 3.1. We recall that a Banach space is B-convex if and only if it
Ž � �.has type p, for some p � 1 see, for instance, 1 and that, in the case of

B-convex spaces, X having type p is equivalent to X � having cotype p�

Ž � . Ž � �.where 1�p � 1�p � 1 see 1, 13 .
� � � �It was shown in 3 that ll is B-convex if and only if � and � satisfy

Ž� 4.condition � . Using Lemma 3.3, this result can be read as follows: ll p2 n
is B-convex if and only if 1 � lim inf p � lim sup p � �.n n n n
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Ž . � . Ž .THEOREM 3.2. Let 1 � p � 2, let p 	 1, � , and let X be an n n n
family of Banach spaces. Then the following assertions are equi�alent:

Ž . Ž� 4 � 4.1 ll p , X has type p.n n

Ž . Ž . Ž .2 X has type p for n � 1, 2, . . . with sup T X � �, p isn n p n n n

bounded, and there exists 0 � C � 1 such that Ý C1�Ž p�pn. � �.p � pn

Ž� 4 � 4.Proof. Assume ll p , X has type p. Then every X and alson n n
Ž� 4. Ž . Ž� 4.ll p has type p see Lemma 2.1 . Therefore, ll p is B-convex, andn n

Ž . Ž� � 4.Remark 3.1 implies that p is bounded. Therefore, ll p , whichn n n
Ž� 4.� Ž � �. � Ž � �.coincides with ll p see 11 , has cotype p � � see 13 . Fromn

Theorem 3.1, we have a constant C � 0 such that Ý � � C1�Ž p�
n�p � . � �.p � pn

Since

� � Ž .1� p�pn1�Ž p �p . Ž p �1.Ž p�1.n nC � C ,Ž .Ý Ý
� �p �p p �pn n

Ž .then we get 2 .
Ž� 4.Conversely, it is easy to prove, arguing as above, that ll p has type p.n

Ž� 4. ŽAlso we have that ll p is p-convex and r-concave for some r � � seen
� �.7, Thms. 9a and 9b and Prop. 14 . Now a slight modification in the proof

� � Ž� 4 � 4.of 5, Thm. 4 , that we shall present here, yields that ll p , X has typen n
p. We shall prove that there exists a constant A � 0 so that, for every

Ž� 4 � 4.finite family y , y , . . . , y � ll p , X , the inequality1 2 M n n

1�rr 1�pM M
1 p� �r t y dt � A yŽ .Ý ÝH k k kž /ž /0 k�1 k�1

� � Ž� 4 � 4.holds. Therefore, denoting by � the norm in ll p , X , we can usen n
Ž . Ž� 4. Ž .1 the r-concavity of ll p , 2 the uniform boundedness of typen

Ž� 4. Ž .constants and the lattice structure of ll p , and 3 the p-convexity ofn
Ž� 4.ll p , to produce the chain of inequalitiesn

1�rrM
1

r t y dtŽ .ÝH k kž /0 k�1

1�r
r1

�  k yŽ .Ý Ý i kM� r ž /2 M k� 4 � 1, �1i

1�rr
1

�  k y jŽ . Ž .Ý Ý i kM� r ž /2  0M Xk� 4 j � 1, �1 j Ž� 4.ll pi n
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1�r
r1

1 � B  k y jŽ . Ž . Ž .Ý Ý i kM� r ž /2  0M Xk� 4 j � 1, �1i j Ž� 4.ll pn

1�rrM
1

� B r t y j dtŽ . Ž .ÝH k kž / 00 Xk�1 j j Ž� 4.ll pn

1�p
p

2 � BC y jŽ . Ž . XÝ k jž /ž /
k j Ž� 4.ll pn

1�pp
3 � BCD y jŽ . Ž .Ž .XÝ k j j Ž� 4.ll pž /n

k

1�p
p� �� BCD yÝ kž /

k

for some constants B, C, D � 0.

4. FINAL REMARKS

� �Let us mention that, in a much more general setting, it was found in 7
that the cotype q and the type p for the Musielak�Orlicz sequence spaces

� q � p Žll can be described by the conditions called � and � together with
.� , respectively.2

� � Ž .DEFINITION 4.1 7 . A Musielak�Orlicz function � � � satisfies then
q Ž .condition � q � 1 if there are positive constants K , � and a nonnega-

Ž . 1tive sequence c in ll such that, for every n � �, x � 0 and � � 1,n n

q� � x � K � � x � c 2Ž . Ž . Ž .n n n

Ž .whenever � � x � � .n
Ž . � p ŽA Musielak�Orlicz function � � � satisfies the condition � p �n

. Ž .1 if there are positive constants K , � and a nonnegative sequence c inn n
ll 1 such that, for every n � �, x � 0 and � � 1,

p� � x � K � � x � cŽ . Ž .n n n

Ž .whenever � � x � � .n

Ž� �. Ž .THEOREM 4.1 7, Thm. 9a . Let � � � be a Musielak�Orlicz func-n n
tion and let 2 � q � �. The Musielak�Orlicz sequence space ll � is a space
of cotype q if and only if � satisfies the condition � q.



