# BLOCH-TO-BMOA COMPOSITIONS IN SEVERAL COMPLEX VARIABLES 

OSCAR BLASCO, MIKAEL LINDSTRÖM, JARI TASKINEN


#### Abstract

Given an analytic mapping $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ we study the boundedness and compactness of the composition operator $C_{\varphi}: f \mapsto f \circ \varphi$ acting from the Bloch space $\mathcal{B}\left(\mathbb{B}_{m}\right)$ into $B M O A\left(\mathbb{B}_{n}\right)$. If the symbol satisfies a very mild regularity condition then the boundedness of $C_{\varphi}$ is equivalent to $d \mu_{\varphi}(z)=\frac{\left(1-|z|^{2}\right)|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)$ being a Carleson measure. The compactness of $C_{\varphi}$ is also characterized.


## 1. Introduction.

We study analytic mappings $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ and the corresponding analytic composition operators $C_{\varphi}: f \mapsto f \circ \varphi$. Here $n, m \in \mathbb{N}$ and $\mathbb{B}_{n}$ is the unit ball of $\mathbb{C}^{n}$. In the one complex variable case $n=m=1, \mathbb{D}:=\mathbb{B}_{1}$, the investigation of composition operators from the Bloch space $\mathcal{B}(\mathbb{D})$ into $B M O A(\mathbb{D})$ has only recently taken place. Boundedness and compactness of $C_{\varphi}: \mathcal{B}(\mathbb{D}) \rightarrow B M O A(\mathbb{D}), C_{\varphi}: \mathcal{B}_{0}(\mathbb{D}) \rightarrow V M O A(\mathbb{D})$ and $C_{\varphi}:$ $\mathcal{B}(\mathbb{D}) \rightarrow V M O A(\mathbb{D})$ has been studied in $[\mathrm{SZ}]$ by Smith and Zhao and by Makhmutov and Tjani in $[\mathrm{MT}]$. Madigan and Matheson $[\mathrm{MM}]$ proved that $C_{\varphi}$ is always bounded on $\mathcal{B}(\mathbb{D})$. Moreover, $[\mathrm{MM}]$ contains a characterization of symbols $\varphi$ inducing compact composition operators on $\mathcal{B}(\mathbb{D})$ and $\mathcal{B}_{0}(\mathbb{D})$. The essential norm of a composition operator from $\mathcal{B}(\mathbb{D})$ into $Q_{p}(\mathbb{D})$ was computed in [LMT].

In the case of several complex variables, Ramey and Ullrich [RU] have studied the case mentioned in the beginning: their result states that if $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{D}$ is Lipschitz, then $C_{\varphi}: \mathcal{B}(\mathbb{D}) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is well defined, and consequently bounded by the closed graph theorem. Our results below are, of course, more general. The case of $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{n}\right) \rightarrow \mathcal{B}\left(\mathbb{B}_{n}\right)$ was considered by Shi and Luo [SL], where they proved that $C_{\varphi}$ is always bounded and gave a necessary and sufficient condition for $C_{\varphi}$ to be compact.

Our main result states that if $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ satisfies a very mild regularity condition, then the boundedness of $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is characterized by the fact that $d \mu_{\varphi}(z)=\frac{\left(1-|z|^{2}\right) \mid R \varphi\left(\left.z\right|^{2}\right.}{\left(1-\mid \varphi\left(\left.z\right|^{2}\right)^{2}\right.} d A(z)$ is a Carleson measure (see notations below).

Similarly, a corresponding $o$-growth condition characterizes the compactness.
Let $\mathbb{N}:=\{1,2,3, \ldots\}$. For $z, w \in \mathbb{C}^{n}$ let $\langle z, w\rangle=\sum_{i=1}^{n} z_{i} \bar{w}_{i}$ denote the complex inner product on $\mathbb{C}^{n}$ and $|z|=\langle z, z\rangle^{1 / 2}$. The radial derivative operator is denoted by $R$; so, if $f: \mathbb{B}_{n} \rightarrow \mathbb{C}$ is analytic, then

$$
R f(z):=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z) \quad \text { for } z \in \mathbb{B}_{n} .
$$

Research partially supported by Proyecto BMF2002-04013 (Blasco) and the Academy of Finland Projects 51906 (Lindström) and 50957 (Taskinen).

The complex gradient of $f$ is given by $\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}(z), \frac{\partial f}{\partial z_{2}}(z), \ldots, \frac{\partial f}{\partial z_{n}}(z)\right)$. Clearly $R f(z)=$ $\langle\nabla f(z), \bar{z}\rangle$. Let $\tilde{\nabla} f(z)=\nabla\left(f \circ \varphi_{z}\right)(0)$ denote the invariant gradient, where $\varphi_{a}$ stands for the Möbius transformation of $\mathbb{B}_{n}$ with $\varphi_{a}(0)=a$ and $\varphi_{a}(a)=0$. Note that on the other hand $R f=\sum_{k} k F_{k}$, if $\sum_{k} F_{k}$ is the homogeneous expansion of $f$. If $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{C}^{m}$ with $\varphi:=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$, then $R \varphi:=\left(R \varphi_{1}, R \varphi_{2}, \ldots, R \varphi_{m}\right)$.

The Rademacher functions $r_{n}:[0,1] \rightarrow \mathbb{R}, n \in\{0\} \cup \mathbb{N}$, are defined by $r_{n}(t):=$ $\operatorname{sign}\left(\sin \left(2^{n} \pi t\right)\right)$.

The Bloch space $\mathcal{B}\left(\mathbb{B}_{n}\right)$ is defined to consist of analytic functions $f: \mathbb{B}_{n} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{\mathcal{B}}:=\sup _{z \in \mathbb{B}_{n}}|\nabla f(z)|\left(1-|z|^{2}\right)<\infty
$$

Timoney [ T$]$ proved that $\|f\|_{\mathcal{B}}$ and $\|f\|_{1}:=\sup _{z \in \mathbb{B}_{n}}|R f(z)|\left(1-|z|^{2}\right)$ are equivalent. The Bloch space $\mathcal{B}\left(\mathbb{B}_{n}\right)$ is a Banach space with the norm $\|f\|:=|f(0)|+\|f\|_{\mathcal{B}}$. The little Bloch space $\mathcal{B}_{0}\left(\mathbb{B}_{n}\right)$ is the subspace of $\mathcal{B}\left(\mathbb{B}_{n}\right)$ for which $\lim _{|z| \rightarrow 1}|R f(z)|\left(1-|z|^{2}\right)=0$.

Let $g$ be the invariant Green function defined by

$$
g(z)=\int_{|z|}^{1}\left(1-t^{2}\right)^{n-1} t^{-2 n+1} d t
$$

and let $d \lambda(z)=\frac{d A(z)}{\left(1-\mid z z^{2}\right)^{n+1}}$, where $d A$ is the normalized volume measure in $\mathbb{C}^{n}$.
The space $\operatorname{BMOA}\left(\mathbb{B}_{n}\right)$ can be defined (see [CC] Theorem A, [OYZ1] Prop 1) as the space of analytic functions $f: \mathbb{B}_{n} \rightarrow \mathbb{C}$ with

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}|\tilde{\nabla} f(z)|^{2} g\left(\varphi_{a}(z)\right) d \lambda(z)<\infty
$$

We say that a positive Borel measure on $\mathbb{B}_{n}$ is a Carleson measure if there exists $c>0$ such that for any $\xi \in \partial \mathbb{B}_{n}$ and $\delta>0$ we have

$$
\mu(B(\xi, \delta)) \leq c \delta^{n}
$$

where $B(\xi, \delta)=\left\{z \in \mathbb{B}_{n}: 1-\delta<|z|<1, \frac{z}{|z|} \in S(\xi, \delta)\right\}$ and $S(\xi, \delta)=\left\{\nu \in \partial \mathbb{B}_{n}\right.$ : $|1-\langle\nu, \xi\rangle|<\delta\}$. It is well known that $\mu$ is a Carleson measure if and only if

$$
\begin{equation*}
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d \mu(z)<\infty \tag{1}
\end{equation*}
$$

