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Abstract. We investigate a scale of dyadic operator-valued BMO spaces,
corresponding to the different yet equivalent characterizations of dyadic BMO

in the scalar case. In the language of operator spaces, we investigate different

operator space structures on the scalar dyadic BMO space which arise naturally
from the different characterisations of scalar BMO. We relate some of these

operator BMO classes to each other by forming certain norm averages over
“transformed” versions of the original operator function.

Furthermore, we investigate a connection between John-Nirenberg type in-

equalities and Carleson-type inequalities via a product formula for paraprod-
ucts.

1. Introduction

Let D denote the collection of dyadic subintervals of the unit circle T, and let
(hI)I∈D, where hI = 1

|I|1/2 (χI+ − χI−), be the Haar basis of L2(T). For I ∈ D
and φ ∈ L2(T), let φI denote the formal Haar coefficients

∫
I
φ(t)hIdt, and mIφ =

1
|I|
∫

I
φ(t)dt denote the average of φ over I. We write PI(φ) =

∑
J⊆I φJhJ .

We will use the notation “≈” to indicate equivalence of expression up to an
absolute constant, and “.”, “&” for the corresponding one-sided estimates.

We say that φ ∈ L2(T) belongs to dyadic BMO, written φ ∈ BMOd(T), if

(1) sup
I∈D

(
1
|I|

∫
I

|φ(t)−mIφ|2dt)1/2 < ∞.

It is well-known that this has the following equivalent formulations:

(2) sup
I∈D

1
|I|1/2

‖PI(φ)‖L2 < ∞,

(3) sup
I∈D

1
|I|

∑
J∈D,J⊆I

|φJ |2 < ∞,

(4) πφ : L2(T) → L2(T), f =
∑
I∈D

fIhI 7→
∑
I∈D

φI(mIf)hI

defines a bounded linear operator on L2(T).
Of course, due to John-Nirenberg’s lemma, one can replace the L2(T) norm in

(1) and (2) by any Lp-norm. That is, for 0 < p < ∞, we have φ ∈ BMOd(T) if and
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only if

(5) sup
I∈D

(
1
|I|

∫
I

|φ(t)−mIφ|pdt)1/p = sup
I∈D

1
|I|1/p

‖PI(φ)‖Lp < ∞.

For real-valued functions, we can also replace the boundedness of πφ by the bound-
edness of its adjoint operator

(6) ∆φ : L2(T) → L2(T), f =
∑
I∈D

fIhI 7→
∑
I∈D

φIfI
χI

|I|
.

Another equivalent formulation comes from the duality

(7) BMOd(T) = (H1
d(T))∗,

where H1
d(T) consists of those functions φ ∈ L1(T) such that Sφ ∈ L1(T), where

Sφ = (
∑

I∈D |φI |2 χI

|I| )
1/2 stands for the dyadic square function. An equivalent

characterization of H1
d(T) is the one through dyadic atoms. That is, H1

d(T) consists
of functions φ =

∑
k∈N λkak, λk ∈ C, where

∑
k∈N |λk| < ∞ and for each k, ak is a

dyadic atom, i.e. supp(ak) ⊂ Ik for some Ik ∈ D,
∫

Ik
ak(t)dt = 0, and ‖ak‖∞ ≤ 1

|Ik| .

The reader is referred to [M] or to [G] for the results concerning dyadic H1 and
BMO.

The aim of this paper is to investigate the spaces of operator-valued BMO func-
tions corresponding to characterizations (1)-(7). In the operator-valued case, these
characterizations are in general no longer equivalent. In the language of operator
spaces, we investigate the different operator space structures on the scalar space
BMOd which arise naturally from the different yet equivalent characterisations of
BMOd. The reader is referred to [BPo] and [PSm] for some recent results on dyadic
BMO and Besov spaces connected to the ones in this paper.

First, we require some further notation for the operator-valued case. Let H
be a separable, finite or infinite-dimensional Hilbert space. Let F00 denote the
subspace of L(H)-valued functions on T with finite formal Haar expansion. Given
e, f ∈ H and B ∈ L2(T,L(H)) we denote by Be the function in L2(T,H) defined by
Be(t) = B(t)(e) and by Be,f the function in L2(T) defined by Be,f (t) = 〈B(t)(e), f〉.
As in the scalar case, let BI denote the formal Haar coefficients

∫
I
B(t)hIdt, and

mIB = 1
|I|
∫

I
B(t)dt denote the average of B over I for any I ∈ D. Observe that

for BI and mIB to be well-defined operators, we shall be assuming that the L(H)-
valued function B is weak∗-integrable. That means, using the duality L(H) =
(H⊗̂H)∗, that 〈B(·)(e), f〉 ∈ L1(T) for e, f ∈ H. In particular, for any measurable
set A, there exist BA ∈ L(H) such that 〈BA(e), f〉 = 〈

∫
A

B(t)(e)dt, f〉.
We can define the following notions corresponding to the previous formulations:

We denote by BMOd
norm(T,L(H)) the space of Bochner integrable L(H)-valued

functions B such that

(8) ‖B‖BMOd
norm

= sup
I∈D

(
1
|I|

∫
I

‖B(t)−mIB‖2dt)1/2 < ∞

Similarly, we denote by BMOd(T,H) the space of Bochner integrable H-valued
functions b : T → H such that

(9) ‖b‖BMOd = sup
I∈D

(
1
|I|

∫
I

‖b(t)−mIb‖2dt)1/2 < ∞
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and by WBMOd(T,H) the space of Pettis integrable H-valued functions b : T → H
such that

(10) ‖b‖WBMOd = sup
I∈D,e∈H,‖e‖=1

(
1
|I|

∫
I

|〈b(t)−mIb, e〉|2dt)1/2 < ∞

This gives rise to the following definitions of operator-valued dyadic BMO spaces.
We denote by SBMOd(T,L(H)) the space of L(H)-valued functions B such that
B(·)e ∈ L1(T,H) for all e ∈ H and such that

(11) ‖B‖SBMOd = sup
I∈D,e∈H,‖e‖=1

(
1
|I|

∫
I

‖(B(t)−mIB)e‖2dt)1/2 < ∞.