BLASCO AND GREGORI670

Ž� �. Ž .THEOREM 4.2 7, Thm. 9b . Let 1 � p � 2 and � � � be an n
Musielak�Orlicz function satisfying

lim � u �u � 0 and lim � u �u � �Ž . Ž .n n
u��u�0

for e�ery n � �. Then the Musielak�Orlicz sequence space ll � is a space of
type p if and only if � satisfies the conditions � and � � p.2

Ž . Ž . pnLEMMA 4.1. Let � � � gi�en by � x � x .n n n

Ž . Ž . qi � � � satisfies condition � if and only if there exist a positi�en n
Ž . 1constant K and a sequence c � ll of nonnegati�e numbers such thatn n

x q � K x pn � cŽ .n

for e�ery n � � such that p � q and 0 � x � 1.n

Ž . Ž . � pii � � � satisfies condition � if and only if there exist an n
Ž . 1positi�e constant K and a sequence c � ll of nonnegati�e numbers suchn n

that

x p � K x pn � cŽ .n

for e�ery n � � such that p � p and 0 � x � 1.n

Ž . q Ž .Proof. i Let us assume condition � . Then 2 gives the existence of
Ž . 1K , � � 0 and a nonnegative sequence c � ll such thatn

� pn�q x pn � K x pn � cŽ .n

for all x � 0, � � 1 such that � x � � 1� pn, n � �.
� Ž . 4Taking A � max K , 1�� , 1 , we can say that

� pn�q x pn � A x pn � cŽ .n

whenever � x � A�Ž1� pn.. Now fix 0 � x � A�Ž1� pn. and n such that p � q.n
Taking the supremum over 1 � � � A�Ž1� pn.�x, we get

q1� p 2 pn nA x � A x � c .Ž . Ž .n

In other words,

y q � Ay pn � A2cn

for 0 � y � 1 and n such that p � q.n
Conversely, let us assume that there exist a positive constant K and a

Ž . 1sequence c � ll of nonnegative numbers such thatn

x q � K x pn � cŽ .n



TYPE AND COTYPE IN NAKANO SEQUENCE SPACES 671

for every n such that p � q and 0 � x � 1. Define c� � 0 for n such thatn n
� � � 2 4p � q, c � c �K for n such that p � q, � � 1, and K � max K , 1 .n n n n

Let � � 1, x � 0, with � x � 1. Then, obviously, for p � q, one has thatn

p � �n q p q pn n� x � � x � K � x � c .Ž . Ž .n

On the other hand, for p � q, one has thatn

p q � �n q pn� x � � x � � K x � c .Ž . Ž . Ž .n

Ž . Ž .ii It is similar to i and is left to the interested reader.

Now we can state the following equivalent formulations:

Ž . � .THEOREM 4.3. Let p 	 1, � and let 2 � q � �. Then the followingn n
statements are equi�alent:

Ž . Ž� 4.i ll p has cotype q.n

Ž . Ž� 4. qii ll p 	 ll .n

Ž . Ž . 1iii There exist a positi�e constant K and a sequence c � ll ofn n
nonnegati�e numbers such that

x q � K x pn � cŽ .n

for e�ery n � � such that p � q and 0 � x � 1.n

Ž . 1�Ž pn�q .iv There exists 0 � C � 1 such that Ý C � �.p � qn

Ž . � .THEOREM 4.4. Let p 	 1, � and let 1 � p � 2. Then the followingn n
statements are equi�alent:

Ž . Ž� 4.i ll p has type p.n

Ž . Ž . p Ž� 4.ii p is bounded and ll 	 ll p .n n n

Ž . Ž .iii p is bounded and there exist a positi�e constant K and an n
Ž . 1sequence c � ll of nonnegati�e numbers such thatn n

x p � K x pn � cŽ .n

for e�ery n � � such that p � p and 0 � x � 1.n

Ž . 1�Ž p�pn. Ž .iv There exists 0 � C � 1 such that Ý C � � and pp � p n nn

is bounded.

These theorems follow easily from Lemma 4.1, Corollary 2.2, and
Theorems 4.1 and 4.2, but they can also be obtained, in a different way, as
consequences of Theorems 3.1 and 3.2 and Corollary 2.2.
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