On Taylor coefficients of entire functions integrable against exponential weights

OSCAR BLASCO AND ANTONIO GALBIS of Valencia

Abstract

In this paper we shall analyze the Taylor coefficients of entire functions integrable against $d\mu_p(z) = \frac{p}{2\pi} e^{-|z|^p} |z|^{p-2} d\sigma(z)$ where $d\sigma$ stands for the Lebesgue measure on the plane and $p \in \mathbb{N}$, as well as the Taylor coefficients of entire functions in some weighted sup-norm spaces.

In this paper we shall analyze the Taylor coefficients of entire functions satis fying some growth estimates. To be more precise, given $p \in \mathbb{N}$, we will deal with the Banach space $B_1(p)$ of entire functions belonging to $L_1(d\mu)$, where $d\mu(z) = \frac{p}{2\pi}e^{-|z|^p} |z|^{p-2} d\sigma(z)$ and $d\sigma$ stands for the Lebesgue measure on the plane, as well as with the Banach space $H(e^{-|z|^p})(\mathbb{C})$ of those entire functions f such that $\sup_{z \in \mathbb{C}} e^{-|z|^p} |f(z)| < \infty$. These spaces have been considered in several contexts by different authors. See [1, 6, 7, 8, 9, 10]. The general question we are going to discuss can be stated as follows: given a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in $X(:= B_1(p)$ or $H(e^{-|z|^p})(\mathbb{C}))$, what can be said on the Taylor coefficients (a_n) ?. Conversely, it is also interesting to ask how a function in X can be recognized by the behaviour of its Taylor coefficients. The paper is organized as follows. In the first section we present a method to describe the boundedness of operators from $B_1(p)$ into a general Banach space X by the fact that the X-valued analytic function constructed by the action of the operator on the reproducing kernel K_p belongs to the vector-valued space $H(e^{-|z|^{p}})(\mathbb{C};X)$. This will allow to identify the dual space of $B_{1}(p)$ with the weighted sup-norm space $H(e^{-|z|^{p}})(\mathbb{C})$. Then we will discuss a Hardy's type inequality for Taylor coefficients of functions in $B_1(p)$. In the second section we give a complete characterization of the Taylor coefficients for lacunary entire functions in both spaces $B_1(p)$ and $H(e^{-|z|^p})(\mathbb{C})$. As an application we obtain a sufficient condition on the Taylor coefficients of a function f in order to ensure that it belongs to $H(e^{-|z|^p})(\mathbb{C})$. In section 3 we find conditions on n_k in order to get the unconditional convergence of $\sum a_k z^{n_k}$ to be equivalent to the absolute convergence of the series.

Let us denote by $H(e^{-|z|^p})_0(\mathbb{C})$ the closed subspace of $H(e^{-|z|^p})(\mathbb{C})$ consisting of those functions f such that $e^{-|z|^p}f(z)$ vanishes at infinity. Since

the polynomials are dense in $B_1(p)$ and in $H(e^{-|z|^p})_0(\mathbb{C})$ it is natural to ask whether the Taylor series of a function in those spaces necessarily converges in norm. Such a question was raised by D.J.H. Garling and P. Wojtaszczyk [7] for the space $B_1(2)$, corresponding to those entire functions which are integrable with respect to a gaussian measure, and it was recently solved in the negative by W. Lusky [10] for all the spaces $B_1(p)$ and $H(e^{-|z|^p})_0(\mathbb{C})$. Nevertheless our results in Section 2 show that when restricted to a lacunary sequence n_k , i.e. $\frac{n_{k+1}}{n_k} \ge \lambda > 1$ for all $k \in \mathbb{N}$, we have that (z^{n_k}) is a basic subsequence in $B_1(p)$. The final part of the paper is devoted to give a necessary and also two sufficient conditions in order to ensure the unconditional convergence of a given Taylor series in $H(e^{-|z|^p})_0(\mathbb{C})$.

1 Duality

In this section we present the Banach spaces $B_1(p)$ and $H(e^{-|z|^p})(\mathbb{C})$ and show that $(B_1(p))^* = H(e^{-|z|^p})(\mathbb{C})$. This duality is applied to discuss the sharpness of a Hardy's type inequality for functions in $B_1(p)$. Moreover, as a previous step to get the duality some necessary and sufficient conditions for a function to belong to $H(e^{-|z|^p})(\mathbb{C})$ are given.

Definition 1.1 Given a continuous and radial weight v on \mathbb{C} and a complex Banach space $(X, \|.\|)$ we define

(b) $H(v)_0(\mathbb{C}, X)$ is the subspace of $H(v)(\mathbb{C}, X)$ consisting of those functions F such that Fv vanishes at infinity.

If X is the field of complex numbers we drop it from the notation and write $H(v)(\mathbb{C})$ or $H(v)_0(\mathbb{C})$. We are interested in weights $v(z) = \exp(-|z|^p), p \in \mathbb{N}$.

Definition 1.2 Given a natural number $p \in \mathbb{N}$ we denote by $B_1(p)$ the space of entire functions f such that

$$|| f || := \frac{p}{2\pi} \int_{\mathbb{C}} |f(z)| e^{-|z|^p} |z|^{p-2} d\sigma(z) < \infty.$$

We write $M_{\infty}(f,r) := \max\{|f(z)|:|z|=r\}$ and $M_1(f,r) := \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})| dt$. Then, for every $f \in B_1(p)$, we have $\|f\| = \int_0^\infty M_1(f,r) e^{-r^p} pr^{p-1} dr$.

Lemma 1.1 (a) Let v be a continuous and radial weight on \mathbb{C} such that the polynomials are contained in $H(v)_0(\mathbb{C})$. Then the polynomials are dense in $H(v)_0(\mathbb{C})$.

(b) For every $p \in \mathbb{N}$, the polynomials are dense in $B_1(p)$.

Proof: A proof of part (a) can be found in [3, 1.5(a)]. To prove (b) proceed as in [7, Proposition 5]. \blacksquare

Let us first remark that $\varphi_p(r) = r^n e^{-r^p}$ is an increasing function in $[0, (\frac{n}{p})^{\frac{1}{p}}]$ and decreasing in $[(\frac{n}{p})^{\frac{1}{p}}, +\infty[$. What shows that $u_n(z) = z^n$ satisfies $|| u_n ||_{H(e^{-|z|^p})(\mathbb{C})} = (\frac{n}{p})^{\frac{n}{p}} e^{-\frac{n}{p}}$. This, using the trivial estimate $| b_n | R^n \leq M_{\infty}(g, R)$, also allows to say that if $g(z) = \sum b_n z^n \in H(e^{-|z|^p})(\mathbb{C})$ then

(1.1)
$$\sup_{n \in \mathbb{N}} \frac{|b_n| \Gamma(\frac{n}{p}+1)}{\sqrt{n+1}} \le C \|g\|_{H(e^{-|z|^p})}.$$

Let us start by mentioning a simple condition on (b_n) which implies that $g \in H(e^{-|z|^p})(\mathbb{C}).$

Lemma 1.2 (a) Let
$$p \in \mathbb{N}$$
 and let (b_n) be a sequence such that $\sup_{n \in \mathbb{N}} | b_n \Gamma(\frac{n}{p}+1) < \infty$. Then $g(z) = \sum b_n z^n \in H(e^{-|z|^p})(\mathbb{C})$.
(b) If $\lim_{n \to \infty} | b_n | \Gamma(\frac{n}{p}+1) = 0$ then $g(z) = \sum b_n z^n \in H(e^{-|z|^p})_0(\mathbb{C})$.