We shall also use the notation

(12) ‖B‖BMOd
so

= ‖B‖SBMOd + ‖B∗‖SBMOd ,

and denote by BMOd
so(T,L(H)) the space of functions for which this expression is

finite. We denote by WBMOd(T,L(H)) the space of weak∗-integrable L(H)-valued
functions B such that

(13) ‖B‖WBMOd = sup
I∈D,‖e‖=‖f‖=1

(
1
|I|

∫
I

|〈(B(t)−mIB)e, f〉|2dt)1/2

= sup
e∈H,‖e‖=1

‖Be‖WBMOd(T,H) < ∞,

or, equivalently, such that

‖B‖WBMOd = sup
A∈S1,‖A‖1≤1

‖〈B,A〉‖BMOd(T) < ∞.

Here, S1 denotes the ideal of trace class operators in L(H), and 〈B,A〉 stands for
the scalar-valued function given by 〈B,A〉(t) = trace(B(t)A∗).

We now define another operator-valued BMO space, using the notion of Haar
multipliers.

As in the scalar-valued case (see [Per]), a sequence (ΦI)I∈D, ΦI ∈ L2(I,L(H))
for all I ∈ D, is said to be an operator-valued Haar multiplier, if there exists C > 0
such that

‖
∑
I∈D

ΦI(fI)hI‖L2(T,H) ≤ C(
∑
I∈D

‖fI‖2)1/2 for all (fI)I∈D ∈ l2(D,H).

We write ‖(ΦI)‖mult for the norm of the corresponding operator on L2(T,H).
Letting, again as in the scalar valued case, PIB =

∑
J⊆I hJBJ , we denote the

space of those weak∗-integrable L(H)-valued functions for which (PIB)I∈D defines
a bounded operator-valued Haar multiplier by BMOmult(T,L(H)) and write

(14) ‖B‖BMOmult = ‖(PIB)I∈D‖mult.

We shall use the notation ΛB(f) =
∑

I∈D(PIB)(fI)hI .
It is elementary to see that

(15) ΛB(f) =
∑
I∈D

BI(mIf)hI +
∑
I∈D

BI(fI)
χI

|I|
.

Observe that (ΛB)∗ = ΛB∗ , hence ‖B‖BMOmult = ‖B∗‖BMOmult .
Let us now give the definition of a further BMO space, the space defined in terms

of paraproducts.
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Let B ∈ F00. We define

πB : L2(T,H) → L2(T,H), f =
∑
I∈D

fIhI 7→
∑
I∈D

BI(mIf)hI ,

and
∆B : L2(T,H) → L2(T,H), f =

∑
I∈D

fIhI 7→
∑
I∈D

BI(fI)
χI

|I|
.

πB is called the vector paraproduct with symbol B. One sees easily that ∆B = π∗B∗
and that ΛB = πB + ∆B .

Writing EkB =
∑
|I|>2−k BIhI , we denote the space of weak∗-integrable

operator-valued functions for which supk∈N ‖πEkB‖ < ∞ by BMOpara(T,L(H)).
For those functions, πBf = limk→∞ πEkBf defines a bounded linear operator on
L2(T,H), and we write

(16) ‖B‖BMOpara = ‖πB‖.

The space BMOd
Carl(T,L(H)) is the space of weak∗-integrable operator-valued func-

tions for which

(17) ‖B‖BMOd
Carl

= sup
I∈D

(
1
|I|

∑
J∈D,J⊆I

‖BJ‖2)1/2 < ∞.

Recall that for a given Banach space (X, ‖ · ‖), a family of norms (Mn(X), ‖ · ‖n)
on the spaces Mn(X) of X-valued n×n matrices defines an operator space structure
on X, if ‖ · ‖1 ≈ ‖ · ‖,

M1 ‖A⊕B‖n+m ≤ max{‖A‖n, ‖B‖m} for A ∈ Mn(X), B ∈ Mm(X)
M2 ‖αAβ‖m ≤ ‖α‖Mn,m(C)‖A‖n‖β‖Mm,n(C) for all A ∈ Mn(X) and all scalar

matrices α ∈ Mn,m(C), β ∈ Mm,n(C).
(see e. .g. [ER]). One verifies easily that all the norms above, apart from ‖·‖BMOd

Carl
,

taken for finite-dimensional H, define operator space structures on BMOd(T).

The paper is divided into four sections following this introduction. Section 2 is
devoted to proving the following chain of strict inclusions for infinite-dimensional
H:

(18) BMOd
norm(T,L(H)) ( BMOmult(T,L(H)) ( BMOd

so

( SBMO(T,L(H)) ( WBMO(T,L(H)).

This means that the corresponding embeddings of operator spaces over BMOd(T)
are completely bounded, but not completely isomorphic (for the notation, see again
e. g. [ER]).

In the third section, we investigate the operator-valued paraproducts in terms
of the so-called sweep of the symbol. Given B ∈ F00, we define the sweep of B as

(19) SB =
∑
I∈D

B∗
I BI

χI

|I|
.

Our main result of this section, Theorem 3.5, states that ‖B‖2BMOpara
≈

‖SB‖BMOmult + ‖B‖2SBMOd .
Operator-valued paraproducts are of particular interest, because they can be

seen as dyadic versions of vector Hankel operators or of vector Carleson embeddings,
which are important in the real and complex analysis of matrix valued functions and
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also in the theory of infinite-dimensional linear systems with infinite-dimensional
output space (see e.g. [JPP1]).

