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Abstract

In this paper we shall analyze the Taylor coefficients of entire functions
integrable against dµp(z) = p

2π
e−|z|p | z |p−2 dσ(z) where dσ stands for

the Lebesgue measure on the plane and p ∈ IN, as well as the Taylor
coefficients of entire functions in some weighted sup-norm spaces.

In this paper we shall analyze the Taylor coefficients of entire functions sat-
isfying some growth estimates. To be more precise, given p ∈ IN, we will deal
with the Banach space B1(p) of entire functions belonging to L1(dµ), where
dµ(z) = p

2π e
−|z|p | z |p−2 dσ(z) and dσ stands for the Lebesgue measure on

the plane, as well as with the Banach space H(e−|z|p)(C) of those entire func-
tions f such that supz∈C e−|z|p | f(z) |< ∞. These spaces have been considered
in several contexts by different authors. See [1, 6, 7, 8, 9, 10]. The general
question we are going to discuss can be stated as follows: given a function
f(z) =

∑∞
n=0 anz

n in X(:= B1(p) or H(e−|z|p)(C)), what can be said on the
Taylor coefficients (an)?. Conversely, it is also interesting to ask how a func-
tion in X can be recognized by the behaviour of its Taylor coefficients. The
paper is organized as follows. In the first section we present a method to de-
scribe the boundedness of operators from B1(p) into a general Banach space X
by the fact that the X−valued analytic function constructed by the action of
the operator on the reproducing kernel Kp belongs to the vector-valued space
H(e−|z|p)(C;X). This will allow to identify the dual space of B1(p) with the
weighted sup-norm space H(e−|z|p)(C). Then we will discuss a Hardy’s type
inequality for Taylor coefficients of functions in B1(p). In the second section
we give a complete characterization of the Taylor coefficients for lacunary entire
functions in both spaces B1(p) and H(e−|z|p)(C). As an application we obtain a
sufficient condition on the Taylor coefficients of a function f in order to enssure
that it belongs to H(e−|z|p)(C). In section 3 we find conditions on nk in order to
get the unconditional convergence of

∑
akz

nk to be equivalent to the absolute
convergence of the series.

Let us denote by H(e−|z|p)0(C) the closed subspace of H(e−|z|p)(C) con-
sisting of those functions f such that e−|z|pf(z) vanishes at infinity. Since
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the polynomials are dense in B1(p) and in H(e−|z|p)0(C) it is natural to ask
whether the Taylor series of a function in those spaces necessarily converges in
norm. Such a question was raised by D.J.H. Garling and P. Wojtaszczyk [7] for
the space B1(2), corresponding to those entire functions which are integrable
with respect to a gaussian measure, and it was recently solved in the negative
by W. Lusky [10] for all the spaces B1(p) and H(e−|z|p)0(C). Nevertheless our
results in Section 2 show that when restricted to a lacunary sequence nk, i.e.
nk+1
nk

≥ λ > 1 for all k ∈ IN, we have that (znk) is a basic subsequence in B1(p).
The final part of the paper is devoted to give a necessary and also two sufficient
conditions in order to ensure the unconditional convergence of a given Taylor
series in H(e−|z|p)0(C).

1 Duality

In this section we present the Banach spaces B1(p) and H(e−|z|p)(C) and show
that (B1(p))∗ = H(e−|z|p)(C). This duality is applied to discuss the sharpness
of a Hardy’s type inequality for functions in B1(p). Moreover, as a previous
step to get the duality some necessary and sufficient conditions for a function
to belong to H(e−|z|p)(C) are given.

Definition 1.1 Given a continuous and radial weight v on C and a complex
Banach space (X, ‖ . ‖) we define

(a) H(v)(C, X) := {F : C → X entire function; ‖ F ‖:= sup v(z) ‖
F (z) ‖< ∞},

(b) H(v)0(C, X) is the subspace of H(v)(C, X) consisting of those functions
F such that Fv vanishes at infinity.

If X is the field of complex numbers we drop it from the notation and write
H(v)(C) or H(v)0(C). We are interested in weights v(z) = exp(− | z |p), p ∈ IN.

Definition 1.2 Given a natural number p ∈ IN we denote by B1(p) the space
of entire functions f such that

‖ f ‖:= p

2π

∫
C

| f(z) | e−|z|p | z |p−2 dσ(z) < ∞.

We write M∞(f, r) := max{| f(z) |:| z |= r} and M1(f, r) := 1
2π

∫ 2π

0
|

f(reit) | dt. Then, for every f ∈ B1(p), we have ‖ f ‖=
∫ ∞
0

M1(f, r)e−r
p

prp−1dr.