Proof: To see (a) it suffices to show that

$$\sum_{n=0}^{\infty} \frac{r^n}{\Gamma(\frac{n}{p}+1)} \le Ce^{r^p}$$

for every r > 0. For each $n \in \mathbb{N}$ write n = pk + j, $k \in \mathbb{N}$ and $j = 0, 1, \dots p - 1$, and decompose the sum as follows

$$\sum_{n=0}^{\infty} \frac{r^n}{\Gamma(\frac{n}{p}+1)} = \sum_{j=0}^{p-1} \varphi_j(r^p)$$

where

$$\varphi_j(t) = \sum_{k=0}^{\infty} \frac{t^{k+\frac{j}{p}}}{\Gamma(k+\frac{j}{p}+1)}$$

Since $\varphi'_j(t) = \frac{j}{p\Gamma(\frac{j}{p}+1)}t^{\frac{j}{p}-1} + \varphi_j(t)$ we have

$$\varphi_j(t) = e^t(\varphi_j(0) + \frac{j}{p\Gamma(\frac{j}{p}+1)} \int_0^t e^{-s} s^{\frac{j}{p}-1} ds) \le e^t(\varphi_j(0) + 1).$$

Adding the values for $j = 0, 1, \dots, p-1$ we get

$$\sum_{n=0}^{\infty} \frac{r^n}{\Gamma(\frac{n}{p}+1)} = \sum_{j=0}^{p-1} \varphi_j(r^p) \le (1+p)e^{r^p}.$$

(b) Since $H(e^{-|z|^p})_0(\mathbb{C})$ is a closed subspace of $H(e^{-|z|^p})(\mathbb{C})$ it suffices to show that $g = \lim_{N \to \infty} \sum_{k=0}^{N} b_k u_k$ in $H(e^{-|z|^p})(\mathbb{C})$. But this follows from

$$\begin{split} (\sum_{k=N+1}^{\infty} |b_k| r^k) e^{-r^p} &\leq \big(\sup_{k>N} |b_k| \Gamma(\frac{k}{p}+1) \big) \big(\sum_{k=N+1}^{\infty} \frac{r^k}{\Gamma(\frac{k}{p}+1)} \big) e^{-r^p} \\ &\leq C \big(\sup_{k>N} |b_k| \Gamma(\frac{k}{p}+1) \big). \bullet \end{split}$$

Let us now find some necessary condition for a function to belong to $H(e^{-|z|^p})(\mathbb{C})$.

Lemma 1.3 Let (α_n) be a sequence of positive real numbers. If $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ belongs to $H(e^{-|z|^p})(\mathbb{C})$ then

$$\sup_{n\in\mathbb{N}}\frac{1}{m}\sum_{n=0}^m\alpha_n\Gamma(\frac{n}{p}+1)<\infty.$$

Proof: Since $\alpha_n \geq 0$ then we are assuming that $\sum_{n=0}^{\infty} \alpha_n r^{\frac{n}{p}} \leq Ce^r$ for every r > 0. Hence, multiplying by e^{-ar} (a > 1) and integrating over $(0, \infty)$ we get

$$\sum_{n=0}^{\infty} \frac{\alpha_n}{a^{\frac{n}{p}+1}} \Gamma(\frac{n}{p}+1) \le \frac{C}{a-1}$$

For $m \in \mathbb{N}$ take $a = \frac{m+1}{m}$ and then

$$(1 - \frac{1}{m+1})^{\frac{m}{p}+1} \sum_{n=0}^{m} \alpha_n \Gamma(\frac{n}{p}+1) \le \sum_{n=0}^{\infty} \alpha_n \Gamma(\frac{n}{p}+1)(1 - \frac{1}{m+1})^{\frac{n}{p}+1} \le Cm.$$

Using that $\lim_{m\to\infty}(1-\frac{1}{m+1})^{\frac{m}{p}+1}=e^{-\frac{1}{p}}$ we finish the proof. \blacksquare

In order to get the duality between $B_1(p)$ and $H(e^{-|z|^p})(\mathbb{C})$ let us first give a natural pairing on these spaces. If $f \in B_1(p)$ and $g \in H(e^{-|z|^p})(\mathbb{C})$ we can define

$$\langle f,g \rangle = \frac{p}{2\pi} \int_{\mathbb{C}} f(\overline{\omega}) g(\omega) e^{-2|\omega|^p} \mid \omega \mid^{p-2} d\sigma(\omega)$$

Clearly $|\langle f, g \rangle| \leq || f ||_{B_1(p)} || g ||_{H(e^{-|z|^p})(\mathbb{C})}$. Observe that $\langle u_n, g \rangle = b_n \frac{\Gamma(\frac{2n}{p}+1)}{2^{\frac{2n}{p}+1}}$ for $g(z) = \sum b_n z^n$.

This leads to the consideration of the following function $K_p(z) = \sum_{n=0}^{\infty} \frac{2^{\frac{2n}{p}+1}}{\Gamma(\frac{2n}{p}+1)} z^n$.

Let us denote by $K_p(z,\omega) = K_p(z\overline{\omega})$. Then

$$g(z) = \frac{p}{2\pi} \int_{\mathbb{C}} K_p(z,\omega) g(\omega) e^{-2|\omega|^p} \mid \omega \mid^{p-2} d\sigma(\omega)$$

for every polynomial g.

We also write

$$K_p(z) = \sum_{n=0}^{\infty} \frac{2^{\frac{2n}{p}+1}}{\Gamma(\frac{2n}{p}+1)} z^n u_n$$

as a function taking values in $B_1(p)$ (note that this series is absolutely convergent in $B_1(p)$ because $|| u_n ||_{B_1(p)} = \Gamma(\frac{n}{p}+1)$ and $\frac{2^{\frac{2n}{p}+1}|z|^n}{\Gamma(\frac{2n}{p}+1)}\Gamma(\frac{n}{p}+1) \simeq \frac{|z|^n\sqrt{n}}{\Gamma(\frac{n}{p}+1)}$.

In order to get estimates on the norm $|| K_p(z) ||_{B_1(p)}$ as |z| goes to ∞ we first need the following Lemma.