In Section 4, we investigate “average BMO conditions” in the following sense.
For σ ∈ {−1, 1}D, define the dyadic martingale transform

(20) Tσ : L2(T,H) → L2(T,H), f =
∑
I∈D

hIfI 7→
∑
I∈D

hIσIfI ,

Let Σ = {−1, 1}D, equipped with the natural product measure which assigns mea-
sure 2−n to cylinder sets of length n.

While we do not know whether BMOd
norm ⊆ BMOpara, we show (see Theorem

4.1) that ‖B‖BMOpara ≤ C(
∫
Σ
‖TσB‖2BMOd

norm
dσ)1/2. More precisely, ‖B‖2BMOpara

+
‖B∗‖2BMOpara

≈
∫
Σ
‖TσB‖2BMOmult

dσ.
Moreover, the norms ‖B‖BMOd

so
, ‖B‖BMOmult and ‖B‖BMOpara can be completely

described in terms of average boundedness of certain operators involving either
ΛB or commutators [Tσ, B]. The results of this section complete those proved in
[GPTV].

It was shown in [NTV] that BMOpara(T,L(H)) ( SBMO(T,L(H)). The space
BMOd

so(T,L(H)) is understood in [NTV] as the space of functions satisfying a
natural operator Carleson condition, namely

(21) sup
I∈D

‖ 1
|I|
∑
J⊆I

B∗
JBJ‖ < ∞

Therefore, the result from [NTV] represents a breakdown of the Carleson embedding
theorem in the operator case.

We investigate here a different version of the Carleson condition for the operator
case, namely

(22) sup
I∈D

1
|I|
‖
∑
J⊆I

B∗
JBJ

χJ

|J |
‖L1(T,L(H)) < ∞

It is shown in Theorem 3.6 that (22) implies the boundedness of πB , that is, the
boundedness of a certain dyadic operator Carleson embedding.

In [K], [NTV] and [NPiTV], the correct rate of growth of the constant in the
Carleson embedding theorem in the matrix case in terms of the dimension of Hilbert
space H was determined, namely log(dimH+ 1). Here, we want to show that this
breakdown of the Carleson embedding theorem in the operator case is intimately
connected to a breakdown of the John-Nirenberg Theorem, and that the dimen-
sional growth for constants in the John-Nirenberg Theorem is the same. This
answers a question left open in [GPTV].

The last section is devoted to the study of sweeps of functions in different BMO-
spaces. The classical John-Nirenberg theorem on BMOd(T) implies (and is essen-
tially equivalent to) the fact that there exists a constant C > 0 such that

(23) ‖Sb‖BMOd ≤ C‖b‖2BMOd

for any b ∈ BMOd.
We will show that this formulation of John-Nirenberg does not hold for

‖B‖BMOso . In fact, it is shown that if (23) holds for some space contained in
SBMOd then this space is also contained in BMOpara.
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2. Some operator-valued dyadic BMO spaces

Let us mention that by John-Nirenberg’s lemma, we actually have that f ∈
BMOd

norm if and only if

sup
I∈D

(
1
|I|

∫
I

‖B(t)−mIB‖pdt)1/p < ∞

for some (or equivalently, for all) 0 < p < ∞. Since (B −mIB)χI = PIB we can
also say that f ∈ BMOd

norm if and only if

sup
I∈D

1
|I|1/p

‖PI(B)‖Lp(L(H)) < ∞.

Another elementary identity we shall use is

‖B‖WBMOd = sup
I∈D,‖e‖=‖f‖=1

1
|I|1/2

‖PI(Be,f )‖L2 = sup
I∈D

(
1
|I|

∑
J∈D,J⊆I

|〈BJe, f〉|2)1/2.

In particular,

(24) ‖BJ‖ ≤ |J |1/2‖B‖WBMOd (J ∈ D).

The following characterizations of SBMO will be useful below. Most of it can be
found in [GPTV], we give the proof for the convenience of the reader.

Proposition 2.1. Let B ∈ SBMOd(T,L(H)). Then

‖B‖2SBMOd = sup
e∈H,‖e‖=1

‖Be‖2BMOd(T,H)

= sup
I∈D,‖e‖=1

1
|I|
‖PI(Be)‖2L2(H)

= sup
I∈D

1
|I|
‖
∑
J⊆I

B∗
JBJ‖

= sup
I∈D

∥∥∥∥ 1
|I|

∫
I

(B(t)−mIB)∗(B(t)−mIB)dt

∥∥∥∥
= sup

I∈D
‖mI(B∗B)−mI(B∗)mI(B)‖

≈ sup
I∈D

1
|I|
‖
∑
J(I

B∗
JBJ‖.

Proof. The two first equalities are obvious from the definition. Now observe

‖
∑
J⊆I

B∗
JBJ‖ = sup

‖e‖=1,‖f‖=1

∑
J⊆I

〈BJ(e), BJ(f)〉 = sup
‖e‖=1

∑
J⊆I

‖BJ(e)‖2 = ‖PI(Be)‖2L2(H).