Lemma 1.1 (a) Let v be a continuous and radial weight on C such that the
polynomials are contained in H(v)0(C). Then the polynomials are dense in
H(v)0(C).

(b) For every p ∈ IN, the polynomials are dense in B1(p).
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Proof: A proof of part (a) can be found in [3, 1.5(a)]. To prove (b) proceed as
in [7, Proposition 5].

Let us first remark that ϕp(r) = rne−r
p

is an increasing function in [0, (np )
1
p ]

and decreasing in [(np )
1
p ,+∞[. What shows that un(z) = zn satisfies ‖ un ‖H(e−|z|p )(C)=

(np )
n
p e−

n
p . This, using the trivial estimate | bn | Rn ≤ M∞(g,R), also allows to

say that if g(z) =
∑

bnz
n ∈ H(e−|z|p)(C) then

(1.1) sup
n∈IN

| bn | Γ(np + 1)
√
n + 1

≤ C ‖ g ‖H(e−|z|p ) .

Let us start by mentioning a simple condition on (bn) which implies that
g ∈ H(e−|z|p)(C).

Lemma 1.2 (a) Let p ∈ IN and let (bn) be a sequence such that sup
n∈IN

| bn |

Γ(
n

p
+ 1) < ∞. Then g(z) =

∑
bnz

n ∈ H(e−|z|p)(C).

(b) If lim
n→∞

| bn | Γ(
n

p
+ 1) = 0 then g(z) =

∑
bnz

n ∈ H(e−|z|p)0(C).

Proof: To see (a) it suffices to show that

∞∑
n=0

rn

Γ(np + 1)
≤ Cer

p

for every r > 0. For each n ∈ IN write n = pk + j, k ∈ IN and j = 0, 1, . . . p− 1,
and decompose the sum as follows

∞∑
n=0

rn

Γ(np + 1)
=
p−1∑
j=0

ϕj(rp)

where

ϕj(t) =
∞∑
k=0

tk+
j
p

Γ(k + j
p + 1)

.

Since ϕ′
j(t) = j

pΓ( j
p +1)

t
j
p−1 + ϕj(t) we have

ϕj(t) = et(ϕj(0) +
j

pΓ( jp + 1)

∫ t

0

e−ss
j
p−1ds) ≤ et(ϕj(0) + 1).

Adding the values for j = 0, 1, . . . p− 1 we get

∞∑
n=0

rn

Γ(np + 1)
=
p−1∑
j=0

ϕj(rp) ≤ (1 + p)er
p

.
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(b) Since H(e−|z|p)0(C) is a closed subspace of H(e−|z|p)(C) it suffices to

show that g = lim
N→∞

N∑
k=0

bkuk in H(e−|z|p)(C). But this follows from

(
∞∑

k=N+1

|bk|rk)e−r
p ≤

(
sup
k>N

|bk|Γ(
k

p
+ 1)

)( ∞∑
k=N+1

rk

Γ(kp + 1)

)
e−r

p

≤ C
(

sup
k>N

|bk|Γ(
k

p
+ 1)

)
.

Let us now find some necessary condition for a function to belong to H(e−|z|p)(C).

Lemma 1.3 Let (αn) be a sequence of positive real numbers. If f(z) =
∑∞
n=0 αnz

n

belongs to H(e−|z|p)(C) then

sup
m∈IN

1
m

m∑
n=0

αnΓ(
n

p
+ 1) < ∞.

Proof: Since αn ≥ 0 then we are assuming that
∑∞
n=0 αnr

n
p ≤ Cer for every

r > 0. Hence, multiplying by e−ar (a > 1) and integrating over (0,∞) we get

∞∑
n=0

αn

a
n
p +1

Γ(
n

p
+ 1) ≤ C

a− 1
.

For m ∈ IN take a = m+1
m and then

(1 − 1
m + 1

)
m
p +1

m∑
n=0

αnΓ(
n

p
+ 1) ≤

∞∑
n=0

αnΓ(
n

p
+ 1)(1 − 1

m + 1
)

n
p +1 ≤ Cm.

Using that limm→∞(1 − 1
m+1 )

m
p +1 = e−

1
p we finish the proof.

In order to get the duality between B1(p) and H(e−|z|p)(C) let us first give
a natural pairing on these spaces. If f ∈ B1(p) and g ∈ H(e−|z|p)(C) we can
define

< f, g >=
p

2π

∫
C

f(ω)g(ω)e−2|ω|p | ω |p−2 dσ(ω).