Lemma 1.4 Let $p \in \mathbb{N}$ and let $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\frac{2n}{p}+1)}$. There exists $C_p > 0$ such that

$$M_1(f,r) \le C_p \sum_{n=0}^{\infty} \frac{r^n}{\Gamma(\frac{2n}{p}+1)\sqrt{n+1}}$$

for all r > 0.

Proof: As in Lemma 1.2 let us write n = kp + j for $k \in \mathbb{N}$ and $j = 0, 1, \dots p - 1$. Then $f(z) = \sum_{j=0}^{p-1} z^j f_j(z)$ where $f_j(z) = \sum_{k=0}^{\infty} \frac{z^{pk}}{\Gamma(2k + \frac{2j}{p} + 1)}$. Now, let us rewrite f_j as follows

$$f_j(z) = \sum_{k=0}^{\infty} \frac{z^{pk}}{\Gamma(2k+1)\Gamma(\frac{2j}{p})} B(2k+1,\frac{2j}{p}) = \frac{1}{\Gamma(\frac{2j}{p})} \sum_{k=0}^{\infty} \frac{z^{pk}}{\Gamma(2k+1)} \int_0^1 x^{2k} (1-x)^{\frac{2j}{p}-1} dx = \frac{1}{\Gamma(\frac{2j}{p})} \int_0^1 (\sum_{k=0}^{\infty} \frac{(z^p x^2)^k}{(2k)!}) (1-x)^{\frac{2j}{p}-1} dx.$$

Therefore

$$\begin{split} M_{1}(f_{j},r) &\leq \frac{1}{\Gamma(\frac{2j}{p})} \int_{0}^{1} (\int_{0}^{2\pi} |\cosh(xr^{\frac{p}{2}}e^{i\frac{p}{2}\theta})| \frac{d\theta}{2\pi})(1-x)^{\frac{2j}{p}-1} dx \\ &\leq \frac{1}{\Gamma(\frac{2j}{p})} \int_{0}^{1} (\int_{0}^{2\pi} \cosh(xr^{\frac{p}{2}}\cos\frac{p\theta}{2}\frac{d\theta}{2\pi})(1-x)^{\frac{2j}{p}-1} dx \\ &\leq \frac{1}{p\Gamma(\frac{2j}{p})} \sum_{k=0}^{\infty} \frac{r^{pk}}{(2k)!} (\int_{0}^{1} x^{2k}(1-x)^{\frac{2j}{p}-1} dx) \int_{-\pi p}^{\pi p} (\cos t)^{2k} \frac{dt}{2\pi} \end{split}$$

Using that $\int_{-\pi}^{\pi} (\cos t)^{2n} \frac{dt}{2\pi} = 2^{-n} \begin{pmatrix} 2n \\ n \end{pmatrix}$ we have

$$M_1(f_j, r) \le \sum_{k=0}^{\infty} \frac{r^{pk}}{(k!)^2 2^{2k}} \frac{B(2k, \frac{2j}{p})}{\Gamma(\frac{2j}{p})} = \sum_{k=0}^{\infty} \frac{r^{pk} \Gamma(2k+1)}{(k!)^2 2^{2k} \Gamma(2k+\frac{2j}{p}+1)}$$

Adding all the values of j we get

$$M_1(f,r) \le \sum_{j=0}^{p-1} r^j M_1(f_j,r) \le C_p \sum_{n=0}^{\infty} \frac{r^n}{\Gamma(\frac{2n}{p}+1)\sqrt{[\frac{n}{p}]+1}}.$$

Lemma 1.5 Let $p \in \mathbb{N}$ and $K_p(z) = \sum_{n=0}^{\infty} \frac{2^{\frac{2n}{p}+1}}{\Gamma(\frac{2n}{p}+1)} z^n u_n$. Then $K_p \in H(e^{-|z|^p})(\mathbb{C}, B_1(p))$.

Proof: Using Lemma 1.4 we have

$$M_1(K_p(z), r) \le C_p \sum_{n=0}^{\infty} \frac{2^{\frac{2n}{p}+1} |z|^n r^n}{\Gamma(\frac{2n}{p}+1)\sqrt{n+1}}.$$

Now, integrating over $(0, \infty)$ with the measure $e^{-r^p} pr^{p-1} dr$ and applying Lemma 1.2 we get

$$\|K_p(z)\|_{B_1(p)} \le C \sum_{n=0}^{\infty} \frac{2^{\frac{2n}{p}+1} |z|^n}{\Gamma(\frac{2n}{p}+1)\sqrt{n+1}} \Gamma(\frac{n}{p}+1) \le C \sum_{n=0}^{\infty} \frac{|z|^n}{\Gamma(\frac{n}{p}+1)} \le C e^{|z|^p}.$$

Theorem 1.1 Let X be a Banach space, $p \in \mathbb{N}$. Let T be a bounded operator from $B_1(p)$ into X. Then $F(z) = T(K_p(z)) \in H(e^{-|z|^p})(\mathbb{C}, X)$ and $|| F || \le C_p || T ||$.

Conversely, given $F \in H(e^{-|z|^p})(\mathbb{C}, X)$, then

$$T(f) = \int_{\mathbb{C}} F(z) f(\overline{z}) e^{-2|z|^{p}} |z|^{p-2} d\sigma(z)$$

defines a bounded operator from $B_1(p)$ into X and $|| T || \le || F ||$. Moreover, $T(K_p(z)) = \frac{2\pi}{p}F(z)$.

Proof: The first statement follows from the boundedness of T and Lemma 1.5. The converse follows since $F(z)f(\overline{z})$ is a X-valued continuous function and $|| F(z) || |f(\overline{z})| \leq || F || |f(\overline{z})| e^{|z|^p}$. Hence the Bochner integral exists and

$$|| T(f) || \leq \frac{2\pi}{p} || F ||_{H(e^{-|z|^p},X)} || f ||_{B_1(p)}.$$

Corollary 1.1 Let $p \in \mathbb{N}$. Then $(B_1(p))^* = H(e^{-|z|^p})(\mathbb{C})$ with equivalent norms under the pairing $\langle . \rangle$.

We also give a direct proof of the other duality.

Theorem 1.2 Let $p \in \mathbb{N}$. Then $(H(e^{-|z|^p})_0(\mathbb{C}))^* = B_1(p)$ with equivalent norms under the pairing $\langle . \rangle$.

Proof: Define $T: B_1(p) \to (H(e^{-|z|^p})_0(\mathbb{C}))^*$ given by

$$< T(f), g >= \frac{p}{2\pi} \int_{\mathbb{C}} g(z) f(\overline{z}) e^{-2|z|^p} \mid z \mid^{p-2} d\sigma(z)$$

Clearly *T* is well defined and bounded with $|| T || \leq 1$. Since $\langle T(u_n), g \rangle = \frac{b_n}{2^{\frac{2n}{p}+1}} \Gamma(\frac{2n}{p}+1)$ for $g(z) = \sum b_n z^n$ then *T* is injective. To see that *T* is surjective let us take $\phi \in (H(e^{-|z|^p})_0(\mathbb{C}))^*$ and, by Hahn-Banach, find a bounded measure ν such that $\phi(g) = \int g(z)e^{-|z|^p}d\nu(z)$ for any $g \in H(e^{-|z|^p})_0(\mathbb{C})$. Define now $f(z) = \int_{\mathbb{C}} K_p(\omega, \overline{z})e^{-|\omega|^p}d\nu(\omega)$. We shall see that $f \in B_1(p)$. Indeed,

$$\int_{\mathbb{C}} |f(z)| e^{-|z|^{p}} |z|^{p-2} d\sigma(z) \leq \int_{\mathbb{C}} \left(\int_{\mathbb{C}} |K_{p}(\omega,\overline{z})| e^{-|\omega|^{p}} d\nu(\omega) \right) e^{-|z|^{p}} |z|^{p-2} d\sigma(z)$$

$$= \int_{\mathbb{C}} \left(\int_{\mathbb{C}} |K_{p}(\omega,\overline{z})| e^{-|z|^{p}} |z|^{p-2} d\sigma(z) \right) e^{-|\omega|^{p}} d\nu(\omega)$$

Now, to get $|| f ||_{B_1(p)} \leq C || \nu ||$ we apply Lemma 1.5. On the other hand, for any polynomial g we have

$$\begin{array}{ll} < T(f), g > & = \frac{p}{2\pi} \int_{\mathbb{C}} g(z) f(\overline{z}) e^{-2|z|^p} \mid z \mid^{p-2} d\sigma(z) \\ & = \frac{p}{2\pi} \int_{\mathbb{C}} \left(\int_{\mathbb{C}} K_p(\omega, z) e^{-|\omega|^p} d\nu(\omega) \right) g(z) e^{-2|z|^p} \mid z \mid^{p-2} d\sigma(z) \\ & = \int g(\omega) e^{-|\omega|^p} d\nu(\omega) = \phi(g). \end{array}$$

Using, finally, that the polynomials are dense in $H(e^{-|z|^p})_0(\mathbb{C})$ the proof is complete. \blacksquare

Lusky [10] showed that, for every p > 0 there are functions $f \in H(e^{-|z|^p})_0(\mathbb{C})$ whose Taylor series do not converge in norm. The duality results in this section have been used in [10] to prove that the same conclusion holds for the spaces $B_1(p), p \in \mathbb{N}$. The vector-valued duality (theorem 1.1) will be applied in the last section to find a necessary condition for the unconditional convergence of a given Taylor series in $H(e^{-|z|^p})_0(\mathbb{C})$.

To finish this section we present a Hardy's type inequality for functions in $B_1(p)$.

Let us start by noticing that, using the monotonicity of $M_1(f,r)$, one has

$$|a_n|r^{\frac{n}{p}}e^{-r} \le \int_r^\infty M_1(f,s^{\frac{1}{p}})e^{-s}ds.$$

Hence taking $r = \frac{n}{p}$ we have that if $f \in B_1(p)$ then $\lim_{n \to \infty} \frac{|a_n|\Gamma(\frac{n}{p}+1)}{\sqrt{n}} = 0.$

On the other hand, applying Hardy inequality for Hardy spaces (see [5]) we have $\sum_{n=1}^{\infty} \sum_{j=1}^{n} \sum_{j=1}^$

$$\sum_{n=0}^{\infty} \frac{\mid a_n \mid R^n}{n+1} \le CM_1(f, R)$$

for $f(z) = \sum a_n z^n$. Therefore

$$\sum_{n=0}^{\infty} \frac{|a_n|}{n+1} \Gamma(\frac{n}{p}+1) \le C \parallel f \parallel_{B_1(p)}.$$

This is far to being sharp as the following theorem shows.

Theorem 1.3 Let $p \in \mathbb{N}$.

(a) There exists a constant $C_p > 0$ such that

$$\sum_{n=0}^{\infty} \frac{|a_n|}{\sqrt{n+1}} \Gamma(\frac{n}{p}+1) \le C_p \| f \|_{B_1(p)}$$

where $f(z) = \sum a_n z^n$.

(b) Let (α_n) be a sequence of non negative real numbers such that there exists a constant $C_p > 0$ such that for $f(z) = \sum a_n z^n$

$$\sum_{n=0}^{\infty} \mid a_n \mid \Gamma(\frac{n}{p}+1)\alpha_n \le C_p \parallel f \parallel_{B_1(p)}$$

Then

$$\sup_{m \in \mathbb{N}} \frac{1}{m} \sum_{n=1}^{m} \alpha_n \sqrt{n} < \infty.$$

Proof: (a) Let $f(z) = \sum a_n z^n$, then

$$\begin{split} \sum_{n=0}^{\infty} \frac{|a_n|}{\sqrt{n+1}} \Gamma(\frac{n}{p}+1) &\leq C \sum_{n=0}^{\infty} |a_n| (\frac{n}{p})^{\frac{n}{p}} e^{-\frac{n}{p}} \\ &\leq C \sum_{n=0}^{\infty} \int_{\frac{n}{p}}^{\frac{n+1}{p}} |a_n| s^{\frac{n}{p}} e^{-s} ds \\ &\leq C \sum_{n=0}^{\infty} \int_{\frac{n}{p}}^{\frac{n+1}{p}} M_1(f, s^{\frac{1}{p}}) e^{-s} ds = C \parallel f \parallel_{B_1(p)} \end{split}$$

(b) From duality we have that $g(z) = \sum_{n=0}^{\infty} \alpha_n \frac{2^{\frac{2n}{p}+1}\Gamma(\frac{n}{p}+1)}{\Gamma(\frac{2n}{p}+1)} z^n \in H(e^{-|z|^p})(\mathbb{C}).$ Now the conclusion follows from lemma 1.3 and the Stirling's formula.

.

Remarks:

(i) Note that, from duality, the inequality

$$\sum_{n=0}^{\infty} \frac{|a_n|}{\sqrt{n+1}} \Gamma(\frac{n}{p}+1) \le C_p \parallel f \parallel_{B_1(p)}$$

is equivalent to Lemma 1.2.

(ii) Note that part (b) means that the previous inequality is sharp in the following sense: For $\alpha_n = \frac{1}{n^{\beta}}$ the best exponent is $\beta = \frac{1}{2}$.

2 Lacunary entire functions. Applications.

We now get some inequalities holding for lacunary entire functions in $B_1(p)$ and in $H(e^{-|z|^p})(\mathbb{C})$. As an application we will present a sufficient condition on the Taylor coefficients of an entire function f in order to ensure that it belongs to $H(e^{-|z|^p})_{(0)}(\mathbb{C})$.