The following equalities follows from

‖mI(B∗B)−mI(B∗)mI(B)‖ =
∥∥∥∥ 1
|I|

∫
I

(B(t)−mIB)∗(B(t)−mIB)dt

∥∥∥∥
= sup

e∈H,‖e‖=1

1
|I|

∫
I

〈(B(t)−mIB)∗(B(t)−mIB)e, e〉dt

= sup
e∈H,‖e‖=1

1
|I|

∫
I

‖PIBe‖2dt.
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To show the equivalence up to constants in the last line, notice first that
1
|I|‖

∑
J(I B∗

JBJ‖ ≤ 1
|I|‖

∑
J⊆I B∗

JBJ‖ for each I ∈ D.
On the other hand, let C = supI∈D

1
|I|‖

∑
J(I B∗

JBJ‖ and suppose that the

supremum is finite. Then for any given I ∈ D, ‖B∗
I BI‖ ≤ ‖

∑
J(Ĩ B∗

JBJ‖ ≤ |Ĩ|C =
2|I|C, where Ĩ denotes the parent interval of I. It follows that

1
|I|
‖
∑
J⊆I

B∗
JBJ‖ ≤ C + 2C

for each I ∈ D. �

We would like to point out that while B belongs to one of the spaces
BMOd

norm(T,L(H)),WBMOd(T,L(H))) or B ∈ BMOd
Carl(T,L(H)) if and only if

B∗ does, this is not the case for the space SBMOd(T,L(H)). This leads to the
following notion:

Definition 2.2. (see [GPTV], [Pet]) We say that B ∈ BMOd
so(T,L(H)), if B and

B∗ belong to SBMOd(T,L(H). We define ‖B‖BMOd
so

= ‖B‖SBMOd + ‖B∗‖SBMOd .

Let rk denote the Rademacher functions, that is

rk =
∑

|I|=2−k

|I|1/2hI .

Lemma 2.3. Let B =
∑N

k=1 Bkrk. Then

(25) ‖B‖SBMOd = sup
‖e‖=1

(
N∑

k=1

‖Bke‖2)1/2

(26) ‖B‖BMOso = sup
‖e‖=1

(
N∑

k=1

‖Bke‖2)1/2 + sup
‖e‖=1

(
N∑

k=1

‖B∗
ke‖2)1/2

(27) ‖B‖WBMOd = sup
‖f‖=‖e‖=1

(
N∑

k=1

|〈Bke, f〉|2)1/2.

Proof. This follows from standard Littlewood-Paley theory. �

Proposition 2.4. Let dimH = ∞. Then
BMOd

so(T,L(H)) ( SBMOd(T,L(H)) ( WBMOd(T,L(H)).

Proof. The inclusions follow from the definitions.
Let us see that they are strict. For x, y ∈ H we denote by x ⊗ y the rank 1

operator in L(H) given by (x ⊗ y)(h) = 〈h, y〉x. Hence it follows from (25) and
(26) that if (ek) is an orthonormal basis of H and h ∈ H with ‖h‖ = 1, then
B =

∑∞
k=1 h⊗ek rk belongs to SBMOd but it does not belong to BMOd

so(T,L(H)).
It follows from (26) and (27) that B =

∑∞
k=1 ek⊗h rk belongs to WBMOd(T,L(H),

but not to SBMOd(T,L(H)). �

Of course, if (ΦI)I∈D is a Haar multiplier, then

(28) sup
I∈D,‖e‖=1

|I|−1/2‖ΦI(e)‖L2(T,H) ≤ ‖(ΦI)‖mult.
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In case the ΦI are constant operators TI , one has

‖(ΦI)I∈D‖mult = sup
I
‖TI‖.

Proposition 2.5. BMOmult ( BMOd
so.

Proof. The inclusion follows from (28), and the fact that BMOmult(T,L(H)) 6=
BMOd

so(T,L(H)) was shown in [GPTV]. �
Let us now describe the action of ΛB in a different way.

Proposition 2.6. Let B ∈ F00. Then

ΛB(f) =
∑
I∈D

(
BI(mI+f)

χI+

|I|1/2
−BI(mI−f)

χI−

|I|1/2

)
.

Proof. Use the formulae

(29) mIf =
1
2
(mI+f + mI−f), fI =

|I|1/2

2
(mI+f −mI−f)

to obtain

mIfhI + fI
χI

|I|
=

1
2
(mI+f + mI−f)(χI+ − χI−)|I|−1/2

+
1
2
(mI+f −mI−f)(χI+ + χI−)|I|−1/2

= mI+f
χI+

|I|1/2
−mI−f

χI−

|I|1/2

�

Of course L∞(T,L(H)) ( BMOd
norm(T,L(H)). Using that

(30) ΛBf = Bf −
∑
I∈D

(mIB)(fI)hI

one finds that

Proposition 2.7. L∞(T,L(H)) ⊆ BMOmult(T,L(H)).

Our next objective is to see that BMOd
norm(T,L(H)) ( BMOmult(T,L(H)). For

that, we need again some more notation.
Let S1 denote the ideal of trace class operators on H, and, as in the proof of

Proposition 2.4, for e, d ∈ H, let e ⊗ d denote the rank one operator given by
(e ⊗ d)h = 〈h, d〉e. One has that S1 = H⊗̂H and (S1)∗ = L(H) by the pairing
〈U, (e⊗ d)〉 = 〈U(e), d〉.

It is easy to see that the space BMOmult(T,L(H)) can be embedded isometrically
into the dual of a certain H1 space of S1 valued functions.

Definition 2.8. Let f, g ∈ L2(T,H). Define

f ~ g =
∑
I∈D

(mI+f ⊗mI+g −mI−f ⊗mI−g)
1
2
(χI+ − χI−).

Let H1
Λ(T, S1) be the space of functions f =

∑∞
k=1 λkfk ~ gk such that fk, gk ∈

L2(T,H), ‖fk‖2 = ‖gk‖2 = 1 for all k ∈ N, and
∑∞

k=1 |λk| < ∞.
We endow the space with the norm given by the infimum of

∑∞
k=1 |λk| for all

possible decompositions.
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Proposition 2.9. H1
Λ(T, S1) is continuously embedded into L1(T, S1).

