BLOCH–TO–BMOA COMPOSITIONS IN SEVERAL COMPLEX VARIABLES

OSCAR BLASCO, MIKAEL LINDSTRÖM, JARI TASKINEN

ABSTRACT. Given an analytic mapping $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ we study the boundedness and compactness of the composition operator $C_{\varphi} : f \mapsto f \circ \varphi$ acting from the Bloch space $\mathcal{B}(\mathbb{B}_m)$ into $BMOA(\mathbb{B}_n)$. If the symbol satisfies a very mild regularity condition then the boundedness of C_{φ} is equivalent to $d\mu_{\varphi}(z) = \frac{(1-|z|^2)|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} dA(z)$ being a Carleson measure. The compactness of C_{φ} is also characterized.

1. INTRODUCTION.

We study analytic mappings $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ and the corresponding analytic composition operators $C_{\varphi} : f \mapsto f \circ \varphi$. Here $n, m \in \mathbb{N}$ and \mathbb{B}_n is the unit ball of \mathbb{C}^n . In the one complex variable case n = m = 1, $\mathbb{D} := \mathbb{B}_1$, the investigation of composition operators from the Bloch space $\mathcal{B}(\mathbb{D})$ into $BMOA(\mathbb{D})$ has only recently taken place. Boundedness and compactness of $C_{\varphi} : \mathcal{B}(\mathbb{D}) \to BMOA(\mathbb{D}), C_{\varphi} : \mathcal{B}_0(\mathbb{D}) \to VMOA(\mathbb{D})$ and $C_{\varphi} :$ $\mathcal{B}(\mathbb{D}) \to VMOA(\mathbb{D})$ has been studied in [SZ] by Smith and Zhao and by Makhmutov and Tjani in [MT]. Madigan and Matheson [MM] proved that C_{φ} is always bounded on $\mathcal{B}(\mathbb{D})$. Moreover, [MM] contains a characterization of symbols φ inducing compact composition operators on $\mathcal{B}(\mathbb{D})$ and $\mathcal{B}_0(\mathbb{D})$. The essential norm of a composition operator from $\mathcal{B}(\mathbb{D})$ into $Q_p(\mathbb{D})$ was computed in [LMT].

In the case of several complex variables, Ramey and Ullrich [RU] have studied the case mentioned in the beginning: their result states that if $\varphi : \mathbb{B}_n \to \mathbb{D}$ is Lipschitz, then $C_{\varphi} : \mathcal{B}(\mathbb{D}) \to BMOA(\mathbb{B}_n)$ is well defined, and consequently bounded by the closed graph theorem. Our results below are, of course, more general. The case of $C_{\varphi} : \mathcal{B}(\mathbb{B}_n) \to \mathcal{B}(\mathbb{B}_n)$ was considered by Shi and Luo [SL], where they proved that C_{φ} is always bounded and gave a necessary and sufficient condition for C_{φ} to be compact.

Our main result states that if $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ satisfies a very mild regularity condition, then the boundedness of $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is characterized by the fact that $d\mu_{\varphi}(z) = \frac{(1-|z|^2)|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} dA(z)$ is a Carleson measure (see notations below).

Similarly, a corresponding o-growth condition characterizes the compactness.

Let $\mathbb{N} := \{1, 2, 3, ...\}$. For $z, w \in \mathbb{C}^n$ let $\langle z, w \rangle = \sum_{i=1}^n z_i \bar{w}_i$ denote the complex inner product on \mathbb{C}^n and $|z| = \langle z, z \rangle^{1/2}$. The radial derivative operator is denoted by R; so, if $f : \mathbb{B}_n \to \mathbb{C}$ is analytic, then

$$Rf(z) := \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z) \quad \text{for } z \in \mathbb{B}_n.$$

Research partially supported by Proyecto BMF2002-04013 (Blasco) and the Academy of Finland Projects 51906 (Lindström) and 50957 (Taskinen).

The complex gradient of f is given by $\nabla f(z) = (\frac{\partial f}{\partial z_1}(z), \frac{\partial f}{\partial z_2}(z), ..., \frac{\partial f}{\partial z_n}(z))$. Clearly $Rf(z) = \langle \nabla f(z), \bar{z} \rangle$. Let $\tilde{\nabla} f(z) = \nabla (f \circ \varphi_z)(0)$ denote the invariant gradient, where φ_a stands for the Möbius transformation of \mathbb{B}_n with $\varphi_a(0) = a$ and $\varphi_a(a) = 0$. Note that on the other hand $Rf = \sum_k kF_k$, if $\sum_k F_k$ is the homogeneous expansion of f. If $\varphi : \mathbb{B}_n \to \mathbb{C}^m$ with $\varphi := (\varphi_1, \varphi_2, ..., \varphi_m)$, then $R\varphi := (R\varphi_1, R\varphi_2, ..., R\varphi_m)$. The Rademacher functions $r_n : [0, 1] \to \mathbb{R}$, $n \in \{0\} \cup \mathbb{N}$, are defined by $r_n(t) :=$

The Rademacher functions $r_n : [0,1] \to \mathbb{R}$, $n \in \{0\} \cup \mathbb{N}$, are defined by $r_n(t) := \operatorname{sign}(\sin(2^n \pi t)).$

The Bloch space $\mathcal{B}(\mathbb{B}_n)$ is defined to consist of analytic functions $f: \mathbb{B}_n \to \mathbb{C}$ such that

$$||f||_{\mathcal{B}} := \sup_{z \in \mathbb{B}_n} |\nabla f(z)| (1 - |z|^2) < \infty.$$

Timoney [T] proved that $||f||_{\mathcal{B}}$ and $||f||_1 := \sup_{z \in \mathbb{B}_n} |Rf(z)|(1-|z|^2)$ are equivalent. The Bloch space $\mathcal{B}(\mathbb{B}_n)$ is a Banach space with the norm $||f|| := |f(0)| + ||f||_{\mathcal{B}}$. The little Bloch space $\mathcal{B}_0(\mathbb{B}_n)$ is the subspace of $\mathcal{B}(\mathbb{B}_n)$ for which $\lim_{|z| \to 1} |Rf(z)|(1-|z|^2) = 0$.

Let g be the invariant Green function defined by

$$g(z) = \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt,$$

and let $d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^{n+1}}$, where dA is the normalized volume measure in \mathbb{C}^n .

The space $BMOA(\mathbb{B}_n)$ can be defined (see [CC] Theorem A, [OYZ1] Prop 1) as the space of analytic functions $f : \mathbb{B}_n \to \mathbb{C}$ with

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}|\tilde{\nabla}f(z)|^2g(\varphi_a(z))d\lambda(z)<\infty.$$

We say that a positive Borel measure on \mathbb{B}_n is a *Carleson measure* if there exists c > 0 such that for any $\xi \in \partial \mathbb{B}_n$ and $\delta > 0$ we have

$$\mu(B(\xi,\delta)) \le c\delta^n,$$

where $B(\xi, \delta) = \{z \in \mathbb{B}_n : 1 - \delta < |z| < 1, \frac{z}{|z|} \in S(\xi, \delta)\}$ and $S(\xi, \delta) = \{\nu \in \partial \mathbb{B}_n : |1 - \langle \nu, \xi \rangle| < \delta\}$. It is well known that μ is a Carleson measure if and only if

(1)
$$\sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} d\mu(z) < \infty.$$

We shall write $|||d\mu||| = \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} d\mu(z).$

There is a lot of bibliography concerning characterizations of BMOA in terms of Carleson measures (see [J1, J2] or see [ASX, OYZ2, Y] for Q_p spaces.) It is known that $f \in BMOA(\mathbb{B}_n)$ (see [OYZ2] Proposition 3.4) if and only if

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}|\tilde{\nabla}f(z)|^2(1-|\varphi_a(z)|^2)^nd\lambda(z)<\infty.$$

Now, taking into account that $1 - |\varphi_a(z)|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\langle z,a\rangle|^2}$, one obtains, using (1) that $f \in BMOA(\mathbb{B}_n)$ if and only if $\frac{|\tilde{\nabla}f(z)|^2}{1-|z|^2}dA(z)$ is a Carleson measure. Observe now that, a direct computation shows

$$|\tilde{\nabla}f(z)|^2 = (1 - |z|^2)(|\nabla f(z)|^2 - |Rf(z)|^2).$$

Therefore, using $|Rf(z)| \leq |\nabla f(z)||z|$, one gets

$$|\tilde{\nabla}f(z)|^2 \ge (1-|z|^2)^2 |\nabla f(z)|^2 \ge (1-|z|^2)^2 |Rf(z)|^2.$$

Thus

$$(1-|z|^2)|Rf(z)|^2 dA(z) \le (1-|z|^2)|\nabla f(z)|^2 dA(z) \le \frac{|\nabla f(z)|^2}{1-|z|^2} dA(z).$$

The following theorem is due to several authors. A complete proof of the equivalences of (i), (ii) and (iii) has been presented by Zhu in [Z]. Further, (iii) and (iv) are equivalent by (1).

Theorem 1. The following are equivalent.

 $\begin{array}{l} (i) \ f \in BMOA(\mathbb{B}_n).\\ (ii) \ (1-|z|^2)|\nabla f(z)|^2 dA(z) \ is \ a \ Carleson \ measure.\\ (iii) \ (1-|z|^2)|Rf(z)|^2 dA(z) \ is \ a \ Carleson \ measure.\\ (iv) \ \sup_{a \in \mathbb{B}_n \mathbb{B}_n} \int |Rf(z)|^2 (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z) < \infty. \end{array}$

Hence we define the space $BMOA(\mathbb{B}_n)$ (or just BMOA) to consist of all analytic functions $f: \mathbb{B}_n \to \mathbb{C}$ with

$$||f||_{BMOA} := \sup_{a \in \mathbb{B}_n} \left(\int_{\mathbb{B}_n} |Rf(z)|^2 (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \right)^{1/2} < \infty.$$

The space BMOA is a Banach space with the norm $||f|| := |f(0)| + ||f||_{BMOA}$.

Since $C_{\varphi_a} : \mathcal{B}(\mathbb{B}_m) \to \mathcal{B}(\mathbb{B}_m)$ is always bounded and invertible, we assume that $\varphi(0) = 0$ in our investigation of boundedness and compactness of $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$.

2. First results.

We define $F_{\varphi}(z) = \frac{(1-|z|^2)|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2}$ and write $d\mu_{\varphi}(z) = F_{\varphi}(z)dA(z)$. Using (1) one has that μ_{φ} is a Carleson measure if and only if

(2)
$$\sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z) < \infty.$$

We start by showing that this condition is sufficient for the boundedness of the composition operator. The result holds without any additional assumptions.

Theorem 2. Let $n, m \in \mathbb{N}$ and let $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ be analytic. If

$$d\mu_{\varphi}(z) = \frac{(1-|z|^2)|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} dA(z)$$

is a Carleson measure then the operator $C_{\varphi}: \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is bounded.

Proof. We have, for every $f \in \mathcal{B}(\mathbb{B}_m)$,

$$R(f \circ \varphi)(z) = \sum_{j=1}^{m} \frac{\partial f}{\partial z_j}(\varphi(z)) R\varphi_j(z),$$

so $|R(f \circ \varphi)(z)| \le |\nabla f(\varphi(z))| |R\varphi(z)|$. Therefore

$$\begin{split} \|C_{\varphi}f\|_{BMOA}^{2} &= \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |R(f \circ \varphi)(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z) \\ &\leq \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |\nabla f(\varphi(z))|^{2} |R\varphi(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z) \\ &\leq \|f\|_{\mathcal{B}}^{2} \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{(1 - |a|^{2})^{n}}{|1 - \langle z, a \rangle|^{2n}} d\mu_{\varphi}(z) \leq C \|f\|_{\mathcal{B}}^{2}. \end{split}$$

This of course contains the case m = 1. In that case the reverse direction can also be proven by existing methods, so we get

Theorem 3. Let $n \in \mathbb{N}$ and let $\varphi : \mathbb{B}_n \to \mathbb{D}$ be analytic. The operator $C_{\varphi} : \mathcal{B}(\mathbb{D}) \to BMOA(\mathbb{B}_n)$ is bounded, if and only if μ_{φ} is a Carleson measure.

To prove the necessity, we take two analytic functions $f_j \in \mathcal{B}(\mathbb{D})$, j = 1, 2, such that $|f'_1(z)| + |f'_2(z)| \ge C/(1 - |z|)$ for all $z \in \mathbb{D}$ (see [RU]). Since the composition operator is assumed bounded, we get

$$C_{1} \geq \sum_{j=1}^{2} \|C_{\varphi}f_{j}\|_{BMOA}^{2} = \sum_{j=1}^{2} \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} |R(f_{j} \circ \varphi)(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z)$$

$$= \sup_{a \in \mathbb{B}_{n}} \sum_{j=1}^{2} \int_{\mathbb{B}_{n}} |f_{j}'(\varphi(z))|^{2} |R\varphi(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z)$$

$$\geq C^{2}/2 \sup_{a \in \mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{(1 - |a|^{2})^{n}}{|1 - \langle z, a \rangle|^{2n}} d\mu_{\varphi}(z).$$

Surprising difficulties arise when trying to generalize the above argument to the case $m \geq 2$. We mention that Choe and Rim generalized in [CR] the construction of the "test functions" of Ramey and Ullrich to higher dimensions. However, this seems not to be enough for a proof of the necessity of the Carleson measure condition of μ_{φ} . The reason is that as a consequence of the use of the chain rule in the expression $R(f \circ \varphi)$, one will need a lower bound for $|\langle \varphi, R\varphi \rangle|$. This is analyzed in the later sections, see especially (33) and (34) for the derivative of our test functions.

The following necessary conditions for the boundedness of $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ with general n, m, can be derived more easily:

(3)
$$\sup_{f:\mathbb{B}_m\to\mathbb{D} \text{ analytic } a\in\mathbb{B}_n} \sup_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|\langle R\varphi(z), \overline{\nabla f(\varphi(z))} \rangle|^2}{(1-|f(\varphi(z))|^2)^2} (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z) < \infty,$$

(4)
$$\sup_{|w|=1} \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|\langle R\varphi(z), \overline{w} \rangle|^2}{(1 - |\langle \varphi(z), w \rangle|^2)^2} (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) < \infty.$$

Here (3) follows by applying Theorem 3 to the bounded composition operator $C_{f \circ \varphi}$: $\mathcal{B}(\mathbb{D}) \to BMOA(\mathbb{B}_n)$. (4) is a special case of (3): $f(z) := \langle z, w \rangle$ for a fixed $w \in \mathbb{C}^m$ with |w| = 1.

In particular, if $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is bounded then, for i = 1, ..., m

$$d\mu_{\varphi_i}(z) = \frac{(1-|z|^2)|R\varphi_i(z)|^2}{(1-|\varphi_i(z)|^2)^2} dA(z)$$

are Carleson measures.

3. Basic regularity condition for the symbol.

Let us get a variant of Schwarz's lemma that we need for the sequel.

Lemma 1. Let $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ be an analytic map such that $\varphi(0) = 0$. Then (5) $|\varphi(z)| \le |z|,$

(6)
$$|R\varphi(z)| \le \frac{1 - |\varphi(z)|^2}{1 - |z|^2} \quad (m = 1).$$

(7)
$$|R\varphi(z)| \le 2 \frac{(1-|\varphi(z)|^2)^{1/2}}{1-|z|^2} \quad (m \ge 1).$$

Proof. Let us fix $z \in \mathbb{B}_n \setminus \{0\}$ and $w \in \mathbb{C}^m$ with |w| = 1, and define $F(\lambda) = \langle \varphi(\lambda \frac{z}{|z|}), w \rangle$. Note that $F : \mathbb{D} \to \mathbb{D}$ is holomorphic and F(0) = 0. Then, from the classical Schwarz Lemma, for any $|\lambda| < 1$,

$$|F(\lambda)| \le |\lambda|$$

(what gives (5) by taking $\lambda = |z|$) and

$$|F'(\lambda)| \le \frac{1 - |F(\lambda)|^2}{1 - |\lambda|^2}.$$

Using that $F'(\lambda) = \langle \frac{1}{\lambda} R \varphi(\lambda \frac{z}{|z|}), w \rangle$ one gets, again for $\lambda = |z|$, that

$$|\langle R\varphi(z), w\rangle| \le |z| \frac{1 - |\langle \varphi(z), w\rangle|^2}{1 - |z|^2}$$

This shows (6) for m = 1.

For general $m \in \mathbb{N}$, we write

$$|\langle R\varphi(z), w\rangle| \le 2\frac{1 - |\langle \varphi(z), w\rangle|}{1 - |z|^2}$$

In particular, for any $\theta \in [-\pi, \pi)$ and |w| = 1,

$$\left|\left\langle\frac{1}{2}(1-|z|^2)R\varphi(z)+e^{i\theta}\varphi(z),w\right\rangle\right| \le \frac{1}{2}(1-|z|^2)\left|\left\langle R\varphi(z),w\right\rangle\right|+\left|\left\langle\varphi(z),w\right\rangle\right| \le 1$$

Therefore, for $\theta \in [-\pi, \pi)$,

$$\left|\frac{1}{2}(1-|z|^2)R\varphi(z) + e^{i\theta}\varphi(z)\right| \le 1.$$

Now integrating over θ one obtains

$$\frac{1}{4}(1-|z|^2)^2|R\varphi(z)|^2+|\varphi(z)|^2 \le 1,$$

and (7) is shown for any m.

Recall that we used the notation $F_{\varphi}(z) = \frac{(1-|z|^2)|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2}$, and note that if F_{φ} is bounded then $d\mu_{\varphi} \leq ||F_{\varphi}||_{\infty} dA(z)$, and hence μ_{φ} is a Carleson measure and C_{φ} is bounded invoking Theorem 2.

In general $F_{\varphi} \notin L^1(\mathbb{B}_n, dA)$, but, from (5) and (7), satisfies $F_{\varphi}(z) \leq \frac{4}{(1-|z|^2)^2}$. For 0 < s < 1 we denote

$$\Omega_s := \{ z \in \mathbb{B}_n \mid |\varphi(z)| > s, \ |F_{\varphi}(z)| > \frac{4}{(1-s^2)^2} \}.$$

Clearly Ω_s is an open subset of \mathbb{B}_n contained into $\{z : |z| > s\}$.

Given $z \in \mathbb{B}_n$ and 0 < r < 1, we denote by $I_r(z) \subset \mathbb{B}_n$ the line segment joining rz and z: $I_r(z) := \{\zeta \mid \zeta = sz \text{ for some } s \in [r, 1] \}.$

Given $z \in \mathbb{B}_n$ and 0 < h < 1, we denote by $J_h(z) \subset \mathbb{B}_n$ the non-tangential cone

$$J_h(z) := \left\{ \xi \in \mathbb{B}_n \mid \left| \left\langle \frac{z}{|z|}, \frac{z-\xi}{|z-\xi|} \right\rangle \right| \ge h \right\}.$$

Lemma 2. Assume that the holomorphic mapping $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ satisfies $\varphi(0) = 0$ and the following condition for some 0 < h < 1 and 0 < s < 1: For every $z \in \Omega_s$ there exists 0 < r < 1 such that the line segment $I_r(z)$ is mapped by φ into the non-tangential cone $J_h(\varphi(z))$. Then

(8)
$$\left|\left\langle\frac{\varphi(z)}{|\varphi(z)|}, \frac{R\varphi(z)}{|R\varphi(z)|}\right\rangle\right| \ge h/2$$

for all $z \in \Omega_s$.

Proof. Suppose that the contrary of (8) holds for a $z \in \Omega_s$:

(9)
$$\left|\left\langle\frac{\varphi(z)}{|\varphi(z)|},\frac{R\varphi(z)}{|R\varphi(z)|}\right\rangle\right| < \frac{h}{2}.$$

By redefining the corresponding r to be smaller, if necessary, we may assume, by continuity, that

(10)
$$\left|\frac{(R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))}{|(R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))|} - \frac{R\varphi(z)}{|R\varphi(z)|}\right| \le \frac{h}{100}$$

for all $\zeta_1, \zeta_2, ..., \zeta_m \in I_r(z)$; here $\varphi := (\varphi_1, \varphi_2, ..., \varphi_m)$. The radial derivative $R(z(\xi))$ equals

The radial derivative $R\varphi(\xi)$ equals

$$\lim_{\varepsilon \to 0} \frac{\varphi(\xi) - \varphi((1 - \varepsilon)\xi)}{\varepsilon},$$

hence, by the mean value theorem applied to the function $\psi : s \mapsto \psi(s) := \varphi(sz), s \in [r, 1]$, for $\xi \in I_r(z)$,

(11)
$$\varphi(\xi) = \varphi(z) + (R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m)) \frac{|\xi - z|}{|z|}$$

for some points $\zeta_1, \zeta_2, ..., \zeta_m \in I_r(z)$.

We note that the right hand side of (11) cannot be a point of $J_h(\varphi(z))$: by (9), and (10),

$$\begin{aligned} \left| \left\langle \frac{\varphi(z)}{|\varphi(z)|}, \frac{\varphi(z) - (\varphi(z) + (R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))|\xi - z|/|z|)}{|\varphi(z) - (\varphi(z) + (R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))|\xi - z|/|z|)} \right\rangle \right| \\ &= \left| \left\langle \frac{\varphi(z)}{|\varphi(z)|}, \frac{(R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))|\xi - z|/|z|}{|(R\varphi_1(\zeta_1), R\varphi_2(\zeta_2), ..., R\varphi_m(\zeta_m))|\xi - z|/|z||} \right\rangle \right| \\ (12) &\leq \left| \left\langle \frac{\varphi(z)}{|\varphi(z)|}, \frac{R\varphi(z)}{|R\varphi(z)|} \right\rangle \right| + \frac{h}{100} \leq \frac{3h}{4}. \end{aligned}$$

Contradiction: φ does not map $I_r(z)$ into $J_h(\varphi(z))$. Hence, (8) is true.

4. PROPERTIES OF LACUNARY SERIES.

In Sections 4 and 5 the number h, 0 < h < 1, is fixed to be as in Lemma 2. We define a pseudometric on the boundary of the unit ball:

(13)
$$d(\zeta,\xi) := \left(1 - |\langle \zeta,\xi \rangle|^2\right)^{1/2}, \quad \zeta,\xi \in \partial \mathbb{B}_n.$$

Note that d satisfies the triangular inequality. Given $\delta > 0$ and $\zeta \in \partial \mathbb{B}_n$ we denote the d-ball with center ζ and radius δ by

(14)
$$E_{\delta}(\zeta) := \{ \xi \in \partial \mathbb{B}_n \mid d(\zeta, \xi) < \delta \}.$$

We say that a set $\Gamma \subset \partial \mathbb{B}_n$ is *d*-separated by δ , if *d*-balls with radius δ and centers in the points of Γ , are pairwise disjoint.

The following result is proved by Ullrich in [U]. See also Lemma 2.2 of [CR].

Lemma 3. For every (small) A > 0 there exists an $M \in \mathbb{N}$ with the following property: if $\delta > 0$ and $\Gamma \subset \partial \mathbb{B}_n$ is d-separated by $A\delta/2$, then Γ can be decomposed as $\Gamma = \bigcup_{k=1}^M \Gamma_k$ such that every Γ_k is d-separated by δ .

Let us fix $0 < A \le 10^{-3}$ such that

(15)
$$\sum_{m=1}^{\infty} (m+2)^{2n-2} e^{-m^2/(4A)^2} \le \frac{h}{100 \cdot 3^3}$$

and let then $M \in \mathbb{N}$ be fixed as in Lemma 3. Further, let us fix p > 1 large enough, such that

(16)
$$\left(1 - \frac{1}{p}\right)^p \ge \frac{1}{3} , \text{ and}$$

$$(17) pA^2 \ge \frac{10^3}{h^2}.$$

For every $j = 1, 2, \ldots, M$, choose $\delta_{j,0} > 0$ such that

(18)
$$A^2 p^j \delta_{j,0}^2 = 1,$$

and then inductively choose the numbers $\delta_{j,\nu}$ for $\nu = 1, 2, \ldots$ such that

(19)
$$p^M \delta_{j,\nu}^2 = \delta_{j,\nu-1}^2.$$

Clearly, since p > 1, every $(\delta_{j,\nu})_{\nu=1}^{\infty}$ is an exponentially decreasing sequence, and by (17)

(20)
$$\delta_{j,\nu}^2 < \frac{h^2}{10^6}$$
 for all j,ν .

Moreover,

(21)
$$A^2 p^{\nu M+j} \delta_{j,\nu}^2 = 1$$

for every j and ν . For every $j = 1, \ldots, M$ and $\nu = 1, 2, \ldots$, let $\Gamma^{j,\nu} \subset \partial \mathbb{B}_n$ be a maximal subset which is d-separated by $A\delta_{j,\nu}/2$. (In particular, for every $z \in \partial \mathbb{B}_n$ there exists $\xi \in \Gamma^{j,\nu}$ such that $d(z,\xi) \leq A\delta_{j,\nu}$; otherwise $\Gamma^{j,\nu}$ is not maximal.) Using Lemma 3 we define the sets $\Gamma_{j,\nu M+k}$, which are d-separated by $\delta_{j,\nu}$, such that

(22)
$$\Gamma^{j,\nu} = \bigcup_{k=1}^{M} \Gamma_{j,\nu M+k}.$$

Finally we define a set of functions; these depend on some unspecified factors, though we do not display this dependence in the following.

Definition 1. Let $j, k \in \{1, 2, ..., M\}$ and $\nu \in \mathbb{N}$ be given. Let $\gamma_{j,k,\nu} : \partial \mathbb{B}_n \times \partial \mathbb{B}_n \to \mathbb{C}$ be an arbitrary function such that

(i) $|\gamma_{j,k,\nu}(z,\zeta)| \ge h/100$, if z, ζ satisfy $d(z,\zeta) \le \delta_{j,\nu}$, (ii) $|\gamma_{j,k,\nu}(z,\zeta)| \le 1$ for all z and ζ . Let us define

(23)
$$P_{k,\nu M+j}(z) := \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \gamma_{j,k,\nu}(z,\zeta) \langle z,\zeta \rangle^{p^{\nu M+j}-1},$$

where [k+j] := k+j, if $k+j \le M$, and [k+j] := k+j-M, if $M < k+j \le 2M$.

Lemma 4. For all ν , the functions of Definition 1 satisfy the bounds

(24)
$$2M^2 \ge \sum_{j,k=1}^M |P_{k,\nu M+j}(z)| \ge C := C(h) \quad \text{for } z \in \partial \mathbb{B}_n$$

Remark. We emphasize that the last C > 0 is independent of ν and the choice of the functions $\gamma_{j,k,\nu}$.

Proof. The proof is an improvement of [CR], Theorem 2.1.

Let ν and $z \in \partial \mathbb{B}_n$ be given. By the constructions above we can pick j and k such that for some $\xi \in \Gamma_{j,\nu M+[k+j]}$ we have $d(z,\xi) \leq A\delta_{j,\nu} \leq \delta_{j,\nu}$. We have, by (21), Definition 1 (*i*) and (16),

(25)
$$\begin{aligned} |\gamma_{j,k,\nu}(z,\xi)\langle z,\xi\rangle^{p^{\nu M+j}-1}| &\geq \frac{h}{100} \left(1 - A^2 \delta_{j,\nu}^2\right)^{p^{\nu M+j/2}} \\ &= \frac{h}{100} \left(1 - \frac{1}{p^{\nu M+j}}\right)^{p^{\nu M+j/2}} \geq \frac{h}{300}. \end{aligned}$$

We aim to show that the contribution of the other terms in (23) is negligible in comparison with this term. Since we are proving a lower bound, it suffices to consider just the indices j and k fixed above. For 0 < r < 1 and $\zeta \in \partial \mathbb{B}_n$, the normalized surface area measure σ of $E_r(\zeta)$ can be calculated:

(26)
$$\sigma(E_r(\zeta)) = r^{2n-2}$$

Let us define for every $m = 0, 1, 2, \ldots$, the set

(27) $H_m(z) := \{ \zeta \in \Gamma_{j,\nu M + [k+j]} \mid m\delta_{j,\nu} \le d(z,\zeta) < (m+1)\delta_{j,\nu} \}.$

The number $\#(H_0(z))$, i.e. the cardinality of $H_0(z)$, equals 1, by the construction of the sets Γ . To count $\#(H_m(z))$ for m > 0, we have

$$\bigcup_{\zeta \in H_m(z)} E_{\delta_{j,\nu}}(\zeta) \subset E_{(m+2)\delta_{j,\nu}}(z),$$

hence, by (26),

$$\delta_{j,\nu}^{2n-2} \#(H_m(z)) = \sigma(E_{\delta_{j,\nu}}(\zeta)) \#(H_m(z)) \le \sigma(E_{(m+2)\delta_{j,\nu}}(z)).$$

We thus get

(28)

$$\#(H_m(z)) \le (m+2)^{2n-2}$$

By (27) and (13),

$$1 - (m+1)^2 \delta_{j,\nu}^2 \le |\langle z, \zeta \rangle|^2 \le 1 - m^2 \delta_{j,\nu}^2,$$

if $\zeta \in H_m(z)$.

Using this and (28),

$$\begin{split} &\sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} |\gamma_{j,k,\nu}(z,\zeta)| \ |\langle z,\zeta\rangle|^{p^{\nu M+j}-1} \\ &\leq \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} |\langle z,\zeta\rangle|^{p^{\nu M+j}-1} = \sum_{m=1}^{\infty} \sum_{\zeta \in H_m(z)} |\langle z,\zeta\rangle|^{p^{\nu M+j}-1} \\ &\leq \sum_{m=1}^{\infty} (1-m^2 \delta_{j,\nu}^2)^{\frac{1}{2}p^{\nu M+j}-\frac{1}{2}} \#(H_m(z)) \\ &\leq \sum_{m=1}^{\infty} (1-m^2 \delta_{j,\nu}^2)^{\frac{1}{2}p^{\nu M+j}-\frac{1}{2}} (m+2)^{2n-2} \\ &\leq \sum_{m=1}^{\infty} e^{-\frac{1}{2}m^2 \delta_{j,\nu}^2 (p^{\nu M+j}-1)} (m+2)^{2n-2} \\ &\leq \sum_{m=1}^{\infty} e^{-m^2 (\frac{1}{2A^2}-\frac{1}{2})} (m+2)^{2n-2} \\ &\leq \sum_{m=1}^{\infty} e^{-m^2 / (4A)^2} (m+2)^{2n-2} \leq \frac{h}{100\cdot 3^3}, \end{split}$$

by (21) and (15). Combining with (25), the lower bound in (24) follows. Finally, we see that $|P_{k,\nu M+j}(z)| \leq 2$ for all $z \in \mathbb{B}_n$. \Box

Lemma 5. For every $\nu \in \mathbb{N}$ and j, k = 1, ..., M, let the set $\Gamma_{j,\nu M+[k+j]} \subset \mathbb{B}_n$ be as above, and let $(\alpha_{\nu})_{\nu \in \mathbb{N}}$ be a complex valued sequence with $|\alpha_{\nu}| \leq 1$ for every ν . Then every analytic function

(29)
$$f(z) := \sum_{\nu \in \mathbb{N}} \alpha_{\nu} Q_{k,\nu M+j}(z) := \sum_{\nu \in \mathbb{N}} \alpha_{\nu} \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle z, \zeta \rangle^{p^{\nu M+j}} , \qquad z \in \mathbb{B}_n,$$

belongs to $\mathcal{B}(\mathbb{B}_n)$, and $||f||_{\mathcal{B}} \leq C$ (C is independent of ν, j and k). If the sequence $(\alpha_{\nu})_{\nu \in \mathbb{N}}$ tends to zero, then $f \in \mathcal{B}_0(\mathbb{B}_n)$.

Proof. It is elementary to show that $R(Q_{k,\nu M+j}) = p^{\nu M+j}Q_{k,\nu M+j}$. Then we obtain

$$|R(Q_{k,\nu M+j})(z)| \le p^{\nu M+j} |z|^{p^{\nu M+j}} Q_{k,\nu M+j}(\frac{z}{|z|}),$$

and moreover

$$|R(Q_{k,\nu M+j})(z)| \le Cp^{\nu M+j}|z|^{p^{\nu M+j}} \le C\frac{p^M}{p^M-1}(p^{\nu M+j}-p^{(\nu-1)M+j})|z|^{p^{\nu M+j}}$$

This gives

$$|Rf(z)| \leq \sum_{\nu \in \mathbb{N}} |\alpha_{\nu}| |R(Q_{k,\nu M+j})(z)|$$
$$\leq C \frac{p^{M}}{p^{M} - 1} \sum_{\nu \in \mathbb{N}} (p^{\nu M+j} - p^{(\nu-1)M+j}) |z|^{p^{\nu M+j}}$$
$$\leq C \frac{p^{M}}{p^{M} - 1} (\sum_{\nu \in \mathbb{N}} \sum_{p^{(\nu-1)M+j} \leq n < p^{\nu M+j}} |z|^{n}) \leq \frac{C_{p}}{1 - |z|}.$$

If $\alpha_{\nu} \to 0$, then we can choose N so big that $|\alpha_{\nu}| < \varepsilon$ for $\nu \ge N$. With

$$f(z) = \sum_{\nu=0}^{N-1} \alpha_{\nu} Q_{k,\nu M+j}(z) + \sum_{\nu=N}^{\infty} \alpha_{\nu} Q_{k,\nu M+j}(z)$$

we see that

$$\lim_{|z|\to 1} (1-|z|^2) |Rf(z)| \le 2C_p \varepsilon$$

for all $\varepsilon > 0$. \Box

5. MAIN RESULTS.

Recall that for $\varphi : \mathbb{B}_n \to \mathbb{B}_m$ holomorphic with $\varphi(0) = 0$, we defined $F_{\varphi}(z) = \frac{|R\varphi(z)|^2(1-|z|^2)}{(1-|\varphi(z)|^2)^2}$ and $\Omega_r = \{z \in \mathbb{B}_n \mid |\varphi(z)| > r, |F_{\varphi}(z)| > \frac{4}{(1-r^2)^2}\}$, which is an open subset of \mathbb{B}_n for 0 < r < 1.

Let us use the notation $d\mu_{\varphi,s}(z) = \chi_{\Omega_s}(z)F_{\varphi}(z)dA(z)$. Clearly $|||d\mu_{\varphi,s}||| \leq |||d\mu_{\varphi}|||$.

Proposition 1. Let $n \in \mathbb{N}$. Then $d\mu_{\varphi}(z) = F_{\varphi}(z)dA(z)$ is a Carleson measure if and only if $d\mu_{\varphi,s}(z) = \chi_{\Omega_s}(z)F_{\varphi}(z)dA(z)$ is a Carleson measure for some 0 < s < 1.

Proof. It suffices to show that

(30)
$$\sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n \setminus \Omega_s} F_{\varphi}(z) \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le C.$$

If $z \in \mathbb{B}_n \setminus \Omega_s$ then either $F_{\varphi}(z) \leq \frac{4}{(1-s^2)^2}$ or $|\varphi(z)| \leq s$. If $|\varphi(z)| \leq s$ and $a \in \mathbb{B}_n$ then

$$\int_{\mathbb{B}_n \setminus \Omega_s} F_{\varphi}(z) \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{1}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) |R\varphi(z)|^2 \frac{(1-|z|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} \int_{\mathbb{B}_n} (1-|z|^2) \frac{(1-|z|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{C}{(1-s^2)^2} (1-|z|^2) + C} (1-|z|^2) + C$$

where the last estimate follows from the embedding $H^{\infty}(\mathbb{B}_n) \subset BMOA(\mathbb{B}_n)$ and $\varphi_i \in H^{\infty}(\mathbb{B}_n)$ for i = 1, ..., m.

If $F_{\varphi}(z) \leq \frac{4}{(1-s^2)^2}$ and $a \in \mathbb{B}_n$ then

$$\int_{\mathbb{B}_n \setminus \Omega_s} F_{\varphi}(z) \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z) \le \frac{4}{(1-s^2)^2} \int_{\mathbb{B}_n} \frac{(1-|a|^2)^n}{|1-\langle z,a \rangle|^{2n}} dA(z)$$

where the last integral is bounded by $1 - |a|^2$ if n > 1 and by $(1 - |a|^2) \log \frac{1}{1 - |a|^2}$ if n = 1 (see Rudin [R], p.17 for this estimate). Hence (30) is shown. \Box

Theorem 4. Assume that φ satisfies the non-tangentiality condition of Lemma 2. Then the composition operator $C_{\varphi} : f \mapsto f \circ \varphi$ is bounded from $\mathcal{B}(\mathbb{B}_m)$ into $BMOA(\mathbb{B}_n)$ if and only if $d\mu_{\varphi}(z) = F_{\varphi}(z)dA(z)$ is a Carleson measure.

Proof. The "if"-statement is Theorem 2.

We turn to the "only if"-statement. Let $h, s \in (0, 1)$ be fixed as in Lemma 2. From Proposition 1 it suffices to show that

(31)
$$\sup_{a \in \mathbb{B}_n} \int_{\Omega_s} F_{\varphi}(z) \frac{(1-|a|^2)^n}{|1-\langle z,a\rangle|^{2n}} dA(z) \le C.$$

For every j, k = 1, 2, ..., M and $t \in [0, 1]$ we define the analytic function

$$f_{j,k,t}(z) := \sum_{\nu \in \mathbb{N}} r_{\nu}(t) Q_{k,\nu M+j}(z), \quad z \in \mathbb{B}_m,$$

where r_{ν} is the ν th Rademacher function and $Q_{k,\nu M+j}(z) = \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle z, \zeta \rangle^{p^{\nu M+j}}$. Lemma 5 states that every $f_{j,k,t}$ belongs to $\mathcal{B}(\mathbb{B}_m)$ and that $\|f_{j,k,t}\|_{\mathcal{B}} \leq C_1$.

We are assuming that the composition operator $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is bounded. Defining the measure $d\mu_a(z) := (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z)$ on \mathbb{B}_n , this means that the operator family

$$T_a: \mathcal{B}(\mathbb{B}_m) \to L^2(d\mu_a) \ , \ f \mapsto R(f \circ \varphi) \ ,$$

is bounded uniformly with respect to a. (Denote the norm of $L^2(d\mu_a)$ by $\|\cdot\|_{2,a}$.)

We thus find a constant $C_2 > 0$ such that

$$\sup_{a \in \mathbb{B}_n} \|R(f_{j,k,t} \circ \varphi)\|_{2,a}^2 \le C_2$$

for all j, k and t. Integrating with respect to t, using Fubini's theorem and the orthogonality property of the Rademacher functions we get

(32)
$$\int_{\mathbb{B}_n} \sum_{\nu \in \mathbb{N}} |R(Q_{k,\nu M+j} \circ \varphi)(z)|^2 d\mu_a(z) = \int_0^1 ||R(f_{j,k,t} \circ \varphi)||_{2,a}^2 dt \le C_2.$$

This inequality still holds with a different C_2 , if a summation over all indices j and k is added to the left hand side; for each ν there exist M indices j and k.

Let us fix ν for a moment and bound $R(Q_{k,\nu M+j} \circ \varphi)$ from below. For all $z \in \Omega_s$ we have

$$R(Q_{k,\nu M+j} \circ \varphi)(z) = p^{\nu M+j} \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \varphi(z), \zeta \rangle^{p^{\nu M+j}-1} \langle R\varphi(z), \zeta \rangle$$

$$(33) = p^{\nu M+j} |\varphi(z)|^{p^{\nu M+j}-1} |R\varphi(z)| \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \eta(z), \zeta \rangle^{p^{\nu M+j}-1} \langle \eta'(z), \zeta \rangle,$$

where we denoted $\eta := \varphi/|\varphi|$ and $\eta' := R\varphi/|R\varphi|$.

We claim that

(34)
$$\sum_{j,k=1}^{M} \left| \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \eta(z), \zeta \rangle^{p^{\nu M+j}-1} \langle \eta'(z), \zeta \rangle \right| \ge C(h)$$

for every $z \in \Omega_s$. To prove this we use Lemma 4. Given z we find j and k such that $d(\eta(z),\xi) \leq A\delta_{j,\nu} \leq h10^{-6}$ for some $\xi \in \Gamma_{j,\nu M+[k+j]}$. Let $\xi_1 := \xi - \langle \xi, \eta(z) \rangle \eta(z)$. Use the definition of d to obtain that $|\xi_1| \leq \sqrt{2} h10^{-6}$ and $|\langle \xi, \eta(z) \rangle| \geq \frac{1}{2}$.

By Lemma 2,

(35)
$$|\langle \eta'(z),\xi\rangle| \ge |\langle \xi,\eta(z)\rangle| \ |\langle \eta'(z),\eta(z)\rangle| - |\langle \eta'(z),\xi_1\rangle| \ge \frac{h}{10}.$$

In Lemma 4 we choose $w \in \partial \mathbb{B}_n$ such that $w = \eta(z)$, and then $\gamma_{j,k,\nu}(w,\zeta) := \langle \eta'(z),\zeta \rangle$ for all j,k. For other values w, the numbers $\gamma_{j,k,\nu}(w,\zeta)$ are set equal 1. In Lemma 4, $P_{k,\nu M+j}(w)$ coincides with

$$\sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \eta(z), \zeta \rangle^{p^{\nu M+j}-1} \langle \eta'(z), \zeta \rangle$$

for all j, k, and because of (35), Lemma 4 applies. Hence, (34) follows. The result is just for this z, but the estimate is z-independent.

Returning to (33) and observing that

$$(\sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)|)^2 \le M^2 \sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)|^2$$

it follows

$$M^{2} \sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)|^{2} \ge C^{2}(h)p^{2\nu M} |\varphi(z)|^{2(p^{(\nu+1)M}-1)} |R\varphi(z)|^{2}$$

for every $z \in \Omega_s$. Hence by (32),

(36)
$$M^{2}C_{2} \geq C^{2}(h) \sup_{a \in \mathbb{B}_{n}} \int_{\Omega_{s}} \sum_{\nu \in \mathbb{N}} p^{2\nu M} |\varphi(z)|^{2(p^{(\nu+1)M}-1)} |R\varphi(z)|^{2} d\mu_{a}(z)$$
$$\geq C_{4} \sup_{a \in \mathbb{B}_{n}} \int_{\Omega_{s}} \frac{|R\varphi(z)|^{2}}{(1-|\varphi(z)|^{2})^{2}} (1-|z|^{2})^{2} (1-|\varphi_{a}(z)|^{2})^{n} d\lambda(z),$$

for some constant C_4 . In the last inequality we used (0 < b < 1)

$$\begin{aligned} \frac{1}{(1-b)^2} &= \sum_{n=0}^{\infty} (n+1)b^n \\ &\leq C_1 \sum_{\nu=0}^{\infty} \sum_{n=p^{(\nu+1)M}}^{p^{(\nu+1)M+M}} nb^{n-1} \\ &\leq C_1 \sum_{\nu=0}^{\infty} \sum_{n=p^{(\nu+1)M}}^{p^{(\nu+1)M+M}} p^{(\nu+1)M+M} b^{p^{(\nu+1)M}-1} \\ &\leq C_2 \sum_{\nu=0}^{\infty} p^{2(\nu+1)M} b^{p^{(\nu+1)M}-1} \\ &\leq C_3 \sum_{\nu=0}^{\infty} p^{2\nu M} b^{p^{(\nu+1)M}-1}. \end{aligned}$$

Thus (31) is shown and the proof is finished. \Box

Proposition 2. If $\lim_{r\to 1} |||d\mu_{\varphi,r}||| = 0$, *i.e.*

(37)
$$\lim_{r \to 1} \sup_{a \in \mathbb{B}_n} \int_{\Omega_r} F_{\varphi}(z) \frac{(1 - |a|^2)^n}{|1 - \langle z, a \rangle|^{2n}} dA(z) = 0,$$

then $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is compact.

Proof. For every $\varepsilon > 0$ there exists $\delta \in (0, 1)$ such that as $r \in [\delta, 1)$ we have

$$\sup_{a \in \mathbb{B}_n} \int_{\Omega_r} F_{\varphi}(z) \frac{(1-|a|^2)^n}{|1-\langle z,a\rangle|^{2n}} dA(z) < \varepsilon.$$

This estimate and (30) show that μ_{φ} is a Carleson measure, and hence C_{φ} is bounded. Let us now show that it is compact.

Let (f_i) be a sequence in $\mathcal{B}(\mathbb{B}_m)$, $||f_i|| \leq 1$, which converges to zero uniformly on compact subsets of \mathbb{B}_m . We show that $f_i \circ \varphi \to 0$ in the norm of $BMOA(\mathbb{B}_n)$. Since $||f_i|| \leq 1$ and $|R(f_i \circ \varphi)(z)| \leq |\nabla f_i(\varphi(z))| |R\varphi(z)| \leq \frac{|R\varphi(z)|}{1-|\varphi(z)|^2}$, we have for all i,

$$\sup_{a\in\mathbb{B}_n}\int_{\Omega_{\delta}}|R(f_i\circ\varphi)(z)|^2(1-|z|^2)^2(1-|\varphi_a(z)|^2)^nd\lambda(z)<\varepsilon$$

Now $f_i \to 0$ on compact subsets of \mathbb{B}_m , so we get that there exists $i_0 \in \mathbb{N}$ such that $\sup_{z \in \mathbb{B}_n \setminus \Omega_\delta} |\nabla f_i(\varphi(z))|^2 < \varepsilon$ for all $i \ge i_0$. Thus, if $i \ge i_0$,

$$\begin{split} \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n \setminus \Omega_{\delta}} |R(f_i \circ \varphi)(z)|^2 (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \\ \leq \sup_{z \in \mathbb{B}_n \setminus \Omega_{\delta}} |\nabla f_i(\varphi(z))|^2 \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |R\varphi(z)|^2 (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \\ \leq \sup_{z \in \mathbb{B}_n \setminus \Omega_{\delta}} |\nabla f_i(\varphi(z))|^2 \sum_{j=1}^m \|\varphi_j\|_{BMOA(\mathbb{B}_n)}^2 < C \varepsilon, \end{split}$$

where in the last estimate we use that $\varphi_j = C_{\varphi}(z_j) \in BMOA(\mathbb{B}_n)$ because C_{φ} is bounded. Hence it follows that $|f_i(\varphi(0))| + ||f_i \circ \varphi||_{BMOA(\mathbb{B}_n)} \to 0.$

Lemma 6. Suppose that μ_{φ} is a Carleson measure. If $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is compact, then

(38)
$$\lim_{r \to 1} \sup_{\substack{f \in \mathcal{B}_0(\mathbb{B}_m), \ a \in \mathbb{B}_n}} \sup_{a \in \mathbb{B}_n} \int_{\Omega_r} |R(f \circ \varphi)(z)|^2 (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) = 0.$$

Proof. Since $C_{\varphi}(\{f \in \mathcal{B}_0(\mathbb{B}_m) : ||f|| \leq 1\})$ is relatively compact in $BMOA(\mathbb{B}_n)$, there are, for each $\varepsilon > 0$, functions $f_i \in \mathcal{B}_0(\mathbb{B}_m)$, $||f_i|| \leq 1$, i = 1, ...N, such that for each $f \in \mathcal{B}_0(\mathbb{B}_m)$, $||f|| \leq 1$, there exists $j \in \{1, ..., N\}$ with

$$\sup_{a\in\mathbb{B}_n}\int_{\mathbb{B}_n}|R(f\circ\varphi)(z)-R(f_j\circ\varphi)(z)|^2(1-|z|^2)^2(1-|\varphi_a(z)|^2)^nd\lambda(z)<\varepsilon.$$

For every $f_i \in \mathcal{B}_0(\mathbb{B}_m)$, i = 1, ..., N, there is $\delta_i \in (0, 1)$ and $\delta := \max_{1 \le i \le N} \delta_i$ such that as $r \in [\delta, 1)$ we have

 $|\nabla f_i(w)|(1-|w|^2) < \sqrt{\varepsilon}$

for all r < |w| < 1. Observe that $r < |\varphi(z)| < 1$ for $z \in \Omega_r$. Therefore, for given $a \in \mathbb{B}_n$ and $f \in \mathcal{B}_0(\mathbb{B}_m)$, $||f|| \le 1$, one obtains

$$\begin{split} &\int_{\Omega_r} |R(f \circ \varphi)(z)|^2 \, (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \\ &\leq 2 \int_{\Omega_r} |R(f \circ \varphi)(z) - R(f_j \circ \varphi)(z)|^2 \, (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \\ &+ 2 \int_{\Omega_r} |R(f_j \circ \varphi)(z)|^2 \, (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) \\ &\leq \varepsilon \Big(2 + 2 \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} F_{\varphi}(z) \frac{(1 - |a|^2)^n}{|1 - \langle z, a \rangle|^{2n}} dA(z) \Big). \end{split}$$

This proves the lemma. $\hfill \Box$

Theorem 5. Suppose that φ satisfies the non-tangentiality condition of Lemma 2. Then $C_{\varphi} : \mathcal{B}(\mathbb{B}_m) \to BMOA(\mathbb{B}_n)$ is compact if and only if

$$\lim_{r \to 1} |||d\mu_{\varphi,r}||| = 0.$$

Proof. The "if"-statement is Proposition 2.

Suppose conversely that $C_{\varphi} : \mathcal{B} \to BMOA$ is compact. Let $(\alpha_m)_{m \in \mathbb{N}} \in (\frac{1}{2}, 1)$ be such that $|\alpha_m| \to 1$. For every $j, k = 1, 2, \ldots, M, m \in \mathbb{N}$ and $t \in [0, 1]$ we define

$$g_{j,k,m,t}(z) := \sum_{\nu \in \mathbb{N}} r_{\nu}(t) (\alpha_m)^{p^{\nu M+j}-1} Q_{k,\nu M+j}(z), \quad z \in \mathbb{B}_m,$$

where r_{ν} is the ν th Rademacher function and $Q_{k,\nu M+j}(z) = \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle z, \zeta \rangle^{p^{\nu M+j}}$. It follows from Lemma 5 that every $g_{j,k,m,t} \in \mathcal{B}_0(\mathbb{B}_m)$ and that $\|g_{j,k,m,t}\|_{\mathcal{B}} \leq C_1$. Let $h \in (0,1)$ and $s \in (\frac{1}{2}, 1)$ be fixed as in Lemma 2.

Let $\varepsilon > 0$ be given. By Lemma 6 there exists $\delta \in (s, 1)$ such that as $r \in [\delta, 1)$ we have

$$\sup_{a \in \mathbb{B}_n} \int_{\Omega_r} |R(g_{j,k,m,t} \circ \varphi)(z)|^2 (1 - |z|^2)^2 (1 - |\varphi_a(z)|^2)^n d\lambda(z) < C_1^2 \varepsilon,$$

for all j, k, m, t.

Let $a \in \mathbb{B}_n$ be fixed. Integrating with respect to t, using Fubini's theorem and the orthogonality property of the Rademacher functions we obtain that

$$C_{1}^{2}\varepsilon \geq \int_{0}^{1} \int_{\Omega_{r}} |R(g_{j,k,m,t} \circ \varphi)(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z) dt$$

$$(39) \qquad = \int_{\Omega_{r}} \sum_{\nu \in \mathbb{N}} |\alpha_{m}|^{2p^{\nu M + j} - 2} |R(Q_{k,\nu M + j} \circ \varphi)(z)|^{2} (1 - |z|^{2})^{2} (1 - |\varphi_{a}(z)|^{2})^{n} d\lambda(z).$$

Let us bound $R(Q_{k,\nu M+j} \circ \varphi)$ from below as $z \in \Omega_r$. For all $z \in \Omega_r$ we have

$$R(Q_{k,\nu M+j} \circ \varphi)(z) = p^{\nu M+j} \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \varphi(z), \zeta \rangle^{p^{\nu M+j}-1} \langle R\varphi(z), \zeta \rangle$$
$$= p^{\nu M+j} |\varphi(z)|^{p^{\nu M+j}-1} |R\varphi(z)| \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \eta(z), \zeta \rangle^{p^{\nu M+j}-1} \langle \eta'(z), \zeta \rangle,$$

where we denoted $\eta := \varphi/|\varphi|$ and $\eta' := R\varphi/|R\varphi|$. As in the proof of Theorem 4 we have that

$$\sum_{j,k=1}^{M} \Big| \sum_{\zeta \in \Gamma_{j,\nu M+[k+j]}} \langle \eta(z), \zeta \rangle^{p^{\nu M+j}-1} \langle \eta'(z), \zeta \rangle \Big| \ge C(h)$$

for every $z \in \Omega_r$. For each $r \in [\delta, 1)$ and $z \in \Omega_r$, we thus obtain

$$\sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)| \ge C(h) p^{\nu M} |\varphi(z)|^{p^{\nu M}-1} 2^{-p^{M}} |R\varphi(z)|.$$

Since

$$\left(\sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)|\right)^{2} \le M^{2} \sum_{j,k=1}^{M} |R(Q_{k,\nu M+j} \circ \varphi)(z)|^{2}$$

it follows from (39) that

$$M^{4}C_{1}^{2}\varepsilon \geq 2 \ C^{2}(h)2^{-2p^{M}} \int_{\Omega_{r}} \sum_{\nu \in \mathbb{N}} p^{2\nu M} |\alpha_{m}\varphi(z)|^{2p^{\nu M}-2} |R\varphi(z)|^{2} (1-|z|^{2})^{2} (1-|\varphi_{a}(z)|^{2})^{n} d\lambda(z).$$

Using that

$$\sum_{\nu \in \mathbb{N}} p^{2\nu M} |\alpha_m \varphi(z)|^{2p^{\nu M} - 2} \ge \frac{C_2}{(1 - |\alpha_m \varphi(z)|^2)^2}$$

for some constant C_2 , we get that there is a constant C_3 such that

$$C_{3}\varepsilon \geq \int_{\Omega_{r}} \frac{|R\varphi(z)|^{2}}{(1-|\alpha_{m}\varphi(z)|^{2})^{2}} (1-|z|^{2})^{2} (1-|\varphi_{a}(z)|^{2})^{n} d\lambda(z).$$

By Fatou's lemma, we have for each $r \in [\delta, 1)$ that

$$\int_{\Omega_r} \frac{|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z)$$

$$\leq \liminf_{m \to \infty} \int_{\Omega_r} \frac{|R\varphi(z)|^2}{(1-|\alpha_m \varphi(z)|^2)^2} (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z) \leq C_3 \varepsilon.$$

Hence, as $a \in \mathbb{B}_n$ was picked arbitrary, we get

$$\sup_{a \in \mathbb{B}_n} \int_{\Omega_r} \frac{|R\varphi(z)|^2}{(1-|\varphi(z)|^2)^2} (1-|z|^2)^2 (1-|\varphi_a(z)|^2)^n d\lambda(z) \le C_3 \varepsilon.$$

This proves the statement. \Box

References

- [ASX] Aulaskari, R., Stegenga, A.D. and Xiao, J.: Some subclasses of BMO and their characterization in terms of Carleson measures Rocky Mountain J. Math. 26 (1996), 485-506.
- [CC] Choa, J.S. and Choe, B.R.: A Littlewood-Paley type identity and a characterization of BMOA Complex Variables 17 (1991), 15-23.
- [CR] Choe, B.R. and Rim, K.S.: Fractional derivatives of Bloch functions, growth rate, and interpolation Acta Math.Hungar. 72, 1–2 (1996), 67–86.
- [J1] Jevtic, M.: A note on the Carleson measure characterization BMOA functions on the unit ball Complex Variables Theory Appl. 17 (1992), 189-194.
- [J2] Jevtic, M.: On Carleson measure characterization of BMOA functions on the unit ball of \mathbb{C}^n Proc. Amer. Math. Soc. 123 (1995), 3371-3377.
- [LMT] Lindström, M., Makhmutov, S. and Taskinen, J.: The essential norm of a Bloch-to-Q_p composition operator Canad. Math. Bull. 46 (2004), 49–59.
- [MM] Madigan, K.M. and Matheson, A.: Compact composition operators on Bloch spaces Trans. Amer. Math. Soc. 347 (1995), 2679–2687.
- [MT] Makhmutov, S. and Tjani, M.: Composition operators on some Möbius invariant Banach spaces Bull. Austral. Math. Soc. 62 (2000), 1–19.
- [OYZ1] Ouyand, C., Yang, W. and Zhao, R.: Characterizations of Bergman spaces and Bloch space in the unit ball of \mathbb{C}^n Trans. Amer. Math. Soc. 347 (1995), 4301-4313.
- [OYZ2] Ouyand, C., Yang, W. and Zhao, R.: Möbius invariant Q_p spaces associated with the Green's function of unit ball of \mathbb{C}^n Pacific J. Math. 71 (1998), 69-99.
- [R] W. Rudin: Function Theory in of unit ball of \mathbb{C}^n Springer Verlag, New York (1980).
- [RU] Ramey, W. and Ullrich, D.: Bounded mean oscillation of Bloch pull-backs Math. Ann. 291 (1991), 591–606.

- [SL] Shi, J.H. and Luo, L.: Composition operators on the Bloch space of several complex variables Acta Math. Sinica 16 (2000), 85–98.
- [SZ] Smith, W. and Zhao, R.: Composition operators mapping into the Q_p spaces Analysis 17 (1997), 239–263.
- [T] Timoney, R.M.: Bloch functions in several complex variables I Bull. London Math. Soc. 12 (1980), 241–267.
- [U] Ullrich, D.: A Bloch function in the ball with no radial limits Bull. London Math. Soc. 20 (1988), 337–341.
- [Y] Yang, W. S.: Carleson type characterization of Q_p spaces Analysis 18 (1998), 345-349.
- [Z] Zhu, K.: Comparing holomorphic gradients in the unit ball of \mathbb{C}^n Preprint.

Authors's Addresses:

Departamento de Analisis Matematico, Universidad de Valencia, 46100 Burjasot, Valencia, Spain

e-mail: oscar.blasco@uv.es

Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland e-mail: mikael.lindstrom@abo.fi

Department of Mathematics, University of Helsinki, P.O.Box 68, FIN–00014 Helsinki, Finland

e-mail: Jari.Taskinen@helsinki.fi