Clearly |< f, g >|≤‖ f ‖B1(p)‖ g ‖H(e−|z|p )(C) . Observe that < un, g >=

bn
Γ( 2n

p +1)

2
2n
p

+1
for g(z) =

∑
bnz

n.

This leads to the consideration of the following function Kp(z) =
∑∞
n=0

2
2n
p

+1

Γ( 2n
p +1)

zn.
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Let us denote by Kp(z, ω) = Kp(zω). Then

g(z) =
p

2π

∫
C

Kp(z, ω)g(ω)e−2|ω|p | ω |p−2 dσ(ω)

for every polynomial g.

We also write

Kp(z) =
∞∑
n=0

2
2n
p +1

Γ( 2n
p + 1)

znun

as a function taking values in B1(p) (note that this series is absolutely convergent

in B1(p) because ‖ un ‖B1(p)= Γ(np + 1) and 2
2n
p

+1|z|n
Γ( 2n

p +1)
Γ(np + 1) � |z|n√

n
Γ( n

p +1) ).

In order to get estimates on the norm ‖ Kp(z) ‖B1(p) as | z | goes to ∞ we
first need the following Lemma.

Lemma 1.4 Let p ∈ IN and let f(z) =
∑∞
n=0

zn

Γ( 2n
p +1)

. There exists Cp > 0

such that

M1(f, r) ≤ Cp

∞∑
n=0

rn

Γ( 2n
p + 1)

√
n + 1

for all r > 0.

Proof: As in Lemma 1.2 let us write n = kp+j for k ∈ IN and j = 0, 1, . . . p−1.
Then f(z) =

∑p−1
j=0 zjfj(z) where fj(z) =

∑∞
k=0

zpk

Γ(2k+ 2j
p +1)

. Now, let us rewrite

fj as follows

fj(z) =
∑∞
k=0

zpk

Γ(2k+1)Γ( 2j
p )

B(2k + 1, 2j
p )

= 1
Γ( 2j

p )

∑∞
k=0

zpk

Γ(2k+1)

∫ 1

0
x2k(1 − x)

2j
p −1dx

= 1
Γ( 2j

p )

∫ 1

0
(
∑∞
k=0

(zpx2)k

(2k)! )(1 − x)
2j
p −1dx.

Therefore

M1(fj , r) ≤ 1
Γ( 2j

p )

∫ 1

0
(
∫ 2π

0
| cosh(xr

p
2 ei

p
2 θ) | dθ2π )(1 − x)

2j
p −1dx

≤ 1
Γ( 2j

p )

∫ 1

0
(
∫ 2π

0
cosh(xr

p
2 cospθ2

dθ
2π )(1 − x)

2j
p −1dx

≤ 1
pΓ( 2j

p )

∑∞
k=0

rpk

(2k)! (
∫ 1

0
x2k(1 − x)

2j
p −1dx)

∫ πp
−πp(cost)

2k dt
2π .

Using that
∫ π
−π(cost)

2n dt
2π = 2−n

(
2n
n

)
we have

M1(fj , r) ≤
∞∑
k=0

rpk

(k!)222k

B(2k, 2j
p )

Γ( 2j
p )

=
∞∑
k=0

rpkΓ(2k + 1)
(k!)222kΓ(2k + 2j

p + 1)
.
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Adding all the values of j we get

M1(f, r) ≤
p−1∑
j=0

rjM1(fj , r) ≤ Cp

∞∑
n=0

rn

Γ( 2n
p + 1)

√
[np ] + 1

.

Lemma 1.5 Let p ∈ IN and Kp(z) =
∑∞
n=0

2
2n
p

+1

Γ( 2n
p +1)

znun. Then Kp ∈ H(e−|z|p)(C, B1(p)).

Proof: Using Lemma 1.4 we have

M1(Kp(z), r) ≤ Cp

∞∑
n=0

2
2n
p +1 | z |n rn

Γ( 2n
p + 1)

√
n + 1

.

Now, integrating over (0,∞) with the measure e−r
p

prp−1dr and applying Lemma
1.2 we get

‖ Kp(z) ‖B1(p)≤ C

∞∑
n=0

2
2n
p +1 | z |n

Γ( 2n
p + 1)

√
n + 1

Γ(
n

p
+1) ≤ C

∞∑
n=0

| z |n
Γ(np + 1)

≤ Ce|z|
p

.

Theorem 1.1 Let X be a Banach space, p ∈ IN. Let T be a bounded operator
from B1(p) into X. Then F (z) = T (Kp(z)) ∈ H(e−|z|p)(C, X) and ‖ F ‖≤
Cp ‖ T ‖ .
Conversely, given F ∈ H(e−|z|p)(C, X), then

T (f) =
∫

C

F (z)f(z)e−2|z|p | z |p−2 dσ(z)

defines a bounded operator from B1(p) into X and ‖ T ‖≤‖ F ‖ . Moreover,
T (Kp(z)) = 2π

p F (z).

Proof: The first statement follows from the boundedness of T and Lemma
1.5. The converse follows since F (z)f(z) is a X-valued continuous function and
‖ F (z) ‖| f(z) |≤‖ F ‖| f(z) | e|z|p . Hence the Bochner integral exists and

‖ T (f) ‖≤ 2π
p

‖ F ‖H(e−|z|p ,X)‖ f ‖B1(p) .

Corollary 1.1 Let p ∈ IN. Then (B1(p))∗ = H(e−|z|p)(C) with equivalent
norms under the pairing < . > .
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We also give a direct proof of the other duality.

Theorem 1.2 Let p ∈ IN. Then (H(e−|z|p)0(C))∗ = B1(p) with equivalent
norms under the pairing < . > .

Proof: Define T : B1(p) → (H(e−|z|p)0(C))∗ given by

< T (f), g >=
p

2π

∫
C

g(z)f(z)e−2|z|p | z |p−2 dσ(z).

Clearly T is well defined and bounded with ‖ T ‖≤ 1. Since < T (un), g >=
bn

2
2n
p

+1
Γ( 2n

p +1) for g(z) =
∑

bnz
n then T is injective. To see that T is surjective

let us take φ ∈ (H(e−|z|p)0(C))∗ and, by Hahn-Banach, find a bounded measure
ν such that φ(g) =

∫
g(z)e−|z|pdν(z) for any g ∈ H(e−|z|p)0(C). Define now

f(z) =
∫
C
Kp(ω, z)e−|ω|pdν(ω). We shall see that f ∈ B1(p). Indeed,

∫
C
| f(z) | e−|z|p | z |p−2 dσ(z) ≤

∫
C

(∫
C
| Kp(ω, z) | e−|ω|pdν(ω)

)
e−|z|p | z |p−2 dσ(z)

=
∫
C

(∫
C
| Kp(ω, z) | e−|z|p | z |p−2 dσ(z)

)
e−|ω|pdν(ω).

Now, to get ‖ f ‖B1(p)≤ C ‖ ν ‖ we apply Lemma 1.5. On the other hand, for
any polynomial g we have

< T (f), g > = p
2π

∫
C
g(z)f(z)e−2|z|p | z |p−2 dσ(z)

= p
2π

∫
C

(∫
C
Kp(ω, z)e−|ω|pdν(ω)

)
g(z)e−2|z|p | z |p−2 dσ(z)

=
∫
g(ω)e−|ω|pdν(ω) = φ(g).

Using, finally, that the polynomials are dense in H(e−|z|p)0(C) the proof is
complete.

Lusky [10] showed that, for every p > 0 there are functions f ∈ H(e−|z|p)0(C)
whose Taylor series do not converge in norm. The duality results in this section
have been used in [10] to prove that the same conclusion holds for the spaces
B1(p), p ∈ IN. The vector-valued duality (theorem 1.1) will be applied in the
last section to find a necessary condition for the unconditional convergence of a
given Taylor series in H(e−|z|p)0(C).

To finish this section we present a Hardy’s type inequality for functions in
B1(p).

Let us start by noticing that, using the monotonicity of M1(f, r), one has

|an|r
n
p e−r ≤

∫ ∞

r

M1(f, s
1
p )e−sds.

Hence taking r = n
p we have that if f ∈ B1(p) then lim

n→∞

|an|Γ(np + 1)
√
n

= 0.
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On the other hand, applying Hardy inequality for Hardy spaces (see [5]) we
have ∞∑

n=0

| an | Rn
n + 1

≤ CM1(f,R)

for f(z) =
∑

anz
n. Therefore

∞∑
n=0

| an |
n + 1

Γ(
n

p
+ 1) ≤ C ‖ f ‖B1(p) .

This is far to being sharp as the following theorem shows.

Theorem 1.3 Let p ∈ IN.
(a) There exists a constant Cp > 0 such that

∞∑
n=0

| an |√
n + 1

Γ(
n

p
+ 1) ≤ Cp ‖ f ‖B1(p)

where f(z) =
∑

anz
n.

(b) Let (αn) be a sequence of non negative real numbers such that there exists
a constant Cp > 0 such that for f(z) =

∑
anz

n

∞∑
n=0

| an | Γ(
n

p
+ 1)αn ≤ Cp ‖ f ‖B1(p) .