Proof. Writing fI = 1
2 |I|

1/2(mI+f−mI−f), gI = 1
2 |I|

1/2(mI+g−mI−g), one verifies
the identity

f ~ g =
∑
I∈D

hI(fI ⊗mIg + mIf ⊗ gI) = f ⊗ g −
∑
I∈D

χI

|I|
fI ⊗ gI

from (29). Let f, g ∈ L2(T,H),

‖f ~ g‖L1(T,S1) = ‖f ⊗ g −
∑
I∈D

χI

|I|
fI ⊗ gI‖L1(T,S1)

≤ ‖f ⊗ g‖L1(T,S1) + ‖
∑
I∈D

χI

|I|
fI ⊗ gI‖L1(T,S1)

≤ ‖f‖2‖g‖2 +
∑
I∈D

‖fI ⊗ gI‖S1

≤ ‖f‖2‖g‖2 +

(∑
I∈D

‖fI‖2
)1/2(∑

I∈D
‖gI‖2

)1/2

= 2‖f‖2‖g‖2.

�

With this notation, B ∈ BMOmult acts on f ~ g by

〈B, f ~ g〉 =
∫

T
〈B(t), (f ~ g)(t)〉dt = 〈ΛBf, g〉.

By definition of H1
Λ(T, S1), ‖B‖(H1

Λ(T,S1))∗ = ‖ΛB‖.
We will now define a further H1 space of S1-valued functions. For F ∈ L1(T, S1),

define the dyadic Hardy-Littlewood maximal function F ∗ of F in the usual way,

F ∗(t) = sup
I∈D,t∈I

1
|I|

∫
I

‖F (s)‖S1ds.

Then let H1
max,d(T, S1) be given by

{F ∈ L1(T, S1) : F ∗ ∈ L1(T)}.

By a result of Bourgain ([Bou], Th.12), BMOd
norm embeds continuously into

(H1
max,d(T, S1))∗ (see also [B1, B2]).

Lemma 2.10. H1
Λ(T, S1) ⊆ H1

max,d(T, S1).

Proof. It is sufficient to show that there is a constant C > 0 such that for all
f, g ∈ L2(T,H), f ~ g ∈ H1

max,d(T, S1), and ‖f ~ g‖H1
max,d(T,S1) ≤ C‖f‖2‖g‖2.

Observe as before that f ~ g = f ⊗ g −
∑

I∈D
χI

|I|fI ⊗ gI . For k ∈ N, let Ek

denote the expectation with respect to the σ-algebra generated by dyadic intervals
of length 2−k, EkF =

∑
I∈D,|I|>2−k hIFI . Then we have

(31) Ek(f ~ g) = (Ekf) ~ (Ekg),

as ∑
I∈D,|I|>2−k

hI(fI⊗mIg+mIf⊗gI) =
∑
I∈D

hI((Ekf)I⊗mI(Ekg)+mI(Ekf)⊗(Ekg)I).
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Thus

(f~g)∗(t) = sup
k∈N

‖Ek(f~g)(t)‖S1 ≤ sup
k∈N

‖(Ekf)(t)‖‖(Ekg)(t)‖+
∑
I∈D

χI(t)
|I|

‖fI‖‖gI‖

≤ ‖f∗(t)‖‖g∗(t)‖+
∑
I∈D

χI(t)
|I|

‖fI‖‖gI‖,

and
‖(f ~ g)∗‖1 ≤ ‖f∗‖2‖g∗‖2 + ‖f‖2‖g‖2 ≤ C‖f‖2‖g‖2

by the Cauchy-Schwarz inequality and boundedness of the dyadic Hardy-Littlewood
maximal function on L2(T,H). �

Theorem 2.11. BMOd
norm(T,L(H)) ( BMOmult(T,L(H)).

Proof. The inclusion follows by Lemma 2.10, duality and Bourgain’s result.
To see that they do not coincide, use the fact that BMO(`∞) ( `∞(BMO) =

(H1(`1))∗ to find for each N ∈ N functions bk ∈ BMO, k = 1, ..., N , such that
sup1≤k≤N ‖bk‖BMO ≤ 1, but ‖(bk)k=1,...,N‖BMOd(T,l∞N ) ≥ cN , where cN

N→∞→ ∞.
Let (ek)k∈N be an orthonormal basis of H, and consider the operator-valued

function B(t) =
∑N

k=1 bk(t)ek⊗ek ∈ L2(T,L(`2)). Clearly BI =
∑N

k=1(bk)Iek⊗ek,
and for each CN -valued function f =

∑N
k=1 fkek, f1, . . . , fN ∈ L2(T), we have

ΛB(f) =
N∑

k=1

Λbk
(fk)ek.

Choosing the fk such that ‖f‖22 =
∑N

k=1 ‖fk‖2L2(T) = 1, we find that

‖ΛB(f)‖2L2(T,`2)
=

N∑
k=1

‖Λbk
(fk)‖2L2(T) ≤ C

N∑
k=1

‖bk‖2BMO‖fk‖2L2(T) ≤ C,

where C is a constant independent of N . Therefore, ΛB is bounded.
But since ‖B‖BMOd

norm
= ‖(bk)k=1,...,N‖BMO(T,l∞N ) ≥ cN , it follows that

BMOmult(T) is not continuously embedded in BMOd
norm(T,L(H)). From the open

mapping theorem, we obtain inequality of the spaces. �

3. Operator-valued paraproducts

We start by describing the action of a paraproduct πB as a Haar multiplier.

Proposition 3.1. Let B ∈ F00. Then

‖πB‖ = ‖(B∗
I hI)I∈D‖mult

= ‖(PI+B + PI−B)I∈D‖mult

= ‖(
∑
J(I

B∗
JBJ

χJ

|J |
)I∈D‖1/2

mult.

In particular,
‖BI‖ ≤ ‖πB‖|I|1/2,

‖PI+B(e) + PI−B(e)‖L2(T,H) ≤ ‖πB‖|I|1/2‖e‖



OPERATOR BMO SPACES 11

and
‖(
∑
J(I

B∗
JBJ

χJ

|J |
)e‖L2(T,H) ≤ ‖πB‖2|I|1/2‖e‖.

Proof. The first equality follows by writting ∆B∗(f) =
∑

I∈D B∗
I hIfIhI . Then use

‖πB‖ = ‖∆B∗‖.
The second follows from the fact that PIB = (PI+B + PI−B) + BIhI , which

shows that
πB(f) =

∑
I∈D

(PI+B + PI−B)(fI)hI .

For the third formulation, use ‖πB‖2 = ‖π∗BπB‖.

π∗BπB(f)(t) =
∑
I∈D

B∗
I BI(mI(f))

χI(t)
|I|

=
∑
I∈D

B∗
I BI(

∑
I(J

fJmI(hJ))
χI(t)
|I|

=
∑
I∈D

B∗
I BI(

∑
I(J

fJ)hJ(t)
χI(t)
|I|

=
∑
J∈D

(
∑
I(J

B∗
I BI

χI(t)
|I|

)fJhJ(t).

�

It follows at once from Proposition 3.1 that

BMOpara(T,L(H)) ⊆ SBMOd(T,L(H)).

It is easily seen that, if B and B∗ belong to BMOpara, then B ∈ BMOmult.
However, we want to remark that the boundedness of πB alone does not imply
boundedness of ΛB .

To see this, choose some orthonormal basis (ei)i∈N ofH, and choose a sequence of
Cn-valued function (bn)n∈N with finite Haar expansion such that ‖bn‖BMOd(L(H)) ≥
Cn1/2‖bn‖WBMOd(L(H)) (for a choice of such a sequence, see [JPP1]). Let Bn(t) be
the column matrix with respect to the chosen orthonormal basis which has the
vector bn(t) as its first column. Then it is easy to see that

‖πBn
‖ = ‖πbn

‖ ∼ ‖bn‖ mod (T,H) ≥ n1/2C‖bn‖WBMOd(T,H).

As pointed out to us [PV] it follows from the first Theorem in the appendix in
[PXu] that ‖πB∗n‖ ≤ C‖bn‖WBMOd(T,H) for some absolute constant C and all n ∈ N.
Forming the direct sum

B =
∞⊕

n=1

1
‖πB∗n‖

B∗
n,

we find that ‖πB‖ = 1, but ∆B = (πB∗)∗ is unbounded.

The next proposition shows that the space BMOd
Carl belongs to a different scale

than the standard BMO-spaces.

Proposition 3.2. L∞(T,L(H)) * BMOd
Carl(T,L(H)).
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Proof. Choose an orthonormal basis ofH indexed by the elements ofD, say (eI)I∈D,
and let ΦI = eI ⊗ eI , ΦIh = 〈h, eI〉eI . Let λI = |I|1/2 for I ∈ D, and de-
fine B =

∑
I∈D hIλIΦI . Then

∑
I∈D ‖BI‖2 =

∑
I∈D |I| = ∞, so in particu-

lar B /∈ BMOd
Carl(T,L(H)). But the operator function B is diagonal with uni-

formly bounded diagonal entry functions φI(t) = 〈B(t)eI , eI〉 = |I|1/2hI(t), so
B ∈ L∞(L(H)). �

Proposition 3.3. BMOd
Carl(T,L(H)) ( BMOpara(T,L(H)).

Proof. The inclusion BMOd
Carl ⊆ BMOpara is easy, since (17) implies that for B ∈

BMOd
Carl, the BMOd

Carl norm equals the norm of the scalar BMOd function given
by |B| :=

∑
I∈D hI‖BI‖. For f ∈ L2(H), let |f | denote the function given by

|f |(t) = ‖f(t)‖. Thus

‖πBf‖22 =
∑
I∈D

‖BImIf‖2 ≤
∑
I∈D

(‖BI‖mI |f |)2 = ‖π|B||f |‖.

The boundedness of πB∗ follows analogously.
To show that BMOd

Carl 6= BMOpara, we can use the diagonal operator function
B constructed in Proposition 3.2. There, it is shown that B /∈ BMOd

Carl, and
that the diagonal entry functions φI = 〈BeI , eI〉 are uniformly bounded. Since
the paraproduct of each scalar-valued L∞ function is bounded, we see that πB =⊕

I∈D πφI
is bounded. Similarly, πB∗ is bounded. Thus B ∈ BMOpara. �

One of the main tools to investigate the connection between BMOmult and
BMOpara is the dyadic sweep. Given B ∈ F00, we define

SB(t) =
∑
I∈D

B∗
I BI

χI(t)
|I|

.

Lemma 3.4. Let B ∈ F00. Then

(32) π∗BπB = πSB
+ π∗SB

+ DB = ΛSB
+ DB ,

where DB is defined by DBhI ⊗ x = hI
1
|I|
∑

J(I B∗
JBJx for x ∈ H, I ∈ D and

‖DB‖ ≈ ‖B‖2SBMOd .

Proof. (32) is verified on elementary tensors hI ⊗ x, hJ ⊗ y. We find that
(1) for I ( J ,

〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈π∗SB
hI ⊗ x, hJ ⊗ y〉

(2) for I ) J ,

〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈πSB
hI ⊗ x, hJ ⊗ y〉

(3) for I = J ,

〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈DB(hI ⊗ x), hJ ⊗ y〉.

Since suppπSB
hI ⊆ I and supp ∆SB

hI ⊆ I, 〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 0 in all other
cases.

One sees easily that DB is block diagonal with respect to the Hilbert space
decomposition L2(T,H) =

⊕
I∈DH defined by the mapping f 7→ (fI)I∈D. The

operator πSB
is block-lower triangular with respect to this decomposition (using
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the natural partial order on D), and ∆SB
is block-upper triangular. Thus we

obtain the required identity. Note that

‖DB‖ = sup
I∈D,‖e‖=1

1
|I|
‖
∑
J(I

B∗
JBJe‖ ≈ ‖B‖2SBMOd

by Proposition 2.1. �
Notice that (SB)∗ = SB . Hence Lemma 3.4 gives

Theorem 3.5.
‖SB‖BMOmult + ‖B‖2SBMOd ≈ ‖πB‖2.

Proof. It suffices to use that ‖DB‖ ≈ ‖B‖2SBMOd and that ‖B‖SBMOd . ‖πB‖ (using
Proposition 3.1). �

We can now prove that a certain Carleson-type condition is sufficient for the
boundedness of πB .

Theorem 3.6. There exists C > 0 such that for all B ∈ F00,

sup
I∈D

1
|I|
‖
∑
J⊆I

B∗
JBJ‖L(H) ≤ ‖πB‖2 ≤ C sup

I∈D

1
|I|
‖
∑
J⊆I

B∗
JBJ

χJ

|J |
‖L1(T,L(H)).

Proof. The first inequality is the inclusion BMOpara(T,L(H)) ( SBMOd(T,L(H)).
For the second one, use the fact that PI(SB) = PI

∑
J⊆I B∗

JBJ
χJ

|J| for each
I ∈ D, together with Theorem 2.11, Theorem 3.5 and John-Nirenberg’s lemma for
BMOd

norm. �

4. Averages over martingale transforms and operator-valued BMO

As in the introduction, let Σ = {−1, 1}D, and let dσ denote the natural product
probability measure on Σ, which assigns measure 2−n to cylinder sets of length n.

Given a Banach space X and F ∈ L1(T, X), we write F̃ for the function defined
a.e. on Σ× T by

F̃ (σ, t) = TσF (t) =
∑

I

σIFIhI(t).

In case that X is a Hilbert space, ‖TσF‖L2(T,X) = ‖F‖L2(T,X) for any (σI)I∈D,
and therefore ‖F̃‖L∞(Σ,L2(T,X)) = ‖F‖L2(T,X).

More generally, we have for UMD spaces that ‖TσF‖L2(T,X) ≈ ‖F‖L2(T,X). How-
ever, X = L(H) is not a UMD space, unless H is finite dimensional. Nevertheless,
we can use properties of B̃ to study the boundedness of operator valued paraprod-
ucts, using for example the identity

(33) ∆Bf =
∫

Σ

TσBTσfdσ.

This identity shows by an easy application of the Cauchy-Schwarz inequality that
if
∫
Σ
‖TσB‖2L2(T,L(H))dσ < ∞, then

(34) ∆B : L2(T,H) → L1(T,H) is a bounded operator.

Whilst we do not know whether ‖B‖BMOpara can be estimated in terms of
‖B‖BMOmult , we will prove an estimate of ‖B‖BMOpara in terms of an average of
‖TσB‖BMOmult over Σ.
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Similarly, whilst we do not know whether ‖SB‖BMOd
norm

can be estimated in
terms of ‖B‖BMOd

norm
, we will prove an estimate of ‖SB‖BMOd

norm
in terms of an

average of ‖TσB‖BMOd
norm

over Σ.
For this, the following representation of the sweep will be useful:

(35) SB(t) =
∫

Σ

(TσB)∗(t)(TσB)(t)dσ.

Theorem 4.1. Let B ∈ F00. Then

‖SB‖BMOd
norm

. (
∫

Σ

‖TσB‖2BMOd
norm

dσ)1/2.

Proof. This inequality follows from the estimate

‖PISB‖L1(T,L(H)) = ‖PISPIB‖L1(T,L(H))

≤ 2
∥∥∥∥∫

Σ

(TσPIB
∗)(TσPIB)dσ

∥∥∥∥
L1(T,L(H))

≤ 2
∫

Σ

‖(PITσB)∗PITσB‖L1(T,L(H))dσ

= 2
∫

Σ

‖(PITσB)‖2L2(T,L(H))dσ

≤ 2|I|
∫

Σ

‖TσB‖2BMOd
norm

dσ.

Using John-Nirenberg’s lemma for BMOd
norm(T,L(H)), one concludes the result.

�

We are going to describe the different operator-valued BMO spaces in terms of
”average boundedness” of certain operators, namely Λ, π, or commutators with the
martingale transforms.

First we see that the BMOd
so-norm can be described by “average boundedness”

of ΛB .

Theorem 4.2. Let B ∈ F00, and let ΦB be the map

ΦB : L2(T,H) → L2(T× Σ,H), f 7→ ΛBTσf.

Then
‖ΦB‖ = sup

‖f‖L2(H)=1

(
∫

Σ

‖ΛB(Tσf)‖2L2(T,H)dσ)1/2 = ‖B‖SBMOd .

In particular, ‖B‖BMOso = ‖ΦB‖+ ‖ΦB∗‖.

Proof. Since ΛB(Tσf) =
∑

I∈D PI(B)fIhIσI , we have∫
Σ

∫
T
‖(ΦBf)(t, σ)‖2dtdσ =

∫
Σ

∫
T
‖(ΛBTσf)(t)‖2dtdσ

=
∑
I∈D

‖PI(B)fIhI‖2L2(H)

=
∑
I∈D

1
|I|

∫
I

‖(B(t)−mIB)(
fI

‖fI‖
)‖2‖fI‖2dt

≤ sup
‖e‖=1

‖Be‖2BMO(H)

∑
J∈D

‖fJ‖2.
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The reverse inequality follows by considering functions f = hIe, where e ∈ H,
I ∈ D. �

We require a further technical lemma, which shows that the L2 norm of B̃f can
be decomposed in a certain way.

Lemma 4.3. Let B ∈ F00 and f ∈ L2(T,H). Write Bf = πBf + ∆Bf + γBf .
Then

‖B̃f‖2L2(Σ×T,H)

=
∫

Σ

‖πTσB(f)‖2L2(H)dσ +
∫

Σ

‖∆TσB(f)‖2L2(H)dσ +
∫

Σ

‖γTσB(f)‖2L2(H)dσ.

Proof. Observe that mI(TσB)hI = (
∑

I(J σJBJhJ)hI . Hence

γTσB(f) =
∑
I∈D

mI(TσB)(fI)hI =
∑
J∈D

σJBJ(
∑
I(J

fIhI)hJ .

This shows that∫
T

∫
Σ

〈πTσBf, γTσBg〉dσdt =
∑
I∈D

∫
I

〈BImIf,BI(
∑
J(I

gJhJ)〉χI

|I|
dt = 0

∫
T

∫
Σ

〈γTσBf,∆TσBg〉dσdt =
∑
I∈D

∫
I

〈BI(
∑
J(I

fJhJ), BIgI〉
hI

|I|
dt = 0

∫
T

∫
Σ

〈πTσBf,∆TσBg〉dσdt =
∑
I∈D

∫
I

〈BImIf,BIgI〉
hI

|I|
dt = 0.

To finish the proof, simply expand

‖B̃(f)‖2L2(Σ×T,H) =
∫

T

∫
Σ

〈(TσB)f, (TσB)f〉dσdt.

�

Theorem 4.4. Let B ∈ F00. Let ΨB be the map

ΨB : L2(T,H) → L2(T× Σ,H), f 7→ ΛTσBf.

Then

‖πB‖ ≤ ‖ΨB‖ = sup
‖f‖=1

(
∫

Σ

‖ΛTσB(f)‖2L2(T,H)dσ)1/2 ≤ (‖πB‖2+sup
I∈D

1
|I|
‖BI‖2)1/2 ≤

√
2‖πB‖.

Proof. Using the orthogonality properties from Lemma 4.3, we obtain∫
Σ

‖ΛTσB(f)‖2L2(H)dσ =
∫

Σ

‖πTσB(f)‖2L2(H)dσ +
∫

Σ

‖∆TσB(f)‖2L2(H)dσ

= ‖πB(f)‖2L2(H) +
∫

Σ

‖∆B(Tσf)‖2L2(H)dσ

Therefore

‖πB‖ ≤ sup
‖f‖=1

(
∫

Σ

‖ΛTσB(f)‖2L2(H))
1/2.
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The second term is easily estimated by∫
Σ

‖∆B(Tσf)‖2L2(H)dσ =
∫

Σ

∫
T
‖
∑
I∈D

σIBI
χI(t)
|I|

fI‖2dtdσ

=
∑
I∈D

∫
T
‖BI

χI(t)
|I|

fI‖2dt

=
∑
I∈D

1
|I|
‖BIfI‖2

≤ (sup
I∈D

1
|I|
‖BI‖2)‖f‖2L2(H) ≤ ‖πB‖2‖f‖2L2(H).

by (24). �
Here is our desired estimate of ‖B‖BMOpara +‖B∗‖BMOpara in terms of an average

over ‖B̃‖BMOmult .

Corollary 4.5. Let B ∈ F00. Then

1
2
(‖πB‖+ ‖∆B‖) ≤ ‖B̃‖L2(Σ,BMOmult) ≤ ‖πB‖+ ‖∆B‖.

Proof. To show the first estimate, it is sufficient to use Theorem 4.4, the identity
‖∆B‖ = ‖πB∗‖ and the invariance of the right hand side under passing to the
adjoint B∗.

For the reverse estimate, note that∫
Σ

‖B̃‖2BMOmult
dσ ≤

∫
Σ

(‖∆TσB‖+ ‖πTσB‖)2dσ

=
∫

Σ

(‖∆BTσ‖+ ‖TσπB‖)2dσ

=
∫

Σ

(‖∆B‖+ ‖πB‖)2dσ = (‖∆B‖+ ‖πB‖)2.

�
It was shown in [GPTV], Th. 3.5, that there exists B ∈ BMOd

so and σ ∈ {−1, 1}D
such that [Tσ, B] does not define a bounded operator on L2(T,H). We shall use
averages of commutators to describe the spaces BMOmult and BMOpara.

Let us mention the following “commutator-type” characterization of BMOmult.

Proposition 4.6 ([GPTV], Cor 4.1). B ∈ BMOmult if and only if the commutator
[Tσ, B] defines a bounded linear operator on L2(T,H) for each σ ∈ {−1, 1}D, and
‖B‖BMOmult ∼ supσ∈{−1,1}D ‖[Tσ, B]‖.

We shall see that one can replace the ”sup” condition by some average one. We
formulate a general lemma from which this can be deduced.

Lemma 4.7. Let U ∈ L(L2(T,H)) such that

(36)
∫

(UehI)(t)hI(t)dt = 0 (e ∈ H, I ∈ D).

If f ∈ L2(H) then
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(37)
∫

Σ

‖[Tσ, U ](f)‖2L2(T,H)dσ = ‖U(f)‖2L2(T,H) +
∑
I∈D

‖U(fIhI)‖2L2(T,H).

In particular,

(38) ‖U‖ ≤ sup
‖f‖=1

(
∫

Σ

‖[Tσ, U ](f)‖2dσ)1/2 ≤ (
∫

Σ

‖[Tσ, U ]‖2dσ)1/2 ≤ 2‖U‖.

Proof. Note that if we write ΦI = hI ⊗ hI ∈ L(L2(T,H)), that is, ΦI(f) