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Abstract. We give several new characterizations of the dual of the dyadic
Hardy space H1,d(T2), the so-called dyadic BMO space in two variables and

denoted BMOd
prod . These include characterizations in terms of Haar multipli-

ers, in terms of the “symmetrised paraproduct” Λb, in terms of the rectangular
BMO norms of the iterated “sweeps”, and in terms of nested commutators
with dyadic martingale transforms. We further explore the connection be-
tween BMOd

prod and John-Nirenberg type inequalities, and study a scale of

rectangular BMO spaces.

1. Introduction

Throughout the paper D denotes the set of dyadic intervals in the unit circle
T. In the case of the bicircle T2, D1 denotes the dyadic intervals in the first, D2

the dyadic intervals in the second variable. We write R = D1 × D2 for the dyadic
rectangles, |I| for the length of I and |R| for the area of R. (hI)I∈D stands for the
Haar basis in L2(T) and (hR)R∈R for the product Haar basis of L2(T2).

Here hI(t) = 1
|R|1/2 (χI+(t) − χI−(t)) for each dyadic interval I ∈ D, where I−

denotes the left half of I, and I+ denotes the right half of I. For each dyadic
rectangle R = I × J ∈ R, hR is defined by hR(s, t) = hI(s)hJ(t).

We denote by H00 the space of all functions in L2(T2) which have a finite ex-
pansion in the product Haar basis.

Given g ∈ L2(T), we use the notation gI = 〈f, hI〉 and mIg = 1
|I|

∫
I
g(t)dt. Sim-

ilarly, given f ∈ L2(T2), we use the notation fR = 〈f, hR〉, fI(s) = 〈f(·, s), hI〉,
mIf(s) = 1

|I|
∫
I
f(t, s)dt, fJ(t) = 〈f(t, ·), hJ〉 and mJf(t) = 1

|J|
∫
J
f(t, s)ds. There-

fore
f(t, s) =

∑
R∈R

fRhR(t, s) =
∑
I∈D

fI(s)hI(t) =
∑
J∈D

fJ(t)hJ(s).

Let PIg = (g − mIg)χI for g ∈ L2(T). Observe that PI is the orthogonal
projection on the subspace spanned by the Haar functions hI′ , I ′ ∈ D, I ′ ⊆ I. If
g =

∑
I∈D gIhI , then

PIg =
∑

I′∈D,I′⊆I
hI′gI′ .(1)

Similarly, for each measurable set Ω ⊆ T2, let PΩ be the orthogonal projection
on the subspace spanned by the Haar functions hR′ , R′ ∈ R, R′ ⊆ Ω. In particular,
for each dyadic rectangle R = I × J ∈ R and for f =

∑
R′∈R hR′fR′ ∈ L2(T2), we

have PRf = PI ⊗ PJf
∑
R′∈R,R′⊆R hR′fR′ .
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It is easy to see that for R ∈ R and f ∈ L2(T2),

PRf = χI×J (f −mIf −mJf + mI×J)χI×J .(2)

Recall that g ∈ L2(T) is said to belong to dyadic BMO, to be denoted BMOd(T),
if

sup
I∈D

(
1
|I|

∫
I

|g(t) −mIg|2dt)1/2 < ∞.

By John-Nirenberg’s lemma, this is equivalent to

sup
I∈D

(
1
|I|

∫
I

|g(t) −mIg|pdt
)1/p

< ∞

for any 1 ≤ p < ∞.
Hence g ∈ BMOd(T) if and only if there exists a constant C such that for all

I ∈ D ∑
I′∈D,I′⊆I

|gI′ |2 ≤ C|I|1/2,

or equivalently

sup
I∈D

1
|I|1/p ‖PIg‖p < ∞

for 1 ≤ p < ∞.
The space BMO appears in many different contexts. We shall use that

BMOd(T) = (H1,d(T))∗ where H1,d is defined in terms of the dyadic square func-

tions S, S g =
(∑

I∈D2

χI

|I| |gI |2
)1/2

. That is ,

H1,d(T) = {g ∈ L1(T) : S g ∈ L1(T)}.
Using Carleson measures, this gives rise to a description of BMOd in terms of

symbols g for which the dyadic paraproduct πg,

πg(f) =
∑
I∈D

gImIfhI

or its adjoint operator ∆g, ∆g(f) =
∑
I∈D gIfI

χI

|I| , is bounded on L2(T) (or equiv-
alently, on Lp(T) for 1 < p < ∞).

The situation in two variables it is rather different and much more delicate. One
main reason for the difficulties encountered in the multivariable theory is the failure
of the naive generalization of the Carleson Embedding Theorem to several variables
(see [C], [Fef]). The reader is referred to [ChFef2] for an overview on the theory
and an outline of the main differences.

Several new results (e. g. [FS] and [PS]) further exhibit the differences between
certain BMO spaces on the polydisk defined by multi-variable versions of the dif-
ferent yet equivalent characterizations of BMO(T).

A function f ∈ L2(T2) is said to belong to the rectangular dyadic BMO space,
to be denoted BMOd

rect, if

sup
R=I×J∈R

(
1
|R|

∫
R

|f(t, s) −mIf(s) −mJf(t) −mI×Jf |2dtds
)1/2

< ∞.(3)

Or equivalently,

‖ϕ‖BMOd
rect

= sup
R∈R

1
|R|1/2 ‖PRϕ‖2.
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We will also consider a p-version of the dyadic rectangular norm for 1 ≤ p < ∞,

‖ϕ‖BMOd
rect,p

= sup
R∈R

1
|R|1/p ‖PRϕ‖p.(4)

Here, ‖ ·‖BMOd
rect

= ‖ ·‖BMOd
rect,2

. In the one-variable case, the corresponding norms
are of course all equivalent because of John-Nirenberg’s lemma.

Let us start by defining BMOdprod(T
2) as the dual of H1,d(T2), the space of

functions f ∈ L1(T2) such that S(f) ∈ L1(T2), where S(f) = (
∑
R∈R |fR|2h2

R)1/2.
Although BMOd

prod(T2) cannot be characterized by (3) [Fef], it was shown by
Bernard in the dyadic case [Be] and also by Chang and R. Fefferman in a continuous
version [ChFef1] that BMOd

prod(T2) can also be described as the space of functions
ϕ ∈ L2(T2) for which there exists C > 0 such that

‖ϕ‖prod = sup
Ω⊂T2

1
|Ω|1/2 ‖PΩϕ‖2 < ∞,(5)

where the supremum is taken over all measurable sets Ω ⊆ T2. This immediately
implies BMOdprod ⊆ BMOrect,2.

The connection between both spaces can be also seen from the description of
BMOdprod in terms of the boundedness of the dyadic paraproduct in two variables,

defined by π
(1,2)
b (f) =

∑
R∈R bRmRfhR.

It follows from Chang’s generalization of the Carleson Embedding Theorem (see
[Ch]) that b ∈ BMOdprod if and only if the double paraproduct π

(1,2)
b is bounded on

L2(T2). In our paper the following fact will be rather crucial:

||ϕ||prod ≈ ||π(1,2)
ϕ ||.(6)

An similar characterization for BMOdrect was proved in [PS], Proposition 3.3.1,
namely that b ∈ BMOd

rect if and only if π
(1,2)
b maps L2(T)⊗̂L2(T) boundedly into

L2(T2), where L2(T)⊗̂L2(T) stands for the projective tensor product. This also
implies that BMOd

prod � BMOd
rect (see [Fef] for an alternative approach).

We shall try to better understand the difference between both spaces. Two
approaches are used to this end. First we observe that John-Nirenberg type in-
equalities do not hold in BMOdrect, in the sense that the 2-norm in the definition
of BMOd

rect cannot be replaced by any other p-norm. This solves a question left
open in [FS]. Secondly, we analyse the behaviour of the sweep of functions in the
BMOd

prod and in the BMOd
rect,p spaces.

Our main new tool will be characterizations of BMOd
prod in terms of Haar

multipliers. Recall that sequence of functions (φR)R∈R is called a Haar mul-
tiplier (see (23) or [Per]) on Lp(T2), if the map f =

∑
R∈R fRhR(t, s) �→∑

R∈R φR(t, s)fRhR(t, s) defines a bounded operator on Lp(T2).
We shall say that b ∈ BMOd

mult if {(PRb)}R∈R defines a Haar multiplier on
L2(T2).

Using the characterization of BMOd
prod in terms of dyadic paraproducts, we

observe that b ∈ BMOd
prod if the operator ∆b = (π(1,2)

b̄
)∗ given by ∆b(f) =∑

R bRhRfRhR defines a bounded operator on L2(T2). Hence b ∈ BMOdprod if
and only if (bRhR)R∈R is a Haar multiplier on L2(T2).

On the other hand, letting the Haar multiplier (PR′b)R′∈R act on hR, we see
that 1

|R|1/2 ‖PRb‖2 ≤ ‖b‖mult, implying that BMOd
mult ⊆ BMOd

rect.
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We shall get a description of BMOd
mult in terms of the boundedness of the oper-

ator

Λb = π
(1,2)
b + (π(1,2)

b )∗ + ∆πb
+ (∆πb

)∗,

where ∆πb
(see Definition 2.4) is an operator combining the one-variable paraprod-

uct π and its adjoint. This will allow us to prove that BMOd
mult(T

2) = BMOd
prod(T2)

(see Theorem 2.8).
On the other hand, BMOd

rect can also be described using Λb. We show that
BMOd

rect can be characterized in terms of ”average boundedness” of Λb or in terms
of its boundedness from L2(T)⊗̂L2(T) into L2(T2).

The paper is divided into four sections. The first one is devoted to the intro-
duction of the space BMOd

mult and the proof of some of its properties. We see that
BMOd

mult can be characterized as the space of symbols b for which the operator Λb
is bounded, and that this space coincides with BMOd

prod.
The second section deals with results on sweep functions. We prove the following

formula connecting the boundedness of π
(1,2)
b and ΛSb

(see Lemma 3.2):

π
(1,2)
b

∗
π

(1,2)
b = ΛSb

+ Db,(7)

where Db is bounded if b ∈ BMOdrect,2.
This allows us to see that b ∈ BMOd

prod if and only if Sb ∈ BMOd
prod. We also

obtain a characterization of BMOd
prod in terms of nested commutators with dyadic

martingale transforms, sharpening a result from [PS].
In the third section, we further use the formula (7) to quantify the difference

between the BMO spaces we have considered, and to get a characterization of
BMOd

prod relying only upon the BMOd
rect norm of the n-fold sweeps.

Finally, in the fourth section, we apply the results from the third part together
with interpolation to study the scale of spaces BMOd

rect,p introduced in (4) and show
that these spaces are pairwise distinct. As a corollary, we obtain that BMOd

prod �

∩p≥1 BMOd
rect,p.

2. BMO via Haar multipliers.

Definition 2.1. We shall say that b ∈ BMOdmult if {(PRb)}R∈R defines a Haar
multiplier on L2(T2), i.e. there exists C > 0 such that

‖
∑
R∈R

PRb fRhR‖2 ≤ C‖f‖2

for all f ∈ L2(T2). We define ‖b‖mult as the norm of the corresponding operator.

Let us start by pointing out some simple facts about this space.
Given I ∈ D we write PI for the operator on L2(T) given by (1), and P̃I = PI⊗id

for the corresponding projection on L2(T2),

P̃I(f)(t, s) =
∑

I′∈D,I′⊆I
hI′(t)fI′(s).

Similarly, given J ∈ D2, we write P̃J for id ⊗ PJ .
Of course, P̃I(f)(t, s) = PI(f(s, ·))(t) and PRf = P̃J(P̃If) for R = I × J .
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Proposition 2.2.

L∞(T2) ⊂ BMOdmult(T
2)(8)

BMOd(T) ⊗ BMOd(T) ⊆ BMOdmult(T
2)(9)

Proof. Using (2), one easily obtains the following formula:∑
R∈R

PRbfRhR = fb−
∑
I∈D

(mIb)fIhI −
∑
J∈D

(mJb)fJhJ +
∑
R∈R

mRbfRhR.

Now (8) follows from this expression together with

||
∑
J∈D

(mJb)fJhJ ||2L2(T2) =
∑
J∈D

||mJb fJ ||2L2(T),

since
||

∑
J∈D

(mJb)fJhJ ||2L2(T2) ≤ ||b||∞
∑
J∈D

||fJ ||2L2(T) = ||b||2∞||f ||22,

and the trivial estimates for the terms bf and
∑
R∈R mRbfRhR.

To see (9), note first that for b1 ∈ BMOd and f ∈ L2(T),∑
I∈D

PIb1fIhI = (πb1 + ∆b1)f = (πb1 + (πb̄1)
∗)f.(10)

Therefore (PIb1)I∈D defines a bounded Haar multiplier on L2(T).
Now let b(t, s) = b1(t)b2(s) with b1, b2 ∈ BMOd(T). Then PR(b) = PI(b1)PJ(b2)

and therefore
∑
R∈R

PRbfRhR =
∑
I∈D

PIb1

(∑
J∈D

PJb2fJhJ

)
I

hI .

This yields

||
∑
R∈R

PRbfRhR||22 =
∫

T2
||

∑
I∈D

PIb1(t)

(∑
J∈D

PJb2fJhJ

)
I

(s)hI(t)||22dtds

≤ C||b1||2BMO

∫
T

∑
I∈D

∣∣∣∣∣
∑
J∈D

(PJb2fJhJ)I(s)

∣∣∣∣∣
2

ds

≤ C2||b1||2BMO||b2||2BMO

∑
I∈D

|
∑
J∈D

|fI×J |2

with some absolute constant C > 0.
As announced in the introduction, we first relate this space to BMOd

prod. For
this purpose we introduce the dyadic paraproducts in two variables (see [PS]):

Definition 2.3. Given b ∈ L2(T2), we write

π
(1,2)
b (f) =

∑
R∈R

bRmRfhR

and
∆(1,2)
b (f) = (π(1,2)

b̄
)∗(f) =

∑
R∈R

bRfR
χR
|R| .
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The formula

〈π(1,2)
b (f), g〉 = 〈f,∆(1,2)

b̄
(g)〉 =

∫
T2

b

( ∑
R∈R

mR(f)gRhR

)
dtds(11)

for f, g ∈ H00 completely describe the action of the operators π
(1,2)
b and ∆(1,2)

b .
Let us now define the following mixed operators (see [PS]).

Definition 2.4. Given b ∈ L2(T2), we define the operators π∆b
and ∆πb

by

〈π∆b
(f), g〉 = 〈f,∆πb̄

(g)〉 =
∫

T2
b

( ∑
I×J∈R

mI(fJ)mJ(ḡI)hI×J

)
dtds(12)

for f, g ∈ H00.
We write

Λb = π
(1,2)
b + ∆(1,2)

b + ∆πb
+ π∆b

.

Clearly we have the following expressions:

π
(1,2)
b (f)(t, s) =

∑
I∈D

πbI (mIf)(s)hI(t)(13)

∆(1,2)
b (f)(t, s) =

∑
I∈D

∆bI (fI)(s)h
2
I(t)(14)

∆πb
(f)(t, s) =

∑
I∈D

πbI (fI)(s)h
2
I(t)(15)

π∆b
(f)(t, s) =

∑
I∈D

∆bI (mIf)(s)hI(t).(16)

Lemma 2.5. Let R = I × J ∈ R and denote R+ = I+ × J+ ∪ I− × J− and
R− = I+ × J− ∪ I− × J+ . Then

π
(1,2)
b (hR) = (PR+(b) + PR−(b))hR = (PR+(b) − PR−(b))|R|−1/2(17)

Proof. Using that mR′(hR) �= 0 only if I ′ � I and J ′ � J and that in this case
mR′(hR) = hR(xR′), where xR′ = (tI′ , sJ′) is the center of R, we obtain that

π
(1,2)
b (hR) =

∑
I′�I,J ′�J

bR′hR(xR′)h′
R.

Observe that hR(xR′) = hR(t, s) = 1
|R|1/2 for R′ ⊂ R+ and (t, s) ∈ R+. Similarly

hR(xR′) = hR(t, s) = − 1
|R|1/2 for R′ ⊂ R+ and (t, s) ∈ R−. This gives (17).

Corollary 2.6. Let b ∈ L2(T2). Then b ∈ BMOdprod if and only if (PR+(b) +
PR−(b))hR)R∈R is a Haar multiplier on L2(T2).

Lemma 2.7. Λb(f) =
∑
R∈R PR(b)fRhR.

Proof. Note that for φ, g ∈ H00, we have

φg = πφ(g) + ∆φ(g) + πg(φ).(18)

As in (10), one obtains ∑
J∈D

PJ(φ)gJhJ = πφ(g) + ∆φ(g).(19)
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Combining (19) with the formulas in (13) we get

Λb(f)(t, s) =
∑
I∈D

(πbI + ∆bI )(mIf)(s)hI(t) +
∑
I∈D

(πbI + ∆bI )(fI)(s)h
2
I(t)

=
∑
I∈D

∑
J∈D

PJ(bI)(s)(mIf)JhJ(s)hI(t) +
∑
I∈D

∑
J∈D

PJ(bI)(s)(fI)JhJ(s)h2
I(t)

=
∑
J∈D

(
∑
I∈D

(P̃Jb)I(s)mI(fJ)hI(t))hJ(s) +
∑
J∈D

(
∑
I∈D

(P̃Jb)I(s)(fJ)Ih2
I(t))hJ(s)

=
∑
J∈D

(
πP̃Jb(s,·)(fJ)

)
(t)hJ(s) +

∑
J∈D

(
∆P̃Jb(s,·)(fJ)

)
(t)hJ(s)

=
∑

I×J∈R
P̃I(P̃J(b))(t, s)fI×JhI×J(t, s)

=
∑
R∈R

PR(b)(t, s)fRhR(t, s).

We now are ready to prove our characterization of BMOd
prod in terms of Haar

multipliers.

Theorem 2.8. BMOd
prod = BMOd

mult.

Proof. To see that BMOd
prod ⊆ BMOd

mult, it suffices to see that the boundedness of
π(1,2) implies the boundedness of ∆πb

. This was proved in [PS], we include here a
proof for the sake of completeness.

By (12) and the characterization of BMOd
prod as the dual of H1,d, the space

of functions with integrable square function, we simply need to show that F =∑
I×J∈R mI(fJ)mJ(gI)hI×J(t, s) belongs to H1,d. Note that

S(F )(t, s) =

( ∑
I×J∈R

|mI(fJ)|2|mJ(gI)|2h2
I×J(t, s)

)1/2

.

Therefore

S(F )(t, s) ≤
(∑
J∈D

∑
I∈D

(gI)∗(s)2h2
J(s)(f

∗
J (t))

2h2
I(t)

)1/2

=

(∑
I∈D

(g∗I (s))
2h2
I(t)

)1/2 (∑
J∈D

(f∗
J (t))

2h2
J(s)

)1/2

,

and hence∫
T2

S(F )(t, s)dtfs ≤
(∫

T2

∑
I∈D

(g∗I (s))
2h2
I(t)dtds

)1/2 (∫
T2

∑
J∈D

(f∗
J (s))

2h2
J(t)dtds

)1/2

=

(∑
I∈D

∫
T2

(g∗I (s))
2ds

)1/2 (∑
J∈D

∫
T2

(f∗
J (t))

2dt

)1/2

≤ C

(∑
I∈D

||gI ||22

)1/2 (∑
J∈D

||fJ ||22

)1/2

= C||g||2||f ||2.
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To prove the reverse inclusion BMOd
mult ⊆ BMOd

prod, we shall use the character-
ization of BMOd

prod given in (6).

It is clear that for each measurable set Ω, we have PΩ(b) = PΩ(π(1,2)
b (χΩ)). We

shall show now that
PΩ(π(1,2)

b (χΩ)) = PΩ(Λb(χΩ)).

Let R ∈ R and R ⊆ Ω. Then

〈∆(1,2)
b (χΩ), hR〉 = 〈χΩ, π

(1,2)
b (hR)〉 = |R|−1/2〈χΩ, PR+b− PR−b〉 = 0.

This shows that PΩ(∆(1,2)
b (χΩ)) = 0.

On the other hand, we also have for R = I × J ⊆ Ω that

π∆b
(hR) =

∑
I′�I

bI′×JmI′(hI)χJhI′ .

Using that 〈χΩ, χJhI′〉 = 0 for all I ′ ⊆ I, we obtain PΩ(π∆b
(χΩ)) = 0.

Similarly, PΩ(∆πb
(χΩ)) = 0. Finally,

||PΩ(b)|| = ||PΩ(π(1,2)
b (χΩ))|| = ||PΩ(Λb(χΩ))||

≤ ||Λb(χΩ))|| ≤ ||Λb|||Ω|1/2.

As a consequence of Thm 2.8, we can sharpen Thm 7.7.2 from [PS] and char-
acterize BMOd

prod in terms of the boundedness of nested commutators with dyadic
martingale transforms. This can be understood as a dyadic analogue of the charac-
terization of the continuous product BMO space BMOprod as the space of functions
for which the nested commutator

[H1, [H2, b]] : L2(T2) → L2(T2)

is bounded, where H1 resp. H2 denote the Hilbert transform in the first resp. second
variable on L2(T2). The latter was proved in [FS] and [LF].

Let Σ1, Σ2 be the spaces of all sequences of signs indexed by the elements of
D1, D2, Σ1 = {0, 1}D1 , Σ1 = {0, 1}D2 , and let dσ1 denote the natural product
probability measure on Σ1, which assigns measure 2−n to each cylindrical set of
length n. Let dσ2 denote the corresponding measure on Σ2. Let Σ = Σ1 ×Σ2, with
dσ denoting the product measure, and R = D1 ×D2 as before.

For σ1 = (σ1(I))I∈D1 ∈ Σ1, σ2 = (σ2(J))J∈D2 ∈ Σ2, let Tσ1 , Tσ2 denote the
dyadic martingale transforms

Tσ1 : L2(T2) → L2(T2), f =
∑

I×J∈R
fI×JhI×J �→

∑
I×J∈R

σ1(I)fI×JhI×J ,

Tσ2 : L2(T2) → L2(T2), f =
∑

I×J∈R
fI×JhI×J �→

∑
I×J∈R

σ2(J)fI×JhI×J .

Theorem 2.9. Let b ∈ L2(T2). Then the following are equivalent:

(i) b ∈ BMOd
prod

(ii) The nested commutators

[Tσ1 , [Tσ2 , b]] : L2(T2) → L2(T2)(20)

are uniformly bounded for all σ1 ∈ Σ1, σ2 ∈ Σ2.
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(iii) The nested commutators [Tσ1 , [Tσ2 , b]] : L2(T2) → L2(T2) are bounded on
average, in the sense that the map

Φb : L2(T2) → L2(Σ1 × Σ2 × T2), f �→ [Tσ1 , [Tσ2 , b]]f

is bounded.

In this case, we have

‖b‖BMOd
prod

≈ ‖Λb‖ ≤ ‖Φb‖ ≤ sup
σ1∈Σ1,σ2∈Σ2

‖[Tσ1 , [Tσ2 , b]]‖ ≤ 4‖Λb‖.(21)

Proof. We use the ideas of the proofs of Thm 3.4, Cor 4.1 in [GPTV], adapted to
the two-variable case, and of Thm 7.7.2 in [PS].

¿From [PS], p 493, we know that

[Tσ1 , [Tσ2 , b]] = [Tσ1 , [Tσ2 ,Λb]].

Therefore supσ1∈Σ1,σ2∈Σ2
‖[Tσ1 , [Tσ2 , b]]‖ ≤ 4‖Λb‖. The second inequality in (21) is

obvious. Finally, for f ∈ L2(T2) one has

(22)

‖Φbf‖2 =
∫ ∫

Σ1×Σ2

‖[Tσ1 , [Tσ2 , b]]f‖2
L2(T2)dσ1dσ2

=
∫ ∫

Σ1×Σ2

‖
∑

I×J∈R
σ1(I)σ2(J)[P̃I , [P̃J , b]]f‖2

L2(T2)dσ1dσ2

=
∑

I×J∈R
‖[P̃I , [P̃J , b]]f‖2

L2(T2)

=
∑

I×J∈R
‖[P̃I , [P̃J ,Λb]]f‖2

L2(T2)

=
∑

I×J∈R
‖(P̃I P̃JΛb − P̃IΛbP̃J − P̃JΛbP̃I + ΛbP̃I P̃J)f‖2

L2(T2)

≥
∑

I×J∈R
‖P̃I P̃JΛbf‖2 = ‖Λbf‖2,

since P̃IΛbP̃I = 0 and P̃JΛbP̃J = 0. This proves the first inequality in (21).
The martingale transformation approach is also interesting in the study of

BMOd
rect. Although Λb is in general not bounded for b ∈ BMOd

rect, the space
BMOd

rect can be characterized in terms of ”average boundedness” of Λb, and
also in terms of the boundedness of Λb from L2(T)⊗̂L2(T) into L2(T2). For
σ = (σ1, σ2) ∈ Σ, let Tσ = Tσ1Tσ2 : L2(T2) → L2(T2).

Theorem 2.10. For ϕ ∈ H00, ‖ϕ‖BMOd
rect

is equal to the norm of the operator

Ψϕ : L2(T2) → L2(T2 × Σ), f �→ ΛϕTσf.

Proof. Let f ∈ L2(T2) and ϕ ∈ H00. From Lemma 2.7 we have

Λϕf =
∑
R∈R

PRϕfRhR.(23)
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Thus ∫
Σ

∫
T

‖ΛϕTσf‖2dtdσ =
∫

T

∫
Σ

∥∥∥∥∥
∑
R∈R

σ(R)(PRϕ)(t)fRhR(t)

∥∥∥∥∥
2

dσdt

=
∫

T

∑
R∈R

|fR|2
χR(t)
|R| |(PRϕ)(t)|2dt

=
∑
R∈R

|fR|2
1
|R| ‖PRϕ‖

2.

Thus the operator norm of Ψϕ is supR∈R
1

|R|1/2 ‖PRϕ‖ = ‖ϕ‖BMOd
rect

.

Proposition 2.11. If b ∈ BMOdrect then Λb maps L2(T)⊗̂L2(T) into L2(T2).

Proof. Assume f(t, s) = f1(t)f2(s) with ||f1|| = ||f2|| = 1. Then we have∑
R∈R

PRb fRhR =
∑
I∈D

P̃I(
∑
J∈D

P̃Jb(f2)JhJ)(s)(f1)IhI(t)

Writing g(t, s) =
∑
J∈D PJ(b(t, ·))(s)(f2)JhJ(s), we obtain

||
∑
R∈R

PRbfRhR||22 =
∫

T

∫
T

|
∑
I∈D

PI(g(·, s))(t)(f1)IhI(t)|2dtds.

Now let us consider g as a function in t taking values in the Hilbert space L2(T).
Recall that as in the scalar case, the Haar multiplier norm of (PIg)I∈D is controlled
by the vector BMOd(T) norm of g given by

sup
I∈D

1
|I|1/2 ‖PIg‖L2(T,L2(T)).

Thus

sup
||f1||=1

∫
T

||
∑
I∈D

PI(g(·, s))(t)(f1)IhI(t)||2L2(T)dt ≤ C sup
I

1
|I| ||PIg||

2
L2(T,L2(T)).

Notice now that

PI(
∑
J∈D

PJ(b(t, ·))(s)(f2)JhJ(s)) =
∑
J∈D

PI×J(b)(t, s)(f2)JhJ(s).

On the other hand, applying a corresponding argument to the function (P̃Ib)(t, s) =∑
J∈D(PI×Jb)(t, s)hJ(s) understood as a function in s which takes values in L2(T),

we obtain for ||f2||2 = 1

||PIg||2L2(T,L2(T)) =
∫

T2
|
∑
J∈D

PI×J(b)(t, s)(f2)JhJ(s)|2dtds

=
∫

T

||
∑
J∈D

PI×J(b)(·, s)(f2)JhJ(s)||2L2(T)ds

≤ C sup
J

1
|J | ‖PI×J(b)‖

2
L2(T,L2(T)) ≤ C‖I|‖b‖2

BMOd
rect

.

This finishes the proof of the proposition.
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3. Sweeps of functions in BMO.

Let us now recall that the (dyadic) sweep of a function ϕ ∈ L2(T2) is defined as
follows:

Sϕ =
∑
R∈R

|ϕR|2
χR
|R| ,

i.e. Sϕ = S(ϕ)2.
We list some properties of the sweep which will be relevant for our purposes, the

proofs of which are elementary and left to the reader.

Proposition 3.1. (i) Sϕ(t, s) =
∑
I∈D SϕI

(s)χI(t)
|I| .

(ii) Sϕ = ∆(1,2)
ϕ (ϕ).

(iii) PΩ(Sϕ) = PΩ(SPΩϕ).
(iv) If p > 1

2 then ϕ ∈ L2p(T2) if and only if Sϕ ∈ Lp(T2).
(v) If Sϕ ∈ L∞ then ϕ ∈ BMOdprod.
(vi) ||Sϕ||2 ≤ C||ϕ||BMOd

prod
||ϕ||2.

Here it is the basic result relating the boundedness of π
(1,2)
b and ΛSb

.

Lemma 3.2. Let b ∈ H00. Then

π
(1,2)
b

∗
π

(1,2)
b = ΛSb

+ Db,

where Db is a linear operator on L2(T2) with ‖Db‖ ≤ C‖b‖2
BMOd

rect
, and C > 0 is

an absolute constant.

Proof. Let R = I × J , R′ = I ′ × J ′ ∈ R.
First, observe that

(24)
〈
π

(1,2)
b

∗
π

(1,2)
b hR, hR′

〉

=

〈 ∑
I′′×J′′∈D1×D2

hI′′×J′′ bI′′×J′′ mI′′×J′′(hR),
∑

I′′×J′′∈D1×D2

hI′′×J′′ bI′′×J′′ mI′′×J′′(hR′)

〉

=
∑

I′′×J′′∈D1×D2,I′′�I,J ′′�J

|bI′′×J′′ |2 mI′′(hI)mI′′(hI′)mJ′′(hJ)mJ′′(hJ′).

We now do a kind of triangular truncation with respect to the indices I, I ′, J, J ′.

(i) I � I ′, J � J ′.〈
π

(1,2)
Sb

hR, hR′

〉
= 〈Sb, hR′〉mR′(hR)

=

〈 ∑
I′′×J′′∈D1×D2

χI′′×J′′

|I ′′||J ′′| |bI′′×J′′ |2, hR′

〉
mR′(hR)

=
∑

I′′×J′′∈D1×D2

|bI′′×J′′ |2 mI′′(hI′)mJ′′(hJ′) mI′(hI)mJ′(hJ).

This is nonzero only if I ′ � I and J ′ � J . In this case, we get contributions
only for I ′′ � I ′ and J ′′ � J ′, and the expression agrees with (24).



12 OSCAR BLASCO AND SANDRA POTT

(ii) I � I ′, J � J ′. Observe that

〈∆(1,2)
Sb

hR, hR′〉 = 〈hR, π(1,2)
Sb

hR′〉 = 〈π(1,2)
Sb

hR′ , hR〉.

As shown above, this equals 〈π(1,2)
b

∗
π

(1,2)
b hR′ , hR〉 if I ′ � I and J ′ � J , and

is 0 otherwise.

(iii) I � I ′, J � J ′.

〈
π∆Sb

hR, hR′

〉
=

〈 ∑
I′′×J′′∈D1×D2

SbI′′×J′′hI′′
χJ′′

|J ′′|mI′′(hRJ′′), hR′

〉

=

〈 ∑
I′′∈D1

SbI′′×JhI′′
χJ
|J |mI′′(hI), hR′

〉

=SbI′×JmI′(hJ)mJ(hI′) = 〈Sb, hI′×J〉mI′(hI)mJ(hJ′)

=

〈 ∑
I′′×J′′∈D1×D2

χI′′×J′′

|I ′′||J ′′| |bI′′×J′′ |2, hI′×J
〉

mI′(hI)mJ(hJ′)

=
∑

I′′×J′′∈D1×D2

|bI′′×J′′ |2mI′′(hI′)mJ′′(hJ)mI′(hI)mJ(hJ′).

This is nonzero only for I ′ � I and J ′ � J . In this case, the sum has only
contributions for I ′′ � I ′ and J ′′ � J , and agrees with (24).

(iv) I ′ � I and J ′ � J . Note that 〈∆πSb
hR, hR′〉 = 〈π∆Sb

hR′ , hR〉. As shown
above, this is only nonzero for I ′ � I and J ′ � J , and agrees with (24) in this
case.

(v) I ′ = I or J = J ′. Let f ∈ L2(T2). Then∑
I∈D1

∑
J,J ′∈D2

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI×J′fI×J′〉

=
∑
I∈D1

1
|I|

∑
I′′�I

∑
J′′∈D2

|bI′′×J′′ |2fI×JfI×J′mJ′′(hJ)mJ′′(hJ′)

=
∑
I∈D1

‖πbIfI‖2,

where for each I, fI stands for the one-variable function
∑
J∈D2

hJfI×J , and

bI for the function
∑
J∈D2

hJ
1

|I|1/2

(∑
I′′�I |bI′′×J |2

)1/2

. It is easy to see that

‖bI‖BMOd ≤ ‖b‖BMOd
rect

for all I ∈ D1. Thus the above sum is bounded by
c ‖b‖2

BMOd
rect

‖f‖2, where c is an absolute constant.
The same estimate holds for the terms corresponding to J = J ′.

Now we have counted the terms corresponding to I = I ′, J = J ′ twice and need to
estimate them separately. Let f ∈ L2(T2). Then

(25)
∑
I∈D1

∑
J∈D2

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI×JfI×J〉

=
∑
I∈D1

∑
J∈D2

1
|I||J |

∑
I′′�I,J ′′�J

|bI′′×J′′ |2|fI×J |2 ≤ ‖b‖2
BMOd

rect
‖f‖2.
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Defining Db now by

(26) 〈Dbf, f〉 =
∑

I×J,I′×J′∈R,I′=I
〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI′×J′fI′×J′〉 +

∑
I×J,I′×J′∈R,I′ �=I,J ′=J

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI′×J′fI′×J′〉,

we obtain the statement of the lemma.

Now we are ready to state the main result of this section.

Theorem 3.3. Let b ∈ BMOdrect,2. Then b ∈ BMOdprod if and only if Sb ∈
BMOdprod.

Proof. We will first show that there exist C > 0 such that

‖Sb‖prod ≤ C‖b‖2
prod.(27)

Indeed, by Chang’s Theorem [Ch], [ChFef2] it is sufficient to show that there
exists a constant C > 0 with

‖PΩSb‖2 ≤ C‖b‖2
prod|Ω|

for all Ω ⊆ T2 measurable (see (5)). Using Proposition 3.1, we obtain

‖PΩSb‖2 = ‖PΩSPΩb‖2 ≤ ‖SPΩb‖2 ≤ ‖PΩb‖prod‖PΩb‖2 ≤ ‖b‖2
prod|Ω|(28)

For the converse, assume that Sb ∈ BMOdprod. Then ΛSb
is bounded by Thm

2.8. Now Lemma 3.2 finishes the proof.

Remark. The first implication can also be shown with the John-Nirenberg The-
orem for product BMO, which was proved in [ChFef1] (for a dyadic version, see
[T]).

The sweep can be understood as a bilinear map. For f, g ∈ H00, let Sf,g =∑
R∈R

χR

|R|frgr, so Sf = Sf,f̄ .

Corollary 3.4. S : BMOd
prod ×BMOd

prod → BMOd
prod is bounded.

Proof. The Cauchy-Schwarz inequality gives the pointwise inequality Sf,g ≤
(Sf )1/2(Sg)1/2 for f, g ∈ H00. Let Ω ⊆ T2 be measurable. Using an adaption
of 3.1(iii), we see that

‖PΩSf,g‖2 = ‖PΩSPΩf,PΩg‖2 ≤ ‖SPΩf,PΩg‖2 ≤ ‖(SPΩf )
1/2(SPΩg)

1/2‖2

≤ ‖SPΩf‖
1/2
2 ‖SPΩg‖

1/2
2 ≤ |Ω|1/2‖f‖prod‖g‖prod

by (28).
Another application of Lemma 3.2 yields the following result.

Theorem 3.5. Let ‖ · ‖∗ be an positive homogeneous function of degree 1 on H00

such that
(i) There exists c > 0 such that ‖ · ‖BMOd

rect
≤ c‖ · ‖∗

(ii) There exists k > 0 such that ‖Sϕ‖∗ ≤ k‖ϕ‖2
∗.

Then there exists a constant C̃ such that for all ϕ ∈ H00, ‖ϕ‖BMOd
prod

≤ C̃‖ϕ‖∗.
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Proof. Write
π∗
ϕπϕ = π

(1,2)
Sϕ

+ π
(1,2)
Sϕ

∗
+ π∆Sϕ

+ π∆Sϕ

∗ + Dϕ,

with ‖Dϕ‖ ≤ C‖ϕ‖2
BMOd

rect
as above.

Let En = span{hI×J : I ∈ D1, J ∈ D2, |I|, |J | ≥ 2−n}, let Pn be the orthogonal
projection onto En in L2(T2), and let

c(n) = sup{‖πϕ|En‖, ‖ϕ‖∗ ≤ 1}.
A trivial estimate shows that c(n) < ∞ for each n ∈ N. For n ∈ N and ε > 0,
choose fn ∈ En and ϕ ∈ H00 with ‖ϕ‖∗ = 1, ‖fn‖ = 1 and ‖πϕfn‖ ≥ (1 − ε)c(n).
Then

(29) (1 − ε)2c(n)2 ≤ ‖πϕfn‖2 = 〈π∗
ϕπϕfn, fn〉

= 〈π(1,2)
Sϕ

fn, fn〉 + 〈π(1,2)
Sϕ

∗
fn, fn〉 + 〈π∆Sϕ

fn, fn〉 + 〈π∗
∆Sϕ

fn, fn〉 + 〈Dϕfn, fn〉.

By definition of c(n), the first two terms can be estimated by c(n)‖Sϕ‖∗ ≤ c(n)k.
For the next two terms, we have to remark that that

〈π∆Sϕ
fn, fn〉 = 〈π∆PnSϕ

fn, fn〉 ≤ ‖π∆PnSϕ
‖ ≤ c̃‖π(1,2)

PnSϕ
‖ ≤ c̃‖π(1,2)

Sϕ
|En‖(30)

Here, we use as in the proof of Thm 2.8 that there exists a constant c̃ such that
‖π∆b

‖ ≤ c̃‖π(1,2)
b ‖ for all b ∈ H00 (see [PS], Thm 7.7.2).

The last term is easily controlled by 〈Dϕfn, fn〉 ≤ C‖ϕ‖2
BMOd

rect
. Altogether, we

obtain that

‖π(1,2)
ϕ |En‖2 ≤ 4c̃‖π(1,2)

Sϕ
|En‖ + C‖ϕ‖2

BMOd
rect

.(31)

With ‖ϕ‖BMOd
rect

≤ c‖ϕ‖∗ and ‖π(1,2)
Sϕ

|En
‖ ≤ c(n)‖Sϕ‖∗ ≤ kc(n)‖ϕ‖2

∗, it follows
that

(1 − ε)2c(n)2 ≤ 4c̃kc(n) + c2C(32)

Thus c(n) ≤
√

4c̃2k2 + Cc2 + 2c̃k. With C̃ =
√

4c̃2k2 + Cc2 + 2c̃k, it follows that
‖πϕ‖ ≤ C̃‖ϕ‖∗.

We can now characterize BMOdprod in terms of the BMOdrect,2-norm.

Theorem 3.6. Let ϕ ∈ BMOd
rect(T

2). Then ϕ ∈ BMOdprod if and only if

(‖S(n)
ϕ ‖1/2n

BMOd
rect

)n∈N is bounded, where S
(n)
ϕ is the n-fold sweep of φ, defined re-

cursively by S
(n)
ϕ = S

(n−1)
Sϕ

.

Proof. By Thm 3.3, we have for each n ∈ N

‖S(n)
ϕ ‖BMOd

rect
≤ ‖S(n)

ϕ ‖BMOd
prod

≤ C · C2 · · ·C2n−1‖ϕ‖2n

BMOd
prod

≤ C2n‖ϕ‖2n

BMOd
prod

,

and consequently
‖S(n)
ϕ ‖1/2n

BMOd
rect

≤ C‖ϕ‖BMOd
prod

.

Conversely, the map ϕ �→ supn∈N ‖S(n)
ϕ ‖1/2n

BMOd
rect

clearly defines a positive homoge-
neous function on H00 with satisfies conditions in Theorem 3.5.

Another consequence of Theorem 3.5 is

Corollary 3.7. S does not map BMOd
rect ×BMOd

rect boundedly into BMOd
rect.
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Proof. We know that the ‖ · ‖prod norm cannot be controlled by the ‖ · ‖rect norm.
So Condition (ii) in Thm 3.5 cannot hold, and in particular S does not map
BMOd

rect ×BMOd
rect boundedly into BMOd

rect.

4. The scale BMOdrect,p.

Recall that for 1 ≤ p < ∞, a function ϕ ∈ L2(T2) is said to belong to BMOdrect,p
if

‖ϕ‖rect,p = sup
R∈R

1
|R|1/p ‖PRϕ‖p < ∞.

Note that BMOdrect,p2 ⊆ BMOdrect,p1 for p1 ≤ p2.
The reader should also be aware that functions in BMOdrect,p are actually in

Lp(T2), due to the identities mI(f) = mI(PI×Tf) and mJ(f) = mI(PT×Jf).
The following proposition characterizes the behaviour of the BMOdrect,p norms

under the sweep.

Proposition 4.1. Let p > 1
2 and let Cp = || S ||L2p→L2p . Then

‖Sϕ‖rect,p ≤ 4C2
p‖ϕ‖2

rect,2p.

Proof. Since PR(Sϕ) = PR(SPRϕ) and ||PR(g)||p ≤ 4||g||p, we obtain

‖Sϕ‖rect,p ≤ 4 sup
R∈R

1
|R|1/p ‖SPR(ϕ)‖p ≤ 4C2

p sup
R∈R

1
|R|1/p ‖PR(ϕ)‖2

2p.

This gives the result.
It is known that BMOdprod � BMOdrect,2. Indeed, this is basically the content

of Carleson’s original counterexample [C] (for the continuous case, see [Fef]). As
pointed out in [Fef], the example in [C] implies that BMOdrect,2 � L4(T2).

We shall improve this by showing that actually BMOdprod � BMOdrect,p for all
p. We will show that for any p2 > p1 ≥ 1, BMOdrect,p1 � Lp2(T2) and therefore in
particular BMOdrect,p1 � BMOdrect,p2 . For the case p1 = 1, p2 = 2, this answers a
question posed in [FS].

As a corollary, we show that BMOd
prod �

⋂
p≥1 BMOdrect,p.

Theorem 4.2. Let p ≥ 2. Then BMOdprod ⊆ BMOdrect,p .
Moreover

||ϕ||rect,p ≤ C||ϕ||1−2/p
prod ||ϕ||2/prect,2(33)

Proof. Let us first show that BMOdprod ⊆ Lp(T2) and

||ϕ||p ≤ C||ϕ||1−2/p
prod ||ϕ||2/p2(34)

For p = 2k , k ∈ N, we shall prove (34) by induction.
It is obvious for k = 1. For k = 2 we have

||ϕ||24 = ||Sϕ||2 = ||∆(1,2)
ϕ (ϕ)||2 ≤ C||ϕ||prod||ϕ||2.(35)

Assume it holds for pk = 2k.

||ϕ||2pk+1
= ||Sϕ||pk

≤ C||Sϕ||1−2/pk

prod ||Sϕ||2/pk

2 .

Now from (27) and (35) we obtain
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||ϕ||pk+1 ≤ C||ϕ||1−2/pk

prod ||ϕ||2/pk

4 ≤ C||ϕ||1−2/pk+1
prod ||ϕ||2/pk+1

2 .

Now the general case follows by interpolation.
Given p > 2 and p �= 2k for any k ∈ N, find m ∈ N such that 2m−1 < p < 2m.

Write 1
p = 1−θm

2m−1 + θm

2m . Now apply the previous case combined with

||ϕ||p ≤ ||ϕ||1−θm

2m−1 ||ϕ||θm
2m .

Let us use (34) to obtain the desired estimate for the BMOdrect,p-norm. Given
R ∈ R we have

||PRϕ||p ≤ C||PRϕ||1−2/p
prod ||PRϕ||2/p2 ≤ C||ϕ||1−2/p

prod ||ϕ||2/prect,2|R|1/p.
This finishes the proof.

Proposition 4.3. Let 2 < p. There exists φ ∈ BMOdrect,2 \Lp(T2).
In particular BMOdprod ⊆ BMOdrect,p � BMOdrect,2.

Proof. We shall find a sequence ϕN such that supN ||ϕN ||rect,2 < ∞ but
supN ||ϕN ||p = ∞. A standard argument then gives the existence of φ.

¿From Carleson’s construction [C] we know that for each N ∈ N there exists a
collection of dyadic rectangles ΦN such that∑

R∈ΦN

|R| = 1(36)

| ∪R∈ΦN
R| < 1

N
(37)

∑
R∈ΦN ,R⊆R′

|R| ≤ C|R′|, R′ ∈ R(38)

where C is a constant independent of N .
Defining

ϕN =
∑
R∈ΦN

|R|1/2hR

we have that
||ϕN ||2 = 1, ||ϕN ||rect,2 ≤ C

but, since supp(ϕN ) ⊂ ∪R∈ΦN
R,

||ϕN ||p ≥ | ∪R∈ΦN
R| 1p− 1

2 ≥ N
1
2− 1

p .

We now can answer in the negative the above mentioned question of C. Sadosky
and S. Ferguson posed in [FS].

Corollary 4.4. There exists φ ∈ BMOdrect,1 \ ∪p>1 Lp(T2). In particular, for each
p > 1, BMOdrect,p � BMOdrect,1, and the norms ‖ · ‖rect,1 and ‖ · ‖rect,p are not
equivalent.

Proof. We use the sequence of functions (ϕn)n∈N with

‖ϕn‖rect,2 ≤ C and ||ϕn||p ≥ n1/2−1/p

for each n ∈ N, p > 2 from Proposition 4.3.
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Define φ =
∑∞
n=1

1
n2 Sϕ2n . Then φ ∈ BMOrect,1 by Proposition 4.1, but

‖Sϕ2n‖p ≈ ‖ϕ2n‖2
2p ≥ 2n(1−1/p) for each n ∈ N, p > 1 and consequently

φ /∈ ∪p>1L
p(T2).

To differentiate the spaces BMOdrect,p and BMOdprod we shall introduce the fol-
lowing coefficients.

Definition 4.5. Let En = span{hI×J : I ∈ D1, J ∈ D2, |I|, |J | ≥ 2−n} and let Pn
be the orthogonal projection onto En in L2(T2).

For each q ≥ 1 and each n ∈ N

c(n, q) = sup{‖πϕ‖ : ϕ ∈ En, ‖ϕ‖rect,q ≤ 1},
and for p ≥ q,

a(n, p, q) = sup{‖ϕ‖rect,p : ϕ ∈ En, ‖ϕ‖rect,q ≤ 1},
We first analyse the behaviour of these constants.
Of course we have

c(n, p2) ≤ c(n, p1), p1 ≤ p2(39)

a(n, p, q1) ≤ a(n, p, q2), q1 ≤ q2(40)

a(n, p2, q) ≤ a(n, p1, q), p1 ≤ p2.(41)

If p ≥ q, clearly

c(n, q) ≤ a(n, p, q)c(n, p).(42)

Let us now extend Therorem 4.2.

Theorem 4.6. Let p > q ≥ 2 and ϕ ∈ BMOdprod. If q ≤ 2k ≤ p for some k ∈ N
then

||ϕ||rect,p ≤ Cp,q||ϕ||1−q/pprod ||ϕ||q/prect,q.(43)

In particular, for p > q1 ≥ q2 ≥ 2 we have

a(n, p, q2) ≤ Cpc(n, q2)1−q1/pa(n, q1, q2)q1/p.(44)

Proof. We shall see first that

||ϕ||p ≤ Cp,q||ϕ||1−θprod||ϕ||θq(45)

for the above values of θ = q/p. We do this in several steps.
First suppose that q = 2n for some n ∈ N. Theorem 4.2 gives the case n = 1.

Assume that the result is true for n ≥ 2, and let us consider the case q = 2n+1.
Let p > 2n+1. Applying the induction assumption to Sϕ for p/2, we get

||ϕ||2p ≈ ||Sϕ||p/2
≤ C||Sϕ||1−2n+1/p

prod ||Sϕ||2
n+1/p

2n

≤ C||ϕ||2(1−2n+1/p)
prod ||ϕ||2

n+2/p
2n+1 .

This shows that
||ϕ||p ≤ C||ϕ||1−2n+1/p

prod ||ϕ||2
n+1/p

2n+1 .
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Let us now proceed to the general case. We may assume that q < 2k ≤ p for
some k ∈ N . We can apply the previous case for n = k together with interpolation.
Writing 1

2k = 1−α
q + α

p , we obtain

||ϕ||p ≤ C||ϕ||1−2k/p
prod ||ϕ||2

k/p

2k

≤ C||ϕ||1−2k/p
prod (||ϕ||1−αq ||ϕ||αp )2

k/p

Consequently

||ϕ||1−α2k/p
p ≤ C||ϕ||1−2k/p

prod ||ϕ||(1−α)2k/p
q .

Note that (1 − α)2k/q = 1 − α2k/p. Hence we get with θ = q/p that

||ϕ||p ≤ C||ϕ||1−θprod||ϕ||θq .
To finish the proof, note that for each R ∈ R,

||PRϕ||p ≤ Cp,q||PRϕ||1−q/pprod ||PRϕ||q/pq
≤ Cp,q||ϕ||1−q/pprod ||ϕ||q/prect,q|R|1/p.

Let us now establish a further connection between the constants introduced in
4.5.

Theorem 4.7. There exist K1 > 0 and K2 > 0 such that for all n ∈ N and p ≥ 1

c2(n, 2p) ≤ K1C
2
pc(n, p) + K2,

where Cp = || S ||L2p→L2p .

Proof. Write
π∗
ϕπϕ = ΛSϕ

+ Dϕ,

with ‖Dϕ‖ ≤ C‖ϕ‖2
BMOd

rect
as above.

For n ∈ N, p ≥ 1 and ε > 0, choose fn ∈ L2(T2) and ϕ ∈ En with ‖ϕ‖rect,2p = 1,
‖fn‖2 = 1 and ‖πϕfn‖2 ≥ (1 − ε)c(n, 2p). Then

(1 − ε)2c(n, 2p)2 ≤ ‖πϕfn‖2
2 = 〈π∗

ϕπϕfn, fn〉 = 〈ΛSϕ
fn, fn〉 + 〈Dϕfn, fn〉.

Therefore, we obtain that

(1 − ε)2c(n, 2p)2 ≤ ‖ΛSϕ
‖ + C‖ϕ‖2

BMOd
rect

.(46)

Since ||ϕ||rect,2p = 1, Proposition 4.1 implies ||Sϕ||rect,p ≤ 4C2
p . Therefore, since

‖ϕ‖rect,2 ≤ ‖ϕ‖rect,2p, it follows that

(1 − ε)2c(n, 2p)2 ≤ 4C2
pc(n, p) + C.(47)

Using (42) we get the second part.

Corollary 4.8. Let p ≥ 1. Then BMOdprod � BMOdrect,p .

Proof. Observe first that Proposition 4.3 implies that

lim
n→∞

c(n, 2) = ∞.(48)

This shows that BMOdprod � BMOdrect,p for any 1 ≤ p ≤ 2.
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On the other hand, the estimates (42) and (44) in the case q = q1 = q2 imply
that if p > q ≥ 2 with q ≤ 2k ≤ p for some k,

cq/p(n, q) ≤ Cc(n, p),(49)

where C is independent of n.
Hence BMOdprod = BMOdrect,p for some p > 2 would imply supn c(n, p) < ∞ and

therefore supn c(n, 2) < ∞, contradicting (48).

The particular case p = 4 means that a question left open in [PS] can be answered
in the negative. There, it was asked whether the condition

(50) ‖(π(1,2)
b )∗π(1,2)

b hI′f‖2 =
1
|I ′|

∥∥∥∥∥∥
∑

I×J∈D1×D2,I�I′

χI×J
|I||J | |bIJ |

2mJf

∥∥∥∥∥∥
2

L2(T2)

≤ C‖f‖L2(T) (f ∈ L2(T), I ′ ∈ D1)

((27) and (28) in [PS]) already implies that b ∈ BMOd
prod. Note that f here denotes

a function in the second variable. We know from Prop 4.1 that b ∈ BMOrect,4
implies Sb ∈ BMOd

rect. By Lemma 3.2,

‖(π(1,2)
b )∗π(1,2)

b hI′f‖ = ‖(ΛSb
+ Db)hI′f‖,

where Db is bounded on L2(T2) and ΛSb
maps L2(T)⊗̂L2(T) boundedly into L2(T2)

by Prop 2.11. Thus b ∈ BMOrect,4 implies (50). This condition is therefore not
sufficient for b ∈ BMOd

prod.
As pointed out in [PS], this has also consequences for the study of operator-valued

Carleson measures, in the sense that a certain vector BMO condition of the sweep
of an operator-valued measure does not imply boundedness of the corresponding
vector Carleson embedding.

We can further show that even the intersection of all BMOdrect,p spaces is still
bigger than BMOd

prod.

Corollary 4.9.
BMOd

prod �
⋂
p≥1

BMOdrect,p .

Proof. Obviously ∩p≥1 BMOdrect,p = ∩p∈N BMOdrect,p. With the locally convex
topology defined by the increasing sequence of seminorms (‖ · ‖rect,p)p∈N, the latter
is a metrizable locally convex linear space. Since each of the BMOdrect,p is complete
in ‖ · ‖rect,p, ∩p∈N BMOdrect,p is complete in this topology and therefore a Fréchet
space. We know from Thm 4.2 that BMOd

prod ⊆
⋂
p≥1 BMOdrect,p, and that the

embedding is continuous with respect to the norm topology on BMOd
prod and the

locally convex topology on
⋂
p≥1 BMOrect,p. Let us assume towards a contradiction

that the embedding is surjective. Then the open mapping theorem implies that the
locally convex topology on

⋂
p≥1 BMOdrect,p is normable with ‖ · ‖prod and therefore

contains a nonempty open neighbourhood of 0 which is bounded with respect to
‖ · ‖prod. Since the family (‖ · ‖rect,p)p∈N is increasing, this means that there exists
p ∈ N and ε > 0 such that ‖b‖prod < 1 whenever ‖b‖rect,p < ε, in contradiction to
Corollary 4.8.
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We will now separate the BMOdrect,p spaces. Note that for Corollary 4.4 means
that

lim
n→∞

a(n, p, 1) = ∞(51)

for all p > 1.
Let us see that this holds in general.

Corollary 4.10. Let p > q ≥ 1. Then BMOdrect,p � BMOdrect,q .

Proof. We have to show that limn→∞ a(n, p, q) = ∞.
It suffices to prove limn→∞ a(n, q + ε, q) = ∞ for sufficiently small ε. For fixed

q > 1, choose ε > 0 and k ∈ N such that q < q + ε < 2k ≤ 2q.
Using Theorem 4.7, (42) and (49), we obtain constants C1, C2 and C3 indepen-

dent of n such that

c2(n, 2q) ≤ C1c(n, q) ≤ C1C2a(n, q+ε, q)c(n, q+ε) ≤ C1C2C3a(n, q+ε, q)c(n, 2q)
2p

p+ε .

This shows that
c(n, 2q)

2ε
p+ε ≤ Ca(n, q + ε, q)

where C is independent of n. Now the result follows from Corollary 4.8.

5. Acknowledgement.

We thank C. Sadosky for fruitful discussions.

References
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