We shall write $\left|\left||d \mu| \|=\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{n}} d \mu(z)\right.\right.$.
There is a lot of bibliography concerning characterizations of BMOA in terms of Carleson measures (see [J1, J2] or see [ASX, OYZ2, Y] for $Q_{p}$ spaces.) It is known that $f \in B M O A\left(\mathbb{B}_{n}\right)$ (see [OYZ2] Proposition 3.4) if and only if

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}|\tilde{\nabla} f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\infty .
$$

Now, taking into account that $1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\langle z, a\rangle|^{2}}$, one obtains, using (1) that $f \in B M O A\left(\mathbb{B}_{n}\right)$ if and only if $\frac{|\tilde{\nabla} f(z)|^{2}}{1-|z|^{2}} d A(z)$ is a Carleson measure. Observe now that, a direct computation shows

$$
|\tilde{\nabla} f(z)|^{2}=\left(1-|z|^{2}\right)\left(|\nabla f(z)|^{2}-|R f(z)|^{2}\right)
$$

Therefore, using $|R f(z)| \leq|\nabla f(z)||z|$, one gets

$$
|\tilde{\nabla} f(z)|^{2} \geq\left(1-|z|^{2}\right)^{2}|\nabla f(z)|^{2} \geq\left(1-|z|^{2}\right)^{2}|R f(z)|^{2}
$$

Thus

$$
\left(1-|z|^{2}\right)|R f(z)|^{2} d A(z) \leq\left(1-|z|^{2}\right)|\nabla f(z)|^{2} d A(z) \leq \frac{|\tilde{\nabla} f(z)|^{2}}{1-|z|^{2}} d A(z)
$$

The following theorem is due to several authors. A complete proof of the equivalences of (i), (ii) and (iii) has been presented by Zhu in [Z]. Further, (iii) and (iv) are equivalent by (1).

Theorem 1. The following are equivalent.
(i) $f \in B M O A\left(\mathbb{B}_{n}\right)$.
(ii) $\left(1-|z|^{2}\right)|\nabla f(z)|^{2} d A(z)$ is a Carleson measure.
(iii) $\left(1-|z|^{2}\right)|R f(z)|^{2} d A(z)$ is a Carleson measure.
(iv) $\sup _{a \in \mathbb{B}_{n} \mathbb{B}_{n}}|R f(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\infty$.

Hence we define the space $B M O A\left(\mathbb{B}_{n}\right)$ (or just $B M O A$ ) to consist of all analytic functions $f: \mathbb{B}_{n} \rightarrow \mathbb{C}$ with

$$
\|f\|_{B M O A}:=\sup _{a \in \mathbb{B}_{n}}\left(\int_{\mathbb{B}_{n}}|R f(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)\right)^{1 / 2}<\infty .
$$

The space $B M O A$ is a Banach space with the norm $\|f\|:=|f(0)|+\|f\|_{B M O A}$.
Since $C_{\varphi_{a}}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow \mathcal{B}\left(\mathbb{B}_{m}\right)$ is always bounded and invertible, we assume that $\varphi(0)=0$ in our investigation of boundedness and compactness of $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$.

## 2. First Results.

We define $F_{\varphi}(z)=\frac{\left(1-|z|^{2}|R \varphi(z)|^{2}\right.}{\left(1-|\varphi(z)|^{2}\right)^{2}}$ and write $d \mu_{\varphi}(z)=F_{\varphi}(z) d A(z)$.
Using (1) one has that $\mu_{\varphi}$ is a Carleson measure if and only if

$$
\begin{equation*}
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\infty . \tag{2}
\end{equation*}
$$

We start by showing that this condition is sufficient for the boundedness of the composition operator. The result holds without any additional assumptions.

Theorem 2. Let $n, m \in \mathbb{N}$ and let $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ be analytic. If

$$
d \mu_{\varphi}(z)=\frac{\left(1-|z|^{2}\right)|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)
$$

is a Carleson measure then the operator $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is bounded.
Proof. We have, for every $f \in \mathcal{B}\left(\mathbb{B}_{m}\right)$,

$$
R(f \circ \varphi)(z)=\sum_{j=1}^{m} \frac{\partial f}{\partial z_{j}}(\varphi(z)) R \varphi_{j}(z),
$$

so $|R(f \circ \varphi)(z)| \leq|\nabla f(\varphi(z))||R \varphi(z)|$. Therefore

$$
\begin{aligned}
& \left\|C_{\varphi} f\right\|_{B M O A}^{2}=\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}|R(f \circ \varphi)(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}|\nabla f(\varphi(z))|^{2}|R \varphi(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \|f\|_{\mathcal{B}_{\mathcal{B}}}^{2} \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d \mu_{\varphi}(z) \leq C\|f\|_{\mathcal{B}}^{2} .
\end{aligned}
$$

This of course contains the case $m=1$. In that case the reverse direction can also be proven by existing methods, so we get

Theorem 3. Let $n \in \mathbb{N}$ and let $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{D}$ be analytic. The operator $C_{\varphi}: \mathcal{B}(\mathbb{D}) \rightarrow$ $B M O A\left(\mathbb{B}_{n}\right)$ is bounded, if and only if $\mu_{\varphi}$ is a Carleson measure.

To prove the necessity, we take two analytic functions $f_{j} \in \mathcal{B}(\mathbb{D}), j=1,2$, such that $\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right| \geq C /(1-|z|)$ for all $z \in \mathbb{D}$ (see $[\mathrm{RU}]$ ). Since the composition operator is assumed bounded, we get

$$
\begin{aligned}
& C_{1} \geq \sum_{j=1}^{2}\left\|C_{\varphi} f_{j}\right\|_{B M O A}^{2}=\sum_{j=1}^{2} \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}\left|R\left(f_{j} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
= & \sup _{a \in \mathbb{B}_{n}} \sum_{j=1}^{2} \int_{\mathbb{B}_{n}}\left|f_{j}^{\prime}(\varphi(z))\right|^{2}|R \varphi(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\geq & C^{2} / 2 \sup _{a \in \mathbb{B}_{n}} \int \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d \mu_{\varphi}(z) .
\end{aligned}
$$

Surprising difficulties arise when trying to generalize the above argument to the case $m \geq 2$. We mention that Choe and Rim generalized in $[\mathrm{CR}]$ the construction of the "test functions" of Ramey and Ullrich to higher dimensions. However, this seems not to be enough for a proof of the necessity of the Carleson measure condition of $\mu_{\varphi}$. The reason is that as a consequence of the use of the chain rule in the expression $R(f \circ \varphi)$, one will need a lower bound for $|\langle\varphi, R \varphi\rangle|$. This is analyzed in the later sections, see especially (33) and (34) for the derivative of our test functions.

The following necessary conditions for the boundedness of $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ with general $n, m$, can be derived more easily:
(3) $\sup _{f: \mathbb{B}_{m} \rightarrow \mathbb{D}} \sup _{\text {analytic }} \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|\langle R \varphi(z), \overline{\nabla f(\varphi(z))}\rangle|^{2}}{\left(1-|f(\varphi(z))|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\infty$,

$$
\begin{equation*}
\sup _{|w|=1} \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|\langle R \varphi(z), \bar{w}\rangle|^{2}}{\left(1-|\langle\varphi(z), w\rangle|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\infty . \tag{4}
\end{equation*}
$$

Here (3) follows by applying Theorem 3 to the bounded composition operator $C_{f \circ \varphi}$ : $\mathcal{B}(\mathbb{D}) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$. (4) is a special case of $(3): f(z):=\langle z, w\rangle$ for a fixed $w \in \mathbb{C}^{m}$ with $|w|=1$.