First we need the following lemmas. The second one will be also applied in the next section.

Lemma 2.1 There exist C_1 , $C_2 > 0$ such that, for every p > 0,

$$C_1\Gamma(p+1) \le \int_p^{p+\sqrt{p}} r^p e^{-r} dr \le C_2\Gamma(p+1).$$

Proof: Recall that $\varphi_p(r) = r^p e^{-r}$ increases in (0, p) and decreases in (p, ∞) . Hence

$$(p+\sqrt{p})^p e^{-(p+\sqrt{p})}\sqrt{p} \le \int_{p+\sqrt{p}}^p r^p e^{-r} dr \le p^p e^{-p}\sqrt{p}.$$

Now the result follows from Stirling's formula and the fact

$$\lim_{p \to \infty} \frac{(p + \sqrt{p})^p e^{-(p + \sqrt{p})} \sqrt{p}}{\Gamma(p+1)} = \sqrt{\frac{1}{2\pi e}}. \quad \bullet$$

Lemma 2.2 Let $0 < q \leq 1$, $\alpha_k \geq 0$ and $\beta_k > 0$. Assume that there exists $m \in \mathbb{N}$ such that

$$\lim_{k \to \infty} \inf \frac{\beta_{k+m} - \beta_k}{\sqrt{\beta_k}} > \frac{1}{\sqrt{q}}$$

Then there exists 0 < C < 1 such that

$$C\sum_{k=0}^{\infty} \alpha_k^q \Gamma(\beta_k q + 1) \le \int_0^{\infty} (\sum_{k=0}^{\infty} \alpha_k s^{\beta_k})^q e^{-s} ds \le \sum_{k=0}^{\infty} \alpha_k^q \Gamma(\beta_k q + 1).$$

Proof: Since $0 < q \le 1$ we have

$$\int_0^\infty (\sum_{k=0}^\infty \alpha_k s^{\beta_k})^q e^{-s} ds \le \int_0^\infty (\sum_{k=0}^\infty \alpha_k^q s^{\beta_k q}) e^{-s} ds = \sum_{k=0}^\infty \alpha_k^q \Gamma(\beta_k q + 1).$$

On the other hand, the assumption implies that there exists k_0 such that $q\beta_{k+m} \ge q\beta_k + \sqrt{q\beta_k}$ for $k \ge k_0$. Now, using Lemma 4.2,

$$\sum_{k=k_0}^{\infty} \alpha_k^q \Gamma(\beta_k q + 1) \leq C \sum_{k=k_0}^{\infty} \alpha_k^q \int_{q\beta_k}^{q\beta_k + \sqrt{q\beta_k}} r^{q\beta_k} e^{-r} dr$$
$$\leq C \sum_{k=k_0}^{\infty} \int_{q\beta_k}^{q\beta_{k+m}} (\sum_{l=0}^{\infty} \alpha_l r^{\beta_l})^q e^{-r} dr$$
$$= C \sum_{k=k_0}^{\infty} \sum_{j=k}^{k+m-1} \int_{q\beta_j}^{q\beta_{j+1}} (\sum_{l=0}^{\infty} \alpha_l r^{\beta_l})^q e^{-r} dr$$
$$\leq Cm \sum_{j=k_0}^{\infty} \int_{q\beta_j}^{q\beta_{j+1}} (\sum_{l=0}^{\infty} \alpha_l r^{\beta_l})^q e^{-r} dr$$
$$= Cm \int_{q\beta_{k_0}}^{\infty} (\sum_{l=0}^{\infty} \alpha_l r^{\beta_l})^q e^{-r} dr.$$

Since

$$\sum_{k=0}^{k_0} \alpha_k^q \Gamma(\beta_k q + 1) \le (k_0 + 1) \int_0^\infty (\sum_{k=0}^\infty \alpha_k s^{\beta_k})^q e^{-s} ds$$

we have the desired result. \blacksquare

Similar conditions to the ones imposed in the above lemma appeared in [4]. The next theorem should be compared with [4, theorem 8]. Let us denote by $V_n = \frac{u_n}{\Gamma(\frac{n}{p}+1)}$ the normalized sequence in $B_1(p)$.

Theorem 2.1 Let (n_k) be a sequence such that there exists $\lambda > 1$ for which $\frac{n_{k+1}}{n_k} \ge \lambda > 1$. Then there exist $0 < A_p, B_p < \infty$ (depending only on λ, p) such that

(a)
$$A_p \sum_{k=0}^{\infty} |a_k| \le \|\sum_{k=0}^{\infty} a_k V_{n_k}\|_{B_1(p)} \le \sum_{k=0}^{\infty} |a_k|,$$

(b)
$$\sum_{k=0}^{\infty} |a_{n_k}| \Gamma(\frac{n_k}{p} + 1) \le B_p \| \sum_{n=0}^{\infty} a_n z^n \|_{B_1(p)}$$

Proof: To prove (a) recall that, from Kintchine's inequalities for lacunary systems (see [13] or [11]) we have

$$M_1(g,r) \simeq (\sum_{k=0}^{\infty} |b_k|^2 r^{2n_k})^{\frac{1}{2}}$$

if $g(z) = \sum b_k z^{n_k}$. Then (a) follows from Lemma 2.2 applied to $\beta_k = \frac{2n_k}{p}$, $q = \frac{1}{2}$ and m = 1, because $\beta_{k+1} - \beta_k \ge (\lambda - 1)\beta_k$ gives $\lim_{k \to \infty} \frac{\beta_{k+1} - \beta_k}{\sqrt{\beta_k}} = \infty$. To get (b) use Paley's inequality, instead to Kintchine's (see (5, page 104))

to have

$$\left(\sum_{k=0}^{\infty} |a_{n_k}|^2 r^{2n_k}\right)^{\frac{1}{2}} \le CM_1(f,r)$$

for $f(z) = \sum a_n z^n$, and apply a similar argument.

Remark 2.1 It is well-known that $B_1(p)$ is isomorphic to l^1 (see [7] for the case $B_1(2)$ and [6] together with the duality provided by Theorem 1.2 for the general case). Note that Theorem 2.1 provides a projection into a subspace isomorphic to l^1 .

Let us denote be $W_n = (\frac{n}{p})^{-\frac{n}{p}} e^{\frac{n}{p}} u_n$ the normalized sequence in $H(e^{-|z|^p})(\mathbb{C})$.

Theorem 2.2 Let (n_k) be a sequence such that there exists $\lambda > 1$ for which $\frac{n_{k+1}}{n_k} \ge \lambda > 1.$ (a) There exist $0 < C_p < \infty$ (depending only on λ, p) such that

$$\sup_{k \in \mathbb{N}} |a_k| \leq \| \sum_{k=0}^{\infty} a_k W_{n_k} \|_{H(e^{-|z|^p})} \leq C_p \sup_{k \in \mathbb{N}} |a_k|.$$

(b) $\sum_{k=0}^{\infty} a_k W_{n_k} \in H(e^{-|z|^p})_0(\mathbb{C})$ if and only if $(a_k) \in c_0.$

Proof:

(a) The first estimate follows from (1.1).

To see the second one, use duality combined with $\frac{\Gamma(\frac{2n}{p}+1)}{\Gamma(\frac{n}{p}+1)2^{\frac{2n}{p}+1}} \approx \frac{\Gamma(\frac{n}{p}+1)}{\sqrt{n}}$

and (b) in Theorem 2.1.

If $f(z) = \sum_{n=0}^{\infty} b_n z^n$ then

$$| < f, \sum_{k=0}^{N} a_{k} W_{n_{k}} > | = | \sum_{k=0}^{N} a_{k} b_{n_{k}} \frac{\Gamma(\frac{2n_{k}}{p}+1)}{2^{\frac{2n_{k}}{p}+1}} (\frac{n_{k}}{p})^{-\frac{n_{k}}{p}} e^{\frac{n_{k}}{p}} |$$

$$\leq C \sum_{k=0}^{N} |a_{k}| |b_{n_{k}}| \Gamma(\frac{n_{k}}{p}+1)$$

$$\leq C(\sup_{k \in \mathbb{N}} |a_{k}|) ||f||_{B_{1}(p)}.$$

It follows that

$$|\sum_{k=0}^{N} a_k W_{n_k}(z)| e^{-|z|^p} \le C(\sup_{k \in \mathbb{N}} |a_k|)$$

for every $N \in \mathbb{N}$ and $z \in \mathbb{C}$. Consequently

$$\sup_{z\in\mathbb{C}}|\sum_{k=0}^{\infty}a_kW_{n_k}(z)|e^{-|z|^p}\leq C(\sup_{k\in\mathbb{N}}|a_k|).$$

(b) If $\lim_{k \to \infty} |a_k| = 0$ then, arguing as in (a) we get

$$||\sum_{k=N}^{\infty} a_k W_{n_k}||_{H(e^{-|z|^p})} \le C(\sup_{k\ge N} |a_k|).$$

Hence $g = \lim_{N \to \infty} \sum_{k=0}^{N} a_k W_{n_k} \in H(e^{-|z|^p})_0(\mathbb{C}).$

 $\substack{k=0\\ \text{Conversely, if }g\in H(e^{-|z|^p})_0(\mathbb{C}) \text{ then }g \text{ is limit of the sequence of Cèsaro}\\ \text{means of its Taylor series (see [3]). Hence, given }\varepsilon>0, \text{ there exists a polynomial}\\ h(z)=\sum_{k=0}^N c_k W_{n_k} \text{ with }||g-h||_{H(e^{-|z|^p})}\leq \varepsilon. \text{ Applying }(a) \text{ to the function}\\ g-h \text{ we get } \sup_{k>N}|a_k|\leq \varepsilon. \blacksquare$

Theorem 2.3 Let $I_k = [2^k, 2^{k+1}) \cap \mathbb{N}$.

(a) If
$$\sup_{k \in \mathbb{N}} \sum_{n \in I_k} \frac{|a_n|\Gamma(\frac{n}{p}+1)}{\sqrt{n}} < \infty$$
 then $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(e^{-|z|^p})(\mathbb{C}).$
(b) If $\lim_{k \to \infty} \sum_{n \in I_k} \frac{|a_n|\Gamma(\frac{n}{p}+1)}{\sqrt{n}} = 0$ then $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(e^{-|z|^p})_0(\mathbb{C}).$

Proof:

(a) Take $g(z) = \sum_{n=0}^{\infty} b_n z^n \in B_1(p)$. Then

$$\begin{aligned} |\sum_{n=1}^{\infty} a_n b_n \frac{\Gamma(\frac{2n}{p}+1)}{2^{\frac{2n}{p}+1}}| &\leq \sum_{k=0}^{\infty} \sum_{n \in I_{2k}} |b_n| \Gamma(\frac{n}{p}+1) \frac{|a_n| \Gamma(\frac{2n}{p}+1)}{\Gamma(\frac{n}{p}+1)2^{\frac{2n}{p}+1}} \\ &+ \sum_{k=0}^{\infty} \sum_{n \in I_{2k+1}} |b_n| \Gamma(\frac{n}{p}+1) \frac{|a_n| \Gamma(\frac{2n}{p}+1)}{\Gamma(\frac{n}{p}+1)2^{\frac{2n}{p}+1}}. \end{aligned}$$

Now let n_k and m_k given by

$$|b_{n_k}|\Gamma(\frac{n_k}{p}+1) = \sup_{n \in I_{2k}} |b_n|\Gamma(\frac{n}{p}+1),$$
$$|b_{m_k}|\Gamma(\frac{m_k}{p}+1) = \sup_{n \in I_{2k+1}} |b_n|\Gamma(\frac{n}{p}+1).$$

Since m_k and n_k are 2-lacunary sequences, applying (b) in Theorem 2.1, we have

$$\begin{split} |\sum_{n=1}^{\infty} a_n b_n \frac{\Gamma(\frac{2n}{p}+1)}{2^{\frac{2n}{p}+1}}| &\leq C \sum_{k=0}^{\infty} |b_{n_k}| \Gamma(\frac{n_k}{p}+1) \sum_{n \in I_{2k}} \frac{|a_n| \Gamma(\frac{n}{p}+1)}{\sqrt{n}} \\ &+ C \sum_{k=0}^{\infty} |b_{m_k}| \Gamma(\frac{m_k}{p}+1) \sum_{n \in I_{2k+1}} \frac{|a_n| \Gamma(\frac{n}{p}+1)}{\sqrt{n}} \\ &\leq C \sup_{k \in \mathbb{N}} \sum_{n \in I_{2k}} |a_n| \frac{\Gamma(\frac{n}{p}+1)}{\sqrt{n}} \sum_{k=0}^{\infty} |b_{n_k}| \Gamma(\frac{n_k}{p}+1) \\ &+ C \sup_{k \in \mathbb{N}} \sum_{n \in I_{2k+1}} |a_n| \frac{\Gamma(\frac{n}{p}+1)}{\sqrt{n}} \sum_{k=0}^{\infty} |b_{m_k}| \Gamma(\frac{m_k}{p}+1) \\ &\leq C \sup_{k \in \mathbb{N}} \sum_{n \in I_{2k+1}} |a_n| \frac{\Gamma(\frac{n}{p}+1)}{\sqrt{n}} \sum_{k=0}^{\infty} |b_{m_k}| \Gamma(\frac{m_k}{p}+1) \end{split}$$

Hence the result follows now from duality. (b) The previous argument actually shows that

$$||\sum_{n=2^{k}}^{\infty} a_{n} z^{n}||_{H(e^{-|z|^{p}})} \le C \sup_{l \ge k} \sum_{n \in I_{l}} |a_{n}| \frac{\Gamma(\frac{n}{p}+1)}{\sqrt{n}}.$$

Hence it follows the desired result.

3 Unconditional convergence of Taylor series

It follows from theorems 2.1 and 2.2 that the Taylor series of every function f in the closed subspace generated by (z^{n_k}) in $B_1(p)$ or $H(e^{-|z|^p})_0(\mathbb{C})$ is absolutely convergent in case $\liminf \frac{n_{k+1}}{n_k} > 1$. The next theorem gives some subspaces of $B_1(p)$ for which the unconditional convergence of a Taylor series is equivalent to its absolute convergence. To finish the paper we present some necessary or sufficient conditions in order to ensure the unconditional convergence of a given Taylor series in $H(e^{-|z|^p})_0(\mathbb{C})$.

Theorem 3.1 Let $\alpha \geq 2$ and $n_k = [k^{\alpha}], k \in \mathbb{N}$. Then the series $\sum_{k=1}^{\infty} a_k V_{n_k}$ converges unconditionally in $B_1(p)$ if and only if it converges absolutely, i.e. $\sum_{k=1}^{\infty} |a_k| < \infty$.

Proof: Let $f = \sum_{k=1}^{\infty} a_k V_{n_k}$ an unconditionally convergent series in $B_1(p)$. Denoting by $(r_n(t))^{n-1}$ the sequence of Rademacher functions we define $f_t(z) = \sum_{n=1}^{\infty} (r_n(t))^{n-1}$ $\sum_{k=0}^{\infty} r_{n_k}(t) a_k V_{n_k}.$ Since $\sup_{t \in [0,1]} || f_t ||_{B_1(p)} < \infty$ then, using Fubini and Kintchine's inequality, we have

$$\int_0^\infty (\sum_{k=0}^\infty \frac{|a_k|^2 r^{\frac{2n_k}{p}}}{\Gamma(\frac{n_k}{p}+1)^2})^{\frac{1}{2}} e^{-r} dr \simeq \int_0^\infty (\int_0^1 M_1(f_t,r)dt) e^{-r^p} pr^{p-1} dr$$
$$= \int_0^1 \|f_t\|_{B_1(p)} dt < \infty.$$

Then, taking $\beta_k = \frac{2n_k}{p}$, $q = \frac{1}{2}$ and $m \in \mathbb{N}$, we have

$$\beta_{k+m} - \beta_k = \frac{2}{p}([(k+m)^{\alpha}] - [k^{\alpha}]) \ge \frac{2}{p}((k+m)^{\alpha} - k^{\alpha} - 1) \ge \frac{2}{p}(\alpha m k^{\alpha - 1} - 1).$$

Therefore if $\alpha > 2$ we can take m = 1 and then $\lim_{k \to \infty} \inf \frac{\beta_{k+m} - \beta_k}{\sqrt{\beta_k}} = \infty$. For $\alpha = 2$ we can choose $m > \frac{\sqrt{p}}{2}$ and then $\lim_{k \to \infty} \inf \frac{\beta_{k+m} - \beta_k}{\sqrt{\beta_k}} > \sqrt{2}$ and

Lemma 2.2 can be applied again to get $\sum_{k=1}^{\infty} |a_k| < \infty$.

Let us now give some results regarding the unconditional convergence in $H(e^{-|z|^p})_0(\mathbb{C})$.

Proposition 3.1 Let (b_n) be a sequence such that $\lim_{n\to\infty} \sup \sqrt{n+1} | b_n | = 0$. Then $\sum_{n=0}^{\infty} b_n W_n$ converges unconditionally in $H(e^{-|z|^p})_0(\mathbb{C})$.

Proof: Given any sequence (ϵ_n) with $\epsilon_n = -1$ and $N \leq M$ we have that

$$\| \sum_{n=N}^{M} \epsilon_n b_n W_n \|_{H(e^{-|z|^p})_0(\mathbb{C})} \le \sup_{|z|<1} e^{-|z|^p} \sum_{n=N}^{M} \frac{|b_n|\sqrt{n+1}|z|^n}{\Gamma(\frac{n}{p}+1)} \le (\sup_{n\geq N} \sqrt{n+1} |b_n|) (\sum_{n=1}^{\infty} \frac{|z|^n}{\Gamma(\frac{n}{p}+1)}) e^{-|z|^p}$$

Now, from Lemma 1.2 and the assumption follows that $\sum_{n=1}^{\infty} \epsilon_n b_n W_n$ converges in $H(e^{-|z|^p})_0(\mathbb{C})$.

Proposition 3.2 Let (b_n) be a sequence such that, if $I_k = [2^k, 2^{k+1}) \cap \mathbb{N}$,

$$\lim_{k \to \infty} \sum_{n \in I_k} \mid b_n \mid = 0$$

Then $\sum_{n=0}^{\infty} b_n W_n$ converges unconditionally in $H(e^{-|z|^p})_0(\mathbb{C})$.

Proof: Recall that $\sum_{n=0}^{\infty} b_n W_n$ is unconditionally convergent in $H(e^{-|z|^p})_0(\mathbb{C})$ if and only if $T(f) = (\langle f, W_n \rangle b_n)$ is a compact operator from $B_1(p)$ into l^1 (see [11]). Hence, it suffices to see that, denoting by $T_N(f) = (\langle f, W_n \rangle b_n)_{n \geq N}$, we have $||T_N|| \to 0$ as $N \to \infty$.

We fix $k_0 \in \mathbb{N}$ and $N \ge 2^{2k_0}$. Given now $\epsilon > 0$, there exists $f = \sum_{n=1}^{\infty} a_n z^n \in B_1(p)$ such that $||f||_{B_1(p)} = 1$ and

$$||T_N|| < ||T_N f|| + \epsilon \le C \sum_{n=2^{2k_0}}^{\infty} |a_n|| b_n | \Gamma(\frac{n}{p}+1) + \epsilon.$$

Let us split this sum as follows

$$\sum_{k=k_0}^{\infty} \sum_{n \in I_{2k}} |a_n| |b_n| \Gamma(\frac{n}{p}+1) + \sum_{k=k_0}^{\infty} \sum_{n \in I_{2k+1}} |a_n| |b_n| \Gamma(\frac{n}{p}+1)$$

Take $n_k \in I_{2k}$ such that $|a_{n_k}| \Gamma(\frac{n_k}{p}+1) = \sup_{n \in I_{2k}} |a_n| \Gamma(\frac{n}{p}+1)$ and $n'_k \in I_{2k+1}$ such that $|a_{n'_k}| \Gamma(\frac{n'_k}{p}+1) = \sup_{n \in I_{2k+1}} |a_n| \Gamma(\frac{n}{p}+1)$. Observe that $\frac{n_{k+1}}{n_k} \ge 2$ and $\frac{n'_{k+1}}{n'_k} \ge 2$ and then from (b) theorem 2.1 we can say that

$$\parallel T_N \parallel < C \sup_{l \ge 2k_0} \left(\sum_{n \in I_l} \mid b_n \mid \right) + \epsilon.$$

Applying now the assumption we finish the proof. \blacksquare

Proposition 3.3 Let $\sum_{n=0}^{\infty} b_n W_n$ be an unconditionally convergent series in $H(e^{-|z|^p})_0(\mathbb{C})$.

Then one has

$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k} \sqrt{n+1} \mid b_n \mid = 0.$$

Proof: Using the compactness of the operator $T: B_1(p) \to l^1$ given by $T(f) = (\langle f, W_n \rangle b_n)$ and Lemma 1.5 we easily deduce that

$$\lim_{|z| \to \infty} e^{-|z|^p} \| T(K_p(z)) \|_1 = 0.$$

Since $T(K_p(z)) = \left(\left(\frac{n}{p}\right)^{-\frac{n}{p}} e^{\frac{n}{p}} z^n b_n\right)$ we have

$$\lim_{|z| \to \infty} e^{-|z|^p} \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\Gamma(\frac{n}{p}+1)} \mid z^n \mid \mid b_n \mid = 0.$$

Therefore, given $\epsilon>0$ there exists $n_{\epsilon}\in\mathbb{N}$ such that

$$\sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\Gamma(\frac{n}{p}+1)} \mid b_n \mid r^{\frac{n}{p}} \le \epsilon e^{-r}$$

for every $r \geq \frac{n_{\epsilon}}{2p}$. Multiplying by e^{-ar} , 1 < a < 2, and integrating over $(\frac{n_{\epsilon}}{ap}, \infty)$ one has

$$\sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\Gamma(\frac{n}{p}+1)} \frac{|b_n|}{a^{\frac{n}{p}+1}} \int_{\frac{n\epsilon}{p}}^{\infty} t^{\frac{n}{p}} e^{-t} dt \le \epsilon \frac{1-e^{-r\epsilon}}{a-1}$$

where $r_{\epsilon} = (a-1)\frac{n_{\epsilon}}{ap}$. Hence, using Lemma 2.1

$$\sum_{n=n_{\epsilon}}^{\infty} \sqrt{n+1} \frac{|b_n|}{a^{\frac{n}{p}+1}} \le C \sum_{n=n_{\epsilon}}^{\infty} \frac{\sqrt{n+1}}{\Gamma(\frac{n}{p}+1)} \frac{|b_n|}{a^{\frac{n}{p}+1}} \int_{\frac{n}{p}}^{\frac{n}{p}+\sqrt{\frac{n}{p}}} t^{\frac{n}{p}} e^{-tr} dt \le C \frac{\epsilon}{a-1} e^{-r_{\epsilon}}.$$

In particular, if $k \in \mathbb{N}$ satisfies $k \ge n_{\epsilon}$ we have, for $\frac{1}{a} = 1 - \frac{1}{k}$,

$$\sum_{n=n_{\epsilon}}^{k} \sqrt{n+1} \mid b_n \mid (1-\frac{1}{k})^{\frac{n}{p}} \le C\epsilon k.$$

Therefore

$$(1-\frac{1}{k})^{\frac{k}{p}}\sum_{n=n_{\epsilon}}^{k}\sqrt{n+1}\mid b_{n}\mid\leq C\epsilon k.$$

On the other hand, since $G(z) := \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\Gamma(\frac{n}{p}+1)} | b_n | z^n$ belongs to $H(e^{-|z|^p})(\mathbb{C})$ we can apply Lemma 1.3 to obtain

$$\frac{1}{n_{\epsilon}} \sum_{n=0}^{n_{\epsilon}} \sqrt{n+1} \mid b_n \mid \le C$$

for some constant C not depending on ϵ and

$$\frac{1}{k} \sum_{n=0}^{k} \sqrt{n+1} \mid b_n \mid \le \frac{n_{\epsilon}}{k} C + (1 - \frac{1}{k})^{-\frac{k}{p}} C \epsilon$$

showing what we wanted. \blacksquare

Remark. The identity
$$\lim_{k\to\infty} \frac{1}{k} \sum_{n=0}^{\kappa} \sqrt{n+1} \mid b_n \mid = 0$$
 is equivalent to
$$\lim_{k\to\infty} 2^{-\frac{k}{2}} \sum_{n\in I_k} \mid b_n \mid = 0.$$

Consequently the Proposition 3.3 can be regarded as a partial converse of Propositions 3.1 and 3.2.

Acknowledgements The research of both authors was supported by DGICYT under Proyectos PB95-0261 and PB94-0541 respectively.

References

- Anderson, J.M.; Duncan, J.; 'Duals of Banach spaces of entire functions', Glasgow Math. J. 32 (1990), 215-220.
- [2] Bargmann, V.; 'On a Hilbert space of analytic functions and an associated integral transform', Comm. Pure Appl. Math. 14 (1961), 187-214.
- [3] Bierstedt, K.D.; Bonet, J.; Galbis, A.; 'Weighted spaces of holomorphic functions on balanced domains', *Michigan Math. J.* 40 (1993), 271-297.
- [4] Dyakonov, K.M.; 'Moment problems for bounded functions', Comm. in Analysis and Geometry 2,n⁰ 3, (1994), 533-562.
- [5] Duren, P.; Theory of H^p-spaces. Academic Press, New York, 1970
- [6] Galbis, A.; 'Weighted Banach spaces of entire functions', Archiv Math. 62 (1994), 58-64.
- [7] Garling, D.J.H.; Wojtaszczyk, P.; 'Some Bargmann spaces of analytic functions', Lecture Notes in Pure and Applied Math. "Function Spees. The second conference." 172 Marcel Dekker (1995), 123-138.
- [8] Grochenig, K.; Walnut, D.; 'A Riesz basis for Bargmann-Fock space related to sampling and interpolation', Archiv. fur Math. 30 (1992), 283-395.
- [9] Janson, S.; Peetre, J.; Rochberg, R.; 'Hankel forms and the Fock space', *Revista Mat. Iberoamericana* 3 (1987), 61-138.
- [10] Lusky, W.; 'On the Fourier series of unbounded harmonic functions', *Preprint*.
- [11] Wojtaszczyk, P.; Banach spaces for analysts. Cambridge Univ. Press, New York, 1991
- [12] Zhu, K.; 'Duality of Bloch spaces and norm convergence of Taylor series', Michigan Math. J. 38 (1991), 89-101.
- [13] Zygmund, A.; Trigonometric series . Cambridge Univ. Press, New York, 1959