Then

sup
m∈IN

1
m

m∑
n=1

αn
√
n < ∞.

Proof: (a) Let f(z) =
∑

anz
n, then

∞∑
n=0

| an |√
n + 1

Γ(
n

p
+ 1) ≤ C

∞∑
n=0

| an | (
n

p
)

n
p e−

n
p

≤ C

∞∑
n=0

∫ n+1
p

n
p

| an | sn
p e−sds

≤ C

∞∑
n=0

∫ n+1
p

n
p

M1(f, s
1
p )e−sds = C ‖ f ‖B1(p) .

(b) From duality we have that g(z) =
∑∞
n=0 αn

2
2n
p

+1
Γ( n

p +1)

Γ( 2n
p +1)

zn ∈ H(e−|z|p)(C).

Now the conclusion follows from lemma 1.3 and the Stirling’s formula.

Remarks:
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(i) Note that, from duality, the inequality

∞∑
n=0

| an |√
n + 1

Γ(
n

p
+ 1) ≤ Cp ‖ f ‖B1(p)

is equivalent to Lemma 1.2.
(ii) Note that part (b) means that the previous inequality is sharp in the

following sense: For αn = 1
nβ the best exponent is β = 1

2 .

2 Lacunary entire functions. Applications.

We now get some inequalities holding for lacunary entire functions in B1(p) and
in H(e−|z|p)(C). As an application we will present a sufficient condition on the
Taylor coefficients of an entire function f in order to ensure that it belongs to
H(e−|z|p)(0)(C).

First we need the following lemmas. The second one will be also applied in
the next section.

Lemma 2.1 There exist C1, C2 > 0 such that, for every p > 0,

C1Γ(p + 1) ≤
∫ p+

√
p

p

rpe−rdr ≤ C2Γ(p + 1).

Proof: Recall that ϕp(r) = rpe−r increases in (0, p) and decreases in (p,∞).
Hence

(p +
√
p)pe−(p+

√
p)√p ≤

∫ p

p+
√
p

rpe−rdr ≤ ppe−p
√
p.

Now the result follows from Stirling’s formula and the fact

lim
p→∞

(p +
√
p)pe−(p+

√
p)√p

Γ(p + 1)
=

√
1

2πe
.

Lemma 2.2 Let 0 < q ≤ 1, αk ≥ 0 and βk > 0. Assume that there exists
m ∈ IN such that

lim
k→∞

inf
βk+m − βk√

βk
>

1√
q
.

Then there exists 0 < C < 1 such that

C

∞∑
k=0

αqkΓ(βkq + 1) ≤
∫ ∞

0

(
∞∑
k=0

αks
βk)qe−sds ≤

∞∑
k=0

αqkΓ(βkq + 1).
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Proof: Since 0 < q ≤ 1 we have

∫ ∞

0

(
∞∑
k=0

αks
βk)qe−sds ≤

∫ ∞

0

(
∞∑
k=0

αqks
βkq)e−sds =

∞∑
k=0

αqkΓ(βkq + 1).

On the other hand, the assumption implies that there exists k0 such that
qβk+m ≥ qβk +

√
qβk for k ≥ k0. Now, using Lemma 4.2,

∞∑
k=k0

αqkΓ(βkq + 1) ≤ C

∞∑
k=k0

αqk

∫ qβk+
√
qβk

qβk

rqβke−rdr

≤ C

∞∑
k=k0

∫ qβk+m

qβk

(
∞∑
l=0

αlr
βl)qe−rdr

= C

∞∑
k=k0

k+m−1∑
j=k

∫ qβj+1

qβj

(
∞∑
l=0

αlr
βl)qe−rdr

≤ Cm

∞∑
j=k0

∫ qβj+1

qβj

(
∞∑
l=0

αlr
βl)qe−rdr

= Cm

∫ ∞

qβk0

(
∞∑
l=0

αlr
βl)qe−rdr.

Since
k0∑
k=0

αqkΓ(βkq + 1) ≤ (k0 + 1)
∫ ∞

0

(
∞∑
k=0

αks
βk)qe−sds

we have the desired result.

Similar conditions to the ones imposed in the above lemma appeared in [4].
The next theorem should be compared with [4, theorem 8].

Let us denote by Vn = un

Γ( n
p +1) the normalized sequence in B1(p).

Theorem 2.1 Let (nk) be a sequence such that there exists λ > 1 for which
nk+1
nk

≥ λ > 1. Then there exist 0 < Ap, Bp < ∞ (depending only on λ, p) such
that

(a) Ap

∞∑
k=0

| ak |≤‖
∞∑
k=0

akVnk
‖B1(p)≤

∞∑
k=0

| ak |,

(b)
∞∑
k=0

| ank
| Γ(

nk
p

+ 1) ≤ Bp ‖
∞∑
n=0

anz
n ‖B1(p) .
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Proof: To prove (a) recall that, from Kintchine’s inequalities for lacunary sys-
tems (see [13] or [11]) we have

M1(g, r) � (
∞∑
k=0

| bk |2 r2nk)
1
2

if g(z) =
∑

bkz
nk . Then (a) follows from Lemma 2.2 applied to βk = 2nk

p ,

q = 1
2 and m = 1, because βk+1 − βk ≥ (λ− 1)βk gives limk→∞

βk+1−βk√
βk

= ∞.

To get (b) use Paley’s inequality, instead to Kintchine’s (see [5, page 104])
to have

(
∞∑
k=0

| ank
|2 r2nk)

1
2 ≤ CM1(f, r)

for f(z) =
∑

anz
n, and apply a similar argument.

Remark 2.1 It is well-known that B1(p) is isomorphic to l1 (see [7] for the
case B1(2) and [6] together with the duality provided by Theorem 1.2 for the
general case). Note that Theorem 2.1 provides a projection into a subspace
isomorphic to l1.

Let us denote be Wn = (np )−
n
p e

n
p un the normalized sequence in H(e−|z|p)(C).

Theorem 2.2 Let (nk) be a sequence such that there exists λ > 1 for which
nk+1
nk

≥ λ > 1.
(a) There exist 0 < Cp < ∞ (depending only on λ, p) such that

sup
k∈IN

| ak |≤‖
∞∑
k=0

akWnk
‖H(e−|z|p )≤ Cp sup

k∈IN
| ak | .

(b)
∞∑
k=0

akWnk
∈ H(e−|z|p)0(C) if and only if (ak) ∈ c0.

Proof:
(a) The first estimate follows from (1.1).

To see the second one, use duality combined with
Γ( 2n

p +1)

Γ( n
p +1)2

2n
p

+1
≈ Γ( n

p +1)
√
n

and (b) in Theorem 2.1.
If f(z) =

∑∞
n=0 bnz

n then

| < f,
∑N
k=0 akWnk

> | = |
N∑
k=0

akbnk

Γ( 2nk

p + 1)

2
2nk

p +1
(
nk
p

)−
nk
p e

nk
p |

≤ C

N∑
k=0

|ak||bnk
|Γ(

nk
p

+ 1)

≤ C(sup
k∈IN

|ak|)||f ||B1(p).

11



It follows that

|
N∑
k=0

akWnk
(z)|e−|z|p ≤ C(sup

k∈IN
|ak|)

for every N ∈ IN and z ∈ C. Consequently

sup
z∈C

|
∞∑
k=0

akWnk
(z)|e−|z|p ≤ C(sup

k∈IN
|ak|).

(b) If lim
k→∞

|ak| = 0 then, arguing as in (a) we get

||
∞∑
k=N

akWnk
||H(e−|z|p ) ≤ C( sup

k≥N
|ak|).

Hence g = lim
N→∞

N∑
k=0

akWnk
∈ H(e−|z|p)0(C).

Conversely, if g ∈ H(e−|z|p)0(C) then g is limit of the sequence of Cèsaro
means of its Taylor series (see [3]). Hence, given ε > 0, there exists a polynomial
h(z) =

∑N
k=0 ckWnk

with ||g − h||H(e−|z|p ) ≤ ε. Applying (a) to the function
g − h we get sup

k>N
|ak| ≤ ε.

Theorem 2.3 Let Ik = [2k, 2k+1) ∩ IN.

(a) If sup
k∈IN

∑
n∈Ik

|an|Γ(np + 1)
√
n

< ∞ then f(z) =
∑∞
n=0 anz

n ∈ H(e−|z|p)(C).

(b) If lim
k→∞

∑
n∈Ik

|an|Γ(np + 1)
√
n

= 0 then f(z) =
∑∞
n=0 anz

n ∈ H(e−|z|p)0(C).

Proof:
(a) Take g(z) =

∑∞
n=0 bnz

n ∈ B1(p). Then

|
∞∑
n=1

anbn
Γ( 2n

p + 1)

2
2n
p +1

| ≤
∞∑
k=0

∑
n∈I2k

|bn|Γ(
n

p
+ 1)

|an|Γ( 2n
p + 1)

Γ(np + 1)2
2n
p +1

+
∞∑
k=0

∑
n∈I2k+1

|bn|Γ(
n

p
+ 1)

|an|Γ( 2n
p + 1)

Γ(np + 1)2
2n
p +1

.

Now let nk and mk given by

|bnk
|Γ(

nk
p

+ 1) = sup
n∈I2k

|bn|Γ(
n

p
+ 1),

|bmk
|Γ(

mk
p

+ 1) = sup
n∈I2k+1

|bn|Γ(
n

p
+ 1).

12



Since mk and nk are 2-lacunary sequences, applying (b) in Theorem 2.1, we
have

|
∞∑
n=1

anbn
Γ( 2n

p + 1)

2
2n
p +1

| ≤ C

∞∑
k=0

|bnk
|Γ(

nk
p

+ 1)
∑
n∈I2k

|an|Γ(np + 1)
√
n

+C

∞∑
k=0

|bmk
|Γ(

mk
p

+ 1)
∑

n∈I2k+1

|an|Γ(np + 1)
√
n

≤ C sup
k∈IN

∑
n∈I2k

|an|
Γ(np + 1)

√
n

∞∑
k=0

|bnk
|Γ(

nk
p

+ 1)

+C sup
k∈IN

∑
n∈I2k+1

|an|
Γ(np + 1)

√
n

∞∑
k=0

|bmk
|Γ(

mk
p

+ 1)

≤ C sup
k∈IN

∑
n∈Ik

|an|
Γ(np + 1)

√
n

||g||B1(p)

Hence the result follows now from duality.
(b) The previous argument actually shows that

||
∞∑
n=2k

anz
n||H(e−|z|p ) ≤ C sup

l≥k

∑
n∈Il

|an|
Γ(np + 1)

√
n

.

Hence it follows the desired result.

3 Unconditional convergence of Taylor series

It follows from theorems 2.1 and 2.2 that the Taylor series of every function f in
the closed subspace generated by (znk) in B1(p) or H(e−|z|p)0(C) is absolutely
convergent in case lim inf nk+1

nk
> 1. The next theorem gives some subspaces of

B1(p) for which the unconditional convergence of a Taylor series is equivalent
to its absolute convergence. To finish the paper we present some necessary or
sufficient conditions in order to ensure the unconditional convergence of a given
Taylor series in H(e−|z|p)0(C).

Theorem 3.1 Let α ≥ 2 and nk = [kα], k ∈ IN. Then the series
∞∑
k=1

akVnk

converges unconditionally in B1(p) if and only if it converges absolutely, i.e.
∞∑
k=1

| ak |< ∞.

13



Proof: Let f =
∞∑
k=1

akVnk
an unconditionally convergent series in B1(p). De-

noting by (rn(t)) the sequence of Rademacher functions we define ft(z) =
∞∑
k=0

rnk
(t)akVnk

. Since supt∈[0,1] ‖ ft ‖B1(p)< ∞ then, using Fubini and Kint-

chine’s inequality, we have

∫ ∞

0

(
∞∑
k=0

| ak |2 r
2nk

p

Γ(nk

p + 1)2
)

1
2 e−rdr �

∫ ∞

0

(
∫ 1

0

M1(ft, r)dt)e−r
p

prp−1dr

=
∫ 1

0

‖ ft ‖B1(p) dt < ∞.

Then, taking βk = 2nk

p , q = 1
2 and m ∈ IN, we have

βk+m − βk =
2
p
([(k + m)α] − [kα]) ≥ 2

p
((k + m)α − kα − 1) ≥ 2

p
(αmkα−1 − 1).

Therefore if α > 2 we can take m = 1 and then limk→∞ inf βk+m−βk√
βk

= ∞.

For α = 2 we can choose m >
√
p

2 and then limk→∞ inf βk+m−βk√
βk

>
√

2 and

Lemma 2.2 can be applied again to get
∞∑
k=1

| ak |< ∞.

Let us now give some results regarding the unconditional convergence in H(e−|z|p)0(C).

Proposition 3.1 Let (bn) be a sequence such that limn→∞ sup
√
n + 1 | bn |=

0. Then
∑∞
n=0 bnWn converges unconditionally in H(e−|z|p)0(C).

Proof: Given any sequence (εn) with εn =+
− 1 and N ≤ M we have that

‖
∑M
n=N εnbnWn ‖H(e−|z|p )0(C) ≤ sup|z|<1 e

−|z|p ∑M
n=N

|bn|
√
n+1|z|n

Γ( n
p +1)

≤ (supn≥N
√
n + 1 | bn |)(

∑∞
n=1

|z|n
Γ( n

p +1) )e
−|z|p .

Now, from Lemma 1.2 and the assumption follows that
∑∞
n=1 εnbnWn converges

in H(e−|z|p)0(C).

Proposition 3.2 Let (bn) be a sequence such that, if Ik =
[
2k, 2k+1

)
∩ IN,

lim
k→∞

∑
n∈Ik

| bn |= 0.

Then
∞∑
n=0

bnWn converges unconditionally in H(e−|z|p)0(C).
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Proof: Recall that
∞∑
n=0

bnWn is unconditionally convergent in H(e−|z|p)0(C) if

and only if T (f) = (〈f,Wn〉 bn) is a compact operator from B1(p) into l1 (see
[11]). Hence, it suffices to see that, denoting by TN (f) = (〈f,Wn〉 bn)n≥N , we
have ‖ TN ‖→ 0 as N → ∞.

We fix k0 ∈ IN and N ≥ 22k0 . Given now ε > 0, there exists f =
∞∑
n=1

anz
n ∈

B1(p) such that ‖ f ‖B1(p)= 1 and

‖ TN ‖<‖ TNf ‖ +ε ≤ C

∞∑
n=22k0

| an || bn | Γ(
n

p
+ 1) + ε.

Let us split this sum as follows

∞∑
k=k0

∑
n∈I2k

| an || bn | Γ(
n

p
+ 1) +

∞∑
k=k0

∑
n∈I2k+1

| an || bn | Γ(
n

p
+ 1)

Take nk ∈ I2k such that | ank
| Γ(nk

p + 1) = supn∈I2k
| an | Γ(np + 1) and

n′
k ∈ I2k+1 such that | an′

k
| Γ(n

′
k

p + 1) = supn∈I2k+1
| an | Γ(np + 1). Observe

that nk+1
nk

≥ 2 and n′
k+1
n′

k
≥ 2 and then from (b) theorem 2.1 we can say that

‖ TN ‖< C sup
l≥2k0

(
∑
n∈Il

| bn |) + ε.

Applying now the assumption we finish the proof.

Proposition 3.3 Let
∞∑
n=0

bnWn be an unconditionally convergent series in H(e−|z|p)0(C).

Then one has

lim
k→∞

1
k

k∑
n=0

√
n + 1 | bn |= 0.

Proof: Using the compactness of the operator T : B1(p) → l1 given by T (f) =
(〈f,Wn〉 bn) and Lemma 1.5 we easily deduce that

lim
|z|→∞

e−|z|p ‖ T (Kp(z)) ‖1= 0.

Since T (Kp(z)) = ((np )−
n
p e

n
p znbn) we have

lim
|z|→∞

e−|z|p
∞∑
n=0

√
n + 1

Γ(np + 1)
| zn || bn |= 0.
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Therefore, given ε > 0 there exists nε ∈ IN such that
∞∑
n=0

√
n + 1

Γ(np + 1)
| bn | r n

p ≤ εe−r

for every r ≥ nε

2p . Multiplying by e−ar, 1 < a < 2, and integrating over (nε

ap ,∞)
one has ∞∑

n=0

√
n + 1

Γ(np + 1)
| bn |
a

n
p +1

∫ ∞

nε
p

t
n
p e−tdt ≤ ε

1 − e−rε

a− 1

where rε = (a− 1)nε

ap . Hence, using Lemma 2.1

∞∑
n=nε

√
n + 1

| bn |
a

n
p +1

≤ C

∞∑
n=nε

√
n + 1

Γ(np + 1)
| bn |
a

n
p +1

∫ n
p +

√
n
p

n
p

t
n
p e−trdt ≤ C

ε

a− 1
e−rε .

In particular, if k ∈ IN satisfies k ≥ nε we have, for 1
a = 1 − 1

k ,

k∑
n=nε

√
n + 1 | bn | (1 − 1

k
)

n
p ≤ Cεk.

Therefore

(1 − 1
k

)
k
p

k∑
n=nε

√
n + 1 | bn |≤ Cεk.

On the other hand, since G(z) :=
∞∑
n=0

√
n + 1

Γ(np + 1)
| bn | zn belongs to H(e−|z|p)(C)

we can apply Lemma 1.3 to obtain

1
nε

nε∑
n=0

√
n + 1 | bn |≤ C

for some constant C not depending on ε and

1
k

k∑
n=0

√
n + 1 | bn |≤ nε

k
C + (1 − 1

k
)−

k
p Cε

showing what we wanted.

Remark. The identity limk→∞
1
k

k∑
n=0

√
n + 1 | bn |= 0 is equivalent to

lim
k→∞

2−
k
2

∑
n∈Ik

| bn |= 0.

Consequently the Proposition 3.3 can be regarded as a partial converse of Propo-
sitions 3.1 and 3.2.
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