In particular, if $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is bounded then, for $i=1, \ldots, m$

$$
d \mu_{\varphi_{i}}(z)=\frac{\left(1-|z|^{2}\right)\left|R \varphi_{i}(z)\right|^{2}}{\left(1-\left|\varphi_{i}(z)\right|^{2}\right)^{2}} d A(z)
$$

are Carleson measures.

## 3. BASIC REGULARITY CONDITION FOR THE SYMBOL.

Let us get a variant of Schwarz's lemma that we need for the sequel.
Lemma 1. Let $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ be an analytic map such that $\varphi(0)=0$. Then

$$
\begin{equation*}
|\varphi(z)| \leq|z|, \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
|R \varphi(z)| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(m=1)  \tag{6}\\
|R \varphi(z)| \leq 2 \frac{\left(1-|\varphi(z)|^{2}\right)^{1 / 2}}{1-|z|^{2}} \quad(m \geq 1)
\end{gather*}
$$

Proof. Let us fix $z \in \mathbb{B}_{n} \backslash\{0\}$ and $w \in \mathbb{C}^{m}$ with $|w|=1$, and define $F(\lambda)=\left\langle\varphi\left(\lambda \frac{z}{|z|}\right), w\right\rangle$. Note that $F: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic and $F(0)=0$. Then, from the classical Schwarz Lemma, for any $|\lambda|<1$,

$$
|F(\lambda)| \leq|\lambda|
$$

( what gives (5) by taking $\lambda=|z|$ ) and

$$
\left|F^{\prime}(\lambda)\right| \leq \frac{1-|F(\lambda)|^{2}}{1-|\lambda|^{2}} .
$$

Using that $F^{\prime}(\lambda)=\left\langle\frac{1}{\lambda} R \varphi\left(\lambda \frac{z}{|z|}\right), w\right\rangle$ one gets, again for $\lambda=|z|$, that

$$
|\langle R \varphi(z), w\rangle| \leq|z| \frac{1-|\langle\varphi(z), w\rangle|^{2}}{1-|z|^{2}}
$$

This shows (6) for $m=1$.
For general $m \in \mathbb{N}$, we write

$$
|\langle R \varphi(z), w\rangle| \leq 2 \frac{1-|\langle\varphi(z), w\rangle|}{1-|z|^{2}} .
$$

In particular, for any $\theta \in[-\pi, \pi)$ and $|w|=1$,

$$
\left|\left\langle\frac{1}{2}\left(1-|z|^{2}\right) R \varphi(z)+e^{i \theta} \varphi(z), w\right\rangle\right| \leq \frac{1}{2}\left(1-|z|^{2}\right)|\langle R \varphi(z), w\rangle|+|\langle\varphi(z), w\rangle| \leq 1 .
$$

Therefore, for $\theta \in[-\pi, \pi)$,

$$
\left|\frac{1}{2}\left(1-|z|^{2}\right) R \varphi(z)+e^{i \theta} \varphi(z)\right| \leq 1
$$

Now integrating over $\theta$ one obtains

$$
\frac{1}{4}\left(1-|z|^{2}\right)^{2}|R \varphi(z)|^{2}+|\varphi(z)|^{2} \leq 1
$$

and (7) is shown for any $m$.
Recall that we used the notation $F_{\varphi}(z)=\frac{\left(1-|z|^{2}|R \varphi(z)|^{2}\right.}{\left(1-|\varphi(z)|^{2}\right)^{2}}$, and note that if $F_{\varphi}$ is bounded then $d \mu_{\varphi} \leq\left\|F_{\varphi}\right\|_{\infty} d A(z)$, and hence $\mu_{\varphi}$ is a Carleson measure and $C_{\varphi}$ is bounded invoking Theorem 2.

In general $F_{\varphi} \notin L^{1}\left(\mathbb{B}_{n}, d A\right)$, but, from (5) and (7), satisfies $F_{\varphi}(z) \leq \frac{4}{\left(1-|z|^{2}\right)^{2}}$.
For $0<s<1$ we denote

$$
\Omega_{s}:=\left\{z \in \mathbb{B}_{n}| | \varphi(z)\left|>s,\left|F_{\varphi}(z)\right|>\frac{4}{\left(1-s^{2}\right)^{2}}\right\}\right.
$$

Clearly $\Omega_{s}$ is an open subset of $\mathbb{B}_{n}$ contained into $\{z:|z|>s\}$.
Given $z \in \mathbb{B}_{n}$ and $0<r<1$, we denote by $I_{r}(z) \subset \mathbb{B}_{n}$ the line segment joining $r z$ and $z: I_{r}(z):=\{\zeta \mid \zeta=s z$ for some $s \in[r, 1]\}$.
Given $z \in \mathbb{B}_{n}$ and $0<h<1$, we denote by $J_{h}(z) \subset \mathbb{B}_{n}$ the non-tangential cone

$$
J_{h}(z):=\left\{\left.\xi \in \mathbb{B}_{n}| |\left\langle\frac{z}{|z|}, \frac{z-\xi}{|z-\xi|}\right\rangle \right\rvert\, \geq h\right\} .
$$

Lemma 2. Assume that the holomorphic mapping $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ satisfies $\varphi(0)=0$ and the following condition for some $0<h<1$ and $0<s<1$ : For every $z \in \Omega_{s}$ there exists $0<r<1$ such that the line segment $I_{r}(z)$ is mapped by $\varphi$ into the non-tangential cone $J_{h}(\varphi(z))$. Then

$$
\begin{equation*}
\left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{R \varphi(z)}{|R \varphi(z)|}\right\rangle\right| \geq h / 2 \tag{8}
\end{equation*}
$$

for all $z \in \Omega_{s}$.
Proof. Suppose that the contrary of (8) holds for a $z \in \Omega_{s}$ :

$$
\begin{equation*}
\left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{R \varphi(z)}{|R \varphi(z)|}\right\rangle\right|<\frac{h}{2} \tag{9}
\end{equation*}
$$

By redefining the corresponding $r$ to be smaller, if necessary, we may assume, by continuity, that

$$
\begin{equation*}
\left|\frac{\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right)}{\left|\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right)\right|}-\frac{R \varphi(z)}{|R \varphi(z)|}\right| \leq \frac{h}{100} \tag{10}
\end{equation*}
$$

for all $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m} \in I_{r}(z)$; here $\varphi:=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$.
The radial derivative $R \varphi(\xi)$ equals

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varphi(\xi)-\varphi((1-\varepsilon) \xi)}{\varepsilon}
$$

hence, by the mean value theorem applied to the function $\psi: s \mapsto \psi(s):=\varphi(s z), s \in[r, 1]$, for $\xi \in I_{r}(z)$,

$$
\begin{equation*}
\varphi(\xi)=\varphi(z)+\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right) \frac{|\xi-z|}{|z|} \tag{11}
\end{equation*}
$$

for some points $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m} \in I_{r}(z)$.

We note that the right hand side of (11) cannot be a point of $J_{h}(\varphi(z))$ : by (9), and (10),

$$
\begin{align*}
& \left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{\varphi(z)-\left(\varphi(z)+\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right)|\xi-z| /|z|\right)}{\mid \varphi(z)-\left(\varphi(z)+\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)|\xi-z| /|z|\right) \mid\right.}\right\rangle\right| \\
= & \left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right)|\xi-z| /|z|}{\left|\left(R \varphi_{1}\left(\zeta_{1}\right), R \varphi_{2}\left(\zeta_{2}\right), \ldots, R \varphi_{m}\left(\zeta_{m}\right)\right)\right| \xi-z|/|z||}\right\rangle\right| \\
\leq & \left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{R \varphi(z)}{|R \varphi(z)|}\right\rangle\right|+\frac{h}{100} \leq \frac{3 h}{4} . \tag{12}
\end{align*}
$$

Contradiction: $\varphi$ does not map $I_{r}(z)$ into $J_{h}(\varphi(z))$. Hence, (8) is true.

## 4. Properties of lacunary series.

In Sections 4 and 5 the number $h, 0<h<1$, is fixed to be as in Lemma 2.
We define a pseudometric on the boundary of the unit ball:

$$
\begin{equation*}
d(\zeta, \xi):=\left(1-|\langle\zeta, \xi\rangle|^{2}\right)^{1 / 2}, \quad \zeta, \xi \in \partial \mathbb{B}_{n} \tag{13}
\end{equation*}
$$

Note that $d$ satisfies the triangular inequality. Given $\delta>0$ and $\zeta \in \partial \mathbb{B}_{n}$ we denote the $d$-ball with center $\zeta$ and radius $\delta$ by

$$
\begin{equation*}
E_{\delta}(\zeta):=\left\{\xi \in \partial \mathbb{B}_{n} \mid d(\zeta, \xi)<\delta\right\} . \tag{14}
\end{equation*}
$$

We say that a set $\Gamma \subset \partial \mathbb{B}_{n}$ is $d$-separated by $\delta$, if $d$-balls with radius $\delta$ and centers in the points of $\Gamma$, are pairwise disjoint.

The following result is proved by Ullrich in [U]. See also Lemma 2.2 of [CR].
Lemma 3. For every (small) $A>0$ there exists an $M \in \mathbb{N}$ with the following property: if $\delta>0$ and $\Gamma \subset \partial \mathbb{B}_{n}$ is d-separated by $A \delta / 2$, then $\Gamma$ can be decomposed as $\Gamma=\cup_{k=1}^{M} \Gamma_{k}$ such that every $\Gamma_{k}$ is d-separated by $\delta$.

Let us fix $0<A \leq 10^{-3}$ such that

$$
\begin{equation*}
\sum_{m=1}^{\infty}(m+2)^{2 n-2} e^{-m^{2} /(4 A)^{2}} \leq \frac{h}{100 \cdot 3^{3}}, \tag{15}
\end{equation*}
$$

and let then $M \in \mathbb{N}$ be fixed as in Lemma 3. Further, let us fix $p>1$ large enough, such that

$$
\begin{align*}
& \left(1-\frac{1}{p}\right)^{p} \geq \frac{1}{3}, \text { and }  \tag{16}\\
& p A^{2} \geq \frac{10^{6}}{h^{2}} \tag{17}
\end{align*}
$$

For every $j=1,2, \ldots, M$, choose $\delta_{j, 0}>0$ such that

$$
\begin{equation*}
A^{2} p^{j} \delta_{j, 0}^{2}=1, \tag{18}
\end{equation*}
$$

and then inductively choose the numbers $\delta_{j, \nu}$ for $\nu=1,2, \ldots$ such that

$$
\begin{equation*}
p^{M} \delta_{j, \nu}^{2}=\delta_{j, \nu-1}^{2} . \tag{19}
\end{equation*}
$$

Clearly, since $p>1$, every $\left(\delta_{j, \nu}\right)_{\nu=1}^{\infty}$ is an exponentially decreasing sequence, and by (17)

$$
\begin{equation*}
\delta_{j, \nu}^{2}<\frac{h^{2}}{10^{6}} \quad \text { for all } j, \nu \tag{20}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
A^{2} p^{\nu M+j} \delta_{j, \nu}^{2}=1 \tag{21}
\end{equation*}
$$

for every $j$ and $\nu$. For every $j=1, \ldots, M$ and $\nu=1,2, \ldots$, let $\Gamma^{j, \nu} \subset \partial \mathbb{B}_{n}$ be a maximal subset which is $d$-separated by $A \delta_{j, \nu} / 2$. (In particular, for every $z \in \partial \mathbb{B}_{n}$ there exists $\xi \in \Gamma^{j, \nu}$ such that $d(z, \xi) \leq A \delta_{j, \nu}$; otherwise $\Gamma^{j, \nu}$ is not maximal.) Using Lemma 3 we define the sets $\Gamma_{j, \nu M+k}$, which are $d$-separated by $\delta_{j, \nu}$, such that

$$
\begin{equation*}
\Gamma^{j, \nu}=\bigcup_{k=1}^{M} \Gamma_{j, \nu M+k} \tag{22}
\end{equation*}
$$

Finally we define a set of functions; these depend on some unspecified factors, though we do not display this dependence in the following.

Definition 1. Let $j, k \in\{1,2, \ldots, M\}$ and $\nu \in \mathbb{N}$ be given. Let $\gamma_{j, k, \nu}: \partial \mathbb{B}_{n} \times \partial \mathbb{B}_{n} \rightarrow \mathbb{C}$ be an arbitrary function such that
(i) $\left|\gamma_{j, k, \nu}(z, \zeta)\right| \geq h / 100$, if $z, \zeta$ satisfy $d(z, \zeta) \leq \delta_{j, \nu}$,
(ii) $\left|\gamma_{j, k, \nu}(z, \zeta)\right| \leq 1$ for all $z$ and $\zeta$.

Let us define

$$
\begin{equation*}
P_{k, \nu M+j}(z):=\sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}} \gamma_{j, k, \nu}(z, \zeta)\langle z, \zeta\rangle^{p^{\nu M+j}-1} \tag{23}
\end{equation*}
$$

where $[k+j]:=k+j$, if $k+j \leq M$, and $[k+j]:=k+j-M$, if $M<k+j \leq 2 M$.
Lemma 4. For all $\nu$, the functions of Definition 1 satisfy the bounds

$$
\begin{equation*}
2 M^{2} \geq \sum_{j, k=1}^{M}\left|P_{k, \nu M+j}(z)\right| \geq C:=C(h) \quad \text { for } z \in \partial \mathbb{B}_{n} \tag{24}
\end{equation*}
$$

Remark. We emphasize that the last $C>0$ is independent of $\nu$ and the choice of the functions $\gamma_{j, k, \nu}$.

Proof. The proof is an improvement of [CR], Theorem 2.1.
Let $\nu$ and $z \in \partial \mathbb{B}_{n}$ be given. By the constructions above we can pick $j$ and $k$ such that for some $\xi \in \Gamma_{j, \nu M+[k+j]}$ we have $d(z, \xi) \leq A \delta_{j, \nu} \leq \delta_{j, \nu}$. We have, by (21), Definition 1 (i) and (16),

$$
\begin{align*}
&\left|\gamma_{j, k, \nu}(z, \xi)\langle z, \xi\rangle^{p^{\nu M+j}-1}\right| \\
& \geq \frac{h}{100}\left(1-A^{2} \delta_{j, \nu}^{2}\right)^{p^{\nu M+j} / 2}  \tag{25}\\
&= \frac{h}{100}\left(1-\frac{1}{p^{\nu M+j}}\right)^{p^{\nu M+j} / 2} \geq \frac{h}{300} .
\end{align*}
$$

We aim to show that the contribution of the other terms in (23) is negligible in comparison with this term. Since we are proving a lower bound, it suffices to consider just the indices $j$ and $k$ fixed above.

For $0<r<1$ and $\zeta \in \partial \mathbb{B}_{n}$, the normalized surface area measure $\sigma$ of $E_{r}(\zeta)$ can be calculated:

$$
\begin{equation*}
\sigma\left(E_{r}(\zeta)\right)=r^{2 n-2} \tag{26}
\end{equation*}
$$

Let us define for every $m=0,1,2, \ldots$, the set

$$
\begin{equation*}
H_{m}(z):=\left\{\zeta \in \Gamma_{j, \nu M+[k+j]} \mid m \delta_{j, \nu} \leq d(z, \zeta)<(m+1) \delta_{j, \nu}\right\} \tag{27}
\end{equation*}
$$

The number $\#\left(H_{0}(z)\right)$, i.e. the cardinality of $H_{0}(z)$, equals 1 , by the construction of the sets $\Gamma$. To count $\#\left(H_{m}(z)\right)$ for $m>0$, we have

$$
\bigcup_{\zeta \in H_{m}(z)} E_{\delta_{j, \nu}}(\zeta) \subset E_{(m+2) \delta_{j, \nu}}(z),
$$

hence, by (26),

$$
\delta_{j, \nu}^{2 n-2} \#\left(H_{m}(z)\right)=\sigma\left(E_{\delta_{j, \nu}}(\zeta)\right) \#\left(H_{m}(z)\right) \leq \sigma\left(E_{(m+2) \delta_{j, \nu}}(z)\right)
$$

We thus get

$$
\begin{equation*}
\#\left(H_{m}(z)\right) \leq(m+2)^{2 n-2} . \tag{28}
\end{equation*}
$$

By (27) and (13),

$$
1-(m+1)^{2} \delta_{j, \nu}^{2} \leq|\langle z, \zeta\rangle|^{2} \leq 1-m^{2} \delta_{j, \nu}^{2}
$$

if $\zeta \in H_{m}(z)$.
Using this and (28),

$$
\begin{aligned}
& \sum_{\substack{\zeta \in \Gamma_{j, \nu M+[k+j]}^{\zeta \neq \xi}}}\left|\gamma_{j, k, \nu}(z, \zeta)\right||\langle z, \zeta\rangle|^{p^{\nu M+j}-1} \\
\leq & \sum_{\substack{\zeta \in \Gamma_{j, \nu M+\mid[+j]}^{\zeta \neq \zeta}}}|\langle z, \zeta\rangle|^{p^{\nu M+j}-1}=\sum_{m=1}^{\infty} \sum_{\zeta \in H_{m}(z)}|\langle z, \zeta\rangle|^{p^{\nu M+j}-1} \\
\leq & \sum_{m=1}^{\infty}\left(1-m^{2} \delta_{j, \nu}^{2}\right)^{\frac{1}{2} p^{\nu M+j}-\frac{1}{2}} \#\left(H_{m}(z)\right) \\
\leq & \sum_{m=1}^{\infty}\left(1-m^{2} \delta_{j, \nu}^{2}\right)^{\frac{1}{2} p^{\nu M+j}-\frac{1}{2}}(m+2)^{2 n-2} \\
\leq & \sum_{m=1}^{\infty} e^{-\frac{1}{2} m^{2} \delta_{j, \nu}^{2}\left(p^{\nu M+j}-1\right)}(m+2)^{2 n-2} \\
\leq & \sum_{m=1}^{\infty} e^{-m^{2}\left(\frac{1}{2 A^{2}}-\frac{1}{2}\right)}(m+2)^{2 n-2} \\
\leq & \sum_{m=1}^{\infty} e^{-m^{2} /(4 A)^{2}}(m+2)^{2 n-2} \leq \frac{h}{100 \cdot 3^{3}}
\end{aligned}
$$

by (21) and (15). Combining with (25), the lower bound in (24) follows. Finally, we see that $\left|P_{k, \nu M+j}(z)\right| \leq 2$ for all $z \in \mathbb{B}_{n}$.

Lemma 5. For every $\nu \in \mathbb{N}$ and $j, k=1, \ldots, M$, let the set $\Gamma_{j, \nu M+[k+j]} \subset \mathbb{B}_{n}$ be as above, and let $\left(\alpha_{\nu}\right)_{\nu \in \mathbb{N}}$ be a complex valued sequence with $\left|\alpha_{\nu}\right| \leq 1$ for every $\nu$. Then every analytic function

$$
\begin{equation*}
f(z):=\sum_{\nu \in \mathbb{N}} \alpha_{\nu} Q_{k, \nu M+j}(z):=\sum_{\nu \in \mathbb{N}} \alpha_{\nu} \sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle z, \zeta\rangle^{\nu^{\nu M+j}}, \quad z \in \mathbb{B}_{n} \tag{29}
\end{equation*}
$$

belongs to $\mathcal{B}\left(\mathbb{B}_{n}\right)$, and $\|f\|_{\mathcal{B}} \leq C$ ( $C$ is independent of $\nu, j$ and $k$ ). If the sequence $\left(\alpha_{\nu}\right)_{\nu \in \mathbb{N}}$ tends to zero, then $f \in \mathcal{B}_{0}\left(\mathbb{B}_{n}\right)$.

Proof. It is elementary to show that $R\left(Q_{k, \nu M+j}\right)=p^{\nu M+j} Q_{k, \nu M+j}$. Then we obtain

$$
\left|R\left(Q_{k, \nu M+j}\right)(z)\right| \leq p^{\nu M+j}|z|^{p^{\nu M+j}} Q_{k, \nu M+j}\left(\frac{z}{|z|}\right)
$$

and moreover

$$
\left|R\left(Q_{k, \nu M+j}\right)(z)\right| \leq C p^{\nu M+j}|z|^{p^{\nu M+j}} \leq C \frac{p^{M}}{p^{M}-1}\left(p^{\nu M+j}-p^{(\nu-1) M+j}\right)|z|^{p^{\nu M+j}}
$$

This gives

$$
\begin{gathered}
|R f(z)| \leq \sum_{\nu \in \mathbb{N}}\left|\alpha_{\nu}\right|\left|R\left(Q_{k, \nu M+j}\right)(z)\right| \\
\leq C \frac{p^{M}}{p^{M}-1} \sum_{\nu \in \mathbb{N}}\left(p^{\nu M+j}-p^{(\nu-1) M+j}\right)|z|^{\nu^{M+j}} \\
\leq C \frac{p^{M}}{p^{M}-1}\left(\sum_{\nu \in \mathbb{N}} \sum_{p^{(\nu-1) M+j} \leq n<p^{\nu M+j}}|z|^{n}\right) \leq \frac{C_{p}}{1-|z|} .
\end{gathered}
$$

If $\alpha_{\nu} \rightarrow 0$, then we can choose $N$ so big that $\left|\alpha_{\nu}\right|<\varepsilon$ for $\nu \geq N$. With

$$
f(z)=\sum_{\nu=0}^{N-1} \alpha_{\nu} Q_{k, \nu M+j}(z)+\sum_{\nu=N}^{\infty} \alpha_{\nu} Q_{k, \nu M+j}(z)
$$

we see that

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)|R f(z)| \leq 2 C_{p} \varepsilon
$$

for all $\varepsilon>0$.

## 5. Main Results.

Recall that for $\varphi: \mathbb{B}_{n} \rightarrow \mathbb{B}_{m}$ holomorphic with $\varphi(0)=0$, we defined $F_{\varphi}(z)=$ $\frac{|R \varphi(z)|^{2}\left(1-|z|^{2}\right)}{\left(1-\mid \varphi(z)^{2}\right)^{2}}$ and $\Omega_{r}=\left\{z \in \mathbb{B}_{n}| | \varphi(z)\left|>r,\left|F_{\varphi}(z)\right|>\frac{4}{\left(1-r^{2}\right)^{2}}\right\}\right.$, which is an open subset of $\mathbb{B}_{n}$ for $0<r<1$.

Let us use the notation $d \mu_{\varphi, s}(z)=\chi_{\Omega_{s}}(z) F_{\varphi}(z) d A(z)$. Clearly $\left\|\left\|d \mu_{\varphi, s}\right\| \leq\right\|\left\|d \mu_{\varphi}\right\| \|$.
Proposition 1. Let $n \in \mathbb{N}$. Then $d \mu_{\varphi}(z)=F_{\varphi}(z) d A(z)$ is a Carleson measure if and only if $d \mu_{\varphi, s}(z)=\chi_{\Omega_{s}}(z) F_{\varphi}(z) d A(z)$ is a Carleson measure for some $0<s<1$.

Proof. It suffices to show that

$$
\begin{equation*}
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n} \backslash \Omega_{s}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z) \leq C . \tag{30}
\end{equation*}
$$

If $z \in \mathbb{B}_{n} \backslash \Omega_{s}$ then either $F_{\varphi}(z) \leq \frac{4}{\left(1-s^{2}\right)^{2}}$ or $|\varphi(z)| \leq s$.
If $|\varphi(z)| \leq s$ and $a \in \mathbb{B}_{n}$ then
$\int_{\mathbb{B}_{n} \backslash \Omega_{s}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z) \leq \frac{1}{\left(1-s^{2}\right)^{2}} \int_{\mathbb{B}_{n}}\left(1-|z|^{2}\right)|R \varphi(z)|^{2} \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z) \leq \frac{C}{\left(1-s^{2}\right)^{2}}$
where the last estimate follows from the embedding $H^{\infty}\left(\mathbb{B}_{n}\right) \subset B M O A\left(\mathbb{B}_{n}\right)$ and $\varphi_{i} \in$ $H^{\infty}\left(\mathbb{B}_{n}\right)$ for $i=1, \ldots, m$.

If $F_{\varphi}(z) \leq \frac{4}{\left(1-s^{2}\right)^{2}}$ and $a \in \mathbb{B}_{n}$ then

$$
\int_{\mathbb{B}_{n} \backslash \Omega_{s}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z) \leq \frac{4}{\left(1-s^{2}\right)^{2}} \int_{\mathbb{B}_{n}} \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z)
$$

where the last integral is bounded by $1-|a|^{2}$ if $n>1$ and by $\left(1-|a|^{2}\right) \log \frac{1}{1-|a|^{2}}$ if $n=1$ (see Rudin [R], p. 17 for this estimate). Hence (30) is shown.

Theorem 4. Assume that $\varphi$ satisfies the non-tangentiality condition of Lemma 2. Then the composition operator $C_{\varphi}: f \mapsto f \circ \varphi$ is bounded from $\mathcal{B}\left(\mathbb{B}_{m}\right)$ into $B M O A\left(\mathbb{B}_{n}\right)$ if and only if $d \mu_{\varphi}(z)=F_{\varphi}(z) d A(z)$ is a Carleson measure.
Proof. The "if"-statement is Theorem 2.
We turn to the "only if"-statement. Let $h, s \in(0,1)$ be fixed as in Lemma 2.
From Proposition 1 it suffices to show that

$$
\begin{equation*}
\sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{s}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z) \leq C . \tag{31}
\end{equation*}
$$

For every $j, k=1,2, \ldots, M$ and $t \in[0,1]$ we define the analytic function

$$
f_{j, k, t}(z):=\sum_{\nu \in \mathbb{N}} r_{\nu}(t) Q_{k, \nu M+j}(z), \quad z \in \mathbb{B}_{m}
$$

where $r_{\nu}$ is the $\nu$ th Rademacher function and $Q_{k, \nu M+j}(z)=\sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle z, \zeta\rangle^{p^{\nu M+j}}$. Lemma 5 states that every $f_{j, k, t}$ belongs to $\mathcal{B}\left(\mathbb{B}_{m}\right)$ and that $\left\|f_{j, k, t}\right\|_{\mathcal{B}} \leq C_{1}$.

We are assuming that the composition operator $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is bounded. Defining the measure $d \mu_{a}(z):=\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)$ on $\mathbb{B}_{n}$, this means that the operator family

$$
T_{a}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow L^{2}\left(d \mu_{a}\right) \quad, \quad f \mapsto R(f \circ \varphi),
$$

is bounded uniformly with respect to $a$. (Denote the norm of $L^{2}\left(d \mu_{a}\right)$ by $\|\cdot\|_{2, a}$. )
We thus find a constant $C_{2}>0$ such that

$$
\sup _{a \in \mathbb{B}_{n}}\left\|R\left(f_{j, k, t} \circ \varphi\right)\right\|_{2, a}^{2} \leq C_{2}
$$

for all $j, k$ and $t$. Integrating with respect to $t$, using Fubini's theorem and the orthogonality property of the Rademacher functions we get

$$
\begin{equation*}
\int_{\mathbb{B}_{n}} \sum_{\nu \in \mathbb{N}}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|^{2} d \mu_{a}(z)=\int_{0}^{1}\left\|R\left(f_{j, k, t} \circ \varphi\right)\right\|_{2, a}^{2} d t \leq C_{2} . \tag{32}
\end{equation*}
$$

This inequality still holds with a different $C_{2}$, if a summation over all indices $j$ and $k$ is added to the left hand side; for each $\nu$ there exist $M$ indices $j$ and $k$.

Let us fix $\nu$ for a moment and bound $R\left(Q_{k, \nu M+j} \circ \varphi\right)$ from below. For all $z \in \Omega_{s}$ we have

$$
\begin{align*}
& R\left(Q_{k, \nu M+j} \circ \varphi\right)(z) \\
= & p^{\nu M+j} \sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\varphi(z), \zeta\rangle^{p^{\nu M+j}-1}\langle R \varphi(z), \zeta\rangle \\
= & p^{\nu M+j}|\varphi(z)|^{p^{\nu M+j}-1}|R \varphi(z)| \sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\eta(z), \zeta\rangle^{p^{\nu M+j}-1}\left\langle\eta^{\prime}(z), \zeta\right\rangle, \tag{33}
\end{align*}
$$

where we denoted $\eta:=\varphi /|\varphi|$ and $\eta^{\prime}:=R \varphi /|R \varphi|$.
We claim that

$$
\begin{equation*}
\sum_{j, k=1}^{M}\left|\sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\eta(z), \zeta\rangle^{p^{\nu M+j}-1}\left\langle\eta^{\prime}(z), \zeta\right\rangle\right| \geq C(h) \tag{34}
\end{equation*}
$$

for every $z \in \Omega_{s}$. To prove this we use Lemma 4. Given $z$ we find $j$ and $k$ such that $d(\eta(z), \xi) \leq A \delta_{j, \nu} \leq h 10^{-6}$ for some $\xi \in \Gamma_{j, \nu M+[k+j]}$. Let $\xi_{1}:=\xi-\langle\xi, \eta(z)\rangle \eta(z)$. Use the definition of $d$ to obtain that $\left|\xi_{1}\right| \leq \sqrt{2} h 10^{-6}$ and $|\langle\xi, \eta(z)\rangle| \geq \frac{1}{2}$.

By Lemma 2,

$$
\begin{equation*}
\left|\left\langle\eta^{\prime}(z), \xi\right\rangle\right| \geq|\langle\xi, \eta(z)\rangle|\left|\left\langle\eta^{\prime}(z), \eta(z)\right\rangle\right|-\left|\left\langle\eta^{\prime}(z), \xi_{1}\right\rangle\right| \geq \frac{h}{10} \tag{35}
\end{equation*}
$$

In Lemma 4 we choose $w \in \partial \mathbb{B}_{n}$ such that $w=\eta(z)$, and then $\gamma_{j, k, \nu}(w, \zeta):=\left\langle\eta^{\prime}(z), \zeta\right\rangle$ for all $j, k$. For other values $w$, the numbers $\gamma_{j, k, \nu}(w, \zeta)$ are set equal 1. In Lemma 4, $P_{k, \nu M+j}(w)$ coincides with

$$
\sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\eta(z), \zeta\rangle^{p^{\nu M+j}-1}\left\langle\eta^{\prime}(z), \zeta\right\rangle
$$

for all $j, k$, and because of (35), Lemma 4 applies. Hence, (34) follows. The result is just for this $z$, but the estimate is $z$-independent.

Returning to (33) and observing that

$$
\left(\sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|\right)^{2} \leq M^{2} \sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|^{2}
$$

it follows

$$
M^{2} \sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|^{2} \geq C^{2}(h) p^{2 \nu M}|\varphi(z)|^{2\left(p^{(\nu+1) M}-1\right)}|R \varphi(z)|^{2}
$$

for every $z \in \Omega_{s}$. Hence by (32),

$$
\begin{align*}
& M^{2} C_{2} \geq C^{2}(h) \sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{s}} \sum_{\nu \in \mathbb{N}} p^{2 \nu M}|\varphi(z)|^{2\left(p^{(\nu+1) M}-1\right)}|R \varphi(z)|^{2} d \mu_{a}(z) \\
\geq & C_{4} \sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{s}} \frac{|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z), \tag{36}
\end{align*}
$$

for some constant $C_{4}$. In the last inequality we used ( $0<b<1$ )

$$
\begin{aligned}
& \frac{1}{(1-b)^{2}}=\sum_{n=0}^{\infty}(n+1) b^{n} \\
\leq & C_{1} \sum_{\nu=0}^{\infty} \sum_{n=p^{(\nu+1) M}}^{p^{(\nu+1) M+M}} n b^{n-1} \\
\leq & C_{1} \sum_{\nu=0}^{\infty} \sum_{n=p^{(\nu+1) M}}^{p^{(\nu+1) M+M}} p^{(\nu+1) M+M} b^{p^{(\nu+1) M}-1} \\
\leq & C_{2} \sum_{\nu=0}^{\infty} p^{2(\nu+1) M} b^{p^{(\nu+1) M}-1} \\
\leq & C_{3} \sum_{\nu=0}^{\infty} p^{2 \nu M} b^{p^{(\nu+1) M}-1} .
\end{aligned}
$$

Thus (31) is shown and the proof is finished.

Proposition 2. If $\lim _{r \rightarrow 1} \mid\left\|d \mu_{\varphi, r}\right\| \|=0$, i.e.

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{r}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z)=0, \tag{37}
\end{equation*}
$$

then $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow \operatorname{BMOA}\left(\mathbb{B}_{n}\right)$ is compact.
Proof. For every $\varepsilon>0$ there exists $\delta \in(0,1)$ such that as $r \in[\delta, 1)$ we have

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{r}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z)<\varepsilon .
$$

This estimate and (30) show that $\mu_{\varphi}$ is a Carleson measure, and hence $C_{\varphi}$ is bounded. Let us now show that it is compact.

Let $\left(f_{i}\right)$ be a sequence in $\mathcal{B}\left(\mathbb{B}_{m}\right),\left\|f_{i}\right\| \leq 1$, which converges to zero uniformly on compact subsets of $\mathbb{B}_{m}$. We show that $f_{i} \circ \varphi \rightarrow 0$ in the norm of $B M O A\left(\mathbb{B}_{n}\right)$. Since $\left|\mid f_{i} \| \leq 1\right.$ and $| R\left(f_{i} \circ \varphi\right)(z)\left|\leq\left|\nabla f_{i}(\varphi(z))\right|\right| R \varphi(z) \left\lvert\, \leq \frac{|R \varphi(z)|}{1-|\varphi(z)|^{2}}\right.$, we have for all $i$,

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{\delta}}\left|R\left(f_{i} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\varepsilon .
$$

Now $f_{i} \rightarrow 0$ on compact subsets of $\mathbb{B}_{m}$, so we get that there exists $i_{0} \in \mathbb{N}$ such that $\sup _{z \in \mathbb{B}_{n} \backslash \Omega_{\delta}}\left|\nabla f_{i}(\varphi(z))\right|^{2}<\varepsilon$ for all $i \geq i_{0}$. Thus, if $i \geq i_{0}$,

$$
\begin{aligned}
& \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n} \backslash \Omega_{\delta}}\left|R\left(f_{i} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \sup _{z \in \mathbb{B}_{n} \backslash \Omega_{\delta}}\left|\nabla f_{i}(\varphi(z))\right|^{2} \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}|R \varphi(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \sup _{z \in \mathbb{B}_{n} \backslash \Omega_{\delta}}\left|\nabla f_{i}(\varphi(z))\right|^{2} \sum_{j=1}^{m}\left\|\varphi_{j}\right\|_{B M O A\left(\mathbb{B}_{n}\right)}^{2}<C \varepsilon,
\end{aligned}
$$

where in the last estimate we use that $\varphi_{j}=C_{\varphi}\left(z_{j}\right) \in B M O A\left(\mathbb{B}_{n}\right)$ because $C_{\varphi}$ is bounded.
Hence it follows that $\left|f_{i}(\varphi(0))\right|+\left\|f_{i} \circ \varphi\right\|_{B M O A\left(\mathbb{B}_{n}\right)} \rightarrow 0$.

Lemma 6. Suppose that $\mu_{\varphi}$ is a Carleson measure. If $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is compact, then

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{\substack{f \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right),\|f \in\| \leq 1}} \sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{r}}|R(f \circ \varphi)(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)=0 . \tag{38}
\end{equation*}
$$

Proof. Since $C_{\varphi}\left(\left\{f \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right):\|f\| \leq 1\right\}\right)$ is relatively compact in $B M O A\left(\mathbb{B}_{n}\right)$, there are, for each $\varepsilon>0$, functions $f_{i} \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right),\left\|f_{i}\right\| \leq 1, i=1, \ldots N$, such that for each $f \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right),\|f\| \leq 1$, there exists $j \in\{1, \ldots, N\}$ with

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}}\left|R(f \circ \varphi)(z)-R\left(f_{j} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<\varepsilon
$$

For every $f_{i} \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right), i=1, \ldots, N$, there is $\delta_{i} \in(0,1)$ and $\delta:=\max _{1 \leq i \leq N} \delta_{i}$ such that as $r \in[\delta, 1)$ we have

$$
\left|\nabla f_{i}(w)\right|\left(1-|w|^{2}\right)<\sqrt{\varepsilon}
$$

for all $r<|w|<1$. Observe that $r<|\varphi(z)|<1$ for $z \in \Omega_{r}$. Therefore, for given $a \in \mathbb{B}_{n}$ and $f \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right),\|f\| \leq 1$, one obtains

$$
\begin{aligned}
& \int_{\Omega_{r}}|R(f \circ \varphi)(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & 2 \int_{\Omega_{r}}\left|R(f \circ \varphi)(z)-R\left(f_{j} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
+ & 2 \int_{\Omega_{r}}\left|R\left(f_{j} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \varepsilon\left(2+2 \sup _{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} F_{\varphi}(z) \frac{\left(1-|a|^{2}\right)^{n}}{|1-\langle z, a\rangle|^{2 n}} d A(z)\right) .
\end{aligned}
$$

This proves the lemma.

Theorem 5. Suppose that $\varphi$ satisfies the non-tangentiality condition of Lemma 2. Then $C_{\varphi}: \mathcal{B}\left(\mathbb{B}_{m}\right) \rightarrow B M O A\left(\mathbb{B}_{n}\right)$ is compact if and only if

$$
\lim _{r \rightarrow 1}\| \| d \mu_{\varphi, r}\| \|=0
$$

Proof. The "if"-statement is Proposition 2.
Suppose conversely that $C_{\varphi}: \mathcal{B} \rightarrow B M O A$ is compact. Let $\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in\left(\frac{1}{2}, 1\right)$ be such that $\left|\alpha_{m}\right| \rightarrow 1$. For every $j, k=1,2, \ldots, M, m \in \mathbb{N}$ and $t \in[0,1]$ we define

$$
g_{j, k, m, t}(z):=\sum_{\nu \in \mathbb{N}} r_{\nu}(t)\left(\alpha_{m}\right)^{\nu^{\nu M+j}-1} Q_{k, \nu M+j}(z), \quad z \in \mathbb{B}_{m},
$$

where $r_{\nu}$ is the $\nu$ th Rademacher function and $Q_{k, \nu M+j}(z)=\sum_{\zeta \in \Gamma_{j, \nu M+\mid k+j]}}\langle z, \zeta\rangle^{p^{\nu M+j}}$. It follows from Lemma 5 that every $g_{j, k, m, t} \in \mathcal{B}_{0}\left(\mathbb{B}_{m}\right)$ and that $\left\|g_{j, k, m, t}\right\|_{\mathcal{B}} \leq C_{1}$. Let $h \in(0,1)$ and $s \in\left(\frac{1}{2}, 1\right)$ be fixed as in Lemma 2.

Let $\varepsilon>0$ be given. By Lemma 6 there exists $\delta \in(s, 1)$ such that as $r \in[\delta, 1)$ we have

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{r}}\left|R\left(g_{j, k, m, t} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)<C_{1}^{2} \varepsilon
$$

for all $j, k, m, t$.
Let $a \in \mathbb{B}_{n}$ be fixed. Integrating with respect to $t$, using Fubini's theorem and the orthogonality property of the Rademacher functions we obtain that

$$
\begin{align*}
& C_{1}^{2} \varepsilon \geq \int_{0}^{1} \int_{\Omega_{r}}\left|R\left(g_{j, k, m, t} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) d t \\
= & \int_{\Omega_{r}} \sum_{\nu \in \mathbb{N}}\left|\alpha_{m}\right|^{2 p^{\nu M+j}-2}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) . \tag{39}
\end{align*}
$$

Let us bound $R\left(Q_{k, \nu M+j} \circ \varphi\right)$ from below as $z \in \Omega_{r}$. For all $z \in \Omega_{r}$ we have

$$
\begin{aligned}
& R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)=p^{\nu M+j} \sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\varphi(z), \zeta\rangle^{p^{\nu M+j}-1}\langle R \varphi(z), \zeta\rangle \\
= & p^{\nu M+j}|\varphi(z)|^{p^{M+j}-1}|R \varphi(z)| \sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\eta(z), \zeta\rangle^{p^{\nu M+j}-1}\left\langle\eta^{\prime}(z), \zeta\right\rangle,
\end{aligned}
$$

where we denoted $\eta:=\varphi /|\varphi|$ and $\eta^{\prime}:=R \varphi /|R \varphi|$. As in the proof of Theorem 4 we have that

$$
\sum_{j, k=1}^{M}\left|\sum_{\zeta \in \Gamma_{j, \nu M+[k+j]}}\langle\eta(z), \zeta\rangle^{p^{\nu M+j}-1}\left\langle\eta^{\prime}(z), \zeta\right\rangle\right| \geq C(h)
$$

for every $z \in \Omega_{r}$. For each $r \in[\delta, 1)$ and $z \in \Omega_{r}$, we thus obtain

$$
\sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right| \geq C(h) p^{\nu M}|\varphi(z)|^{p^{\nu M}-1} 2^{-p^{M}}|R \varphi(z)| .
$$

Since

$$
\left(\sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|\right)^{2} \leq M^{2} \sum_{j, k=1}^{M}\left|R\left(Q_{k, \nu M+j} \circ \varphi\right)(z)\right|^{2}
$$

it follows from (39) that
$M^{4} C_{1}^{2} \varepsilon \geq 2 C^{2}(h) 2^{-2 p^{M}} \int_{\Omega_{r}} \sum_{\nu \in \mathbb{N}} p^{2 \nu M}\left|\alpha_{m} \varphi(z)\right|^{2 p^{\nu M}-2}|R \varphi(z)|^{2}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)$.
Using that

$$
\sum_{\nu \in \mathbb{N}} p^{2 \nu M}\left|\alpha_{m} \varphi(z)\right|^{2 p^{\nu M}-2} \geq \frac{C_{2}}{\left(1-\left|\alpha_{m} \varphi(z)\right|^{2}\right)^{2}}
$$

for some constant $C_{2}$, we get that there is a constant $C_{3}$ such that

$$
C_{3} \varepsilon \geq \int_{\Omega_{r}} \frac{|R \varphi(z)|^{2}}{\left(1-\left|\alpha_{m} \varphi(z)\right|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z)
$$

By Fatou's lemma, we have for each $r \in[\delta, 1)$ that

$$
\begin{aligned}
& \int_{\Omega_{r}} \frac{|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \\
\leq & \liminf _{m \rightarrow \infty} \int_{\Omega_{r}} \frac{|R \varphi(z)|^{2}}{\left(1-\left|\alpha_{m} \varphi(z)\right|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \leq C_{3} \varepsilon .
\end{aligned}
$$

Hence, as $a \in \mathbb{B}_{n}$ was picked arbitrary, we get

$$
\sup _{a \in \mathbb{B}_{n}} \int_{\Omega_{r}} \frac{|R \varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n} d \lambda(z) \leq C_{3} \varepsilon .
$$

This proves the statement.

## References

[ASX] Aulaskari, R., Stegenga, A.D. and Xiao, J.: Some subclasses of BMO and their characterization in terms of Carleson measures Rocky Mountain J. Math. 26 (1996), 485-506.
[CC] Choa, J.S. and Choe, B.R.: A Littlewood-Paley type identity and a characterization of BMOA Complex Variables 17 (1991), 15-23.
[CR] Choe, B.R. and Rim, K.S.: Fractional derivatives of Bloch functions, growth rate, and interpolation Acta Math.Hungar. 72, 1-2 (1996), 67-86.
[J1] Jevtic, M.: A note on the Carleson measure characterization BMOA functions on the unit ball Complex Variables Theory Appl. 17 (1992), 189-194.
[J2] Jevtic, M.: On Carleson measure characterization of BMOA functions on the unit ball of $\mathbb{C}^{n}$ Proc. Amer. Math. Soc. 123 (1995), 3371-3377.
[LMT] Lindström, M., Makhmutov, S. and Taskinen, J.: The essential norm of a Bloch-to-Qp composition operator Canad. Math. Bull. 46 (2004), 49-59.
[MM] Madigan, K.M. and Matheson, A.: Compact composition operators on Bloch spaces Trans. Amer. Math. Soc. 347 (1995), 2679-2687.
[MT] Makhmutov, S. and Tjani, M.: Composition operators on some Möbius invariant Banach spaces Bull. Austral. Math. Soc. 62 (2000), 1-19.
[OYZ1] Ouyand, C., Yang, W. and Zhao, R.: Characterizations of Bergman spaces and Bloch space in the unit ball of $\mathbb{C}^{n}$ Trans. Amer. Math. Soc. 347 (1995), 4301-4313.
[OYZ2] Ouyand, C., Yang, W. and Zhao, R.: Möbius invariant $Q_{p}$ spaces associated with the Green's function of unit ball of $\mathbb{C}^{n}$ Pacific J. Math. 71 (1998), 69-99.
[R] W. Rudin: Function Theory in of unit ball of $\mathbb{C}^{n}$ Springer Verlag, New York (1980).
[RU] Ramey, W. and Ullrich, D.: Bounded mean oscillation of Bloch pull-backs Math. Ann. 291 (1991), 591-606.
[SL] Shi, J.H. and Luo, L.: Composition operators on the Bloch space of several complex variables Acta Math. Sinica 16 (2000), 85-98.
[SZ] Smith, W. and Zhao, R.: Composition operators mapping into the $Q_{p}$ spaces Analysis 17 (1997), 239-263.
[T] Timoney, R.M.: Bloch functions in several complex variables I Bull. London Math. Soc. 12 (1980), 241-267.
[U] Ullrich, D.: A Bloch function in the ball with no radial limits Bull. London Math. Soc. 20 (1988), 337-341.
[Y] Yang, W. S.: Carleson type characterization of $Q_{p}$ spaces Analysis 18 (1998), 345-349.
[Z] Zhu, K.: Comparing holomorphic gradients in the unit ball of $\mathbb{C}^{n}$ Preprint.

## Authors's Addresses:

Departamento de Analisis Matematico, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
e-mail: oscar.blasco@uv.es
Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland e-mail: mikael.lindstrom@abo.fi

Department of Mathematics, University of Helsinki, P.O.Box 68, FIN-00014 Helsinki, Finland
e-mail: Jari.Taskinen@helsinki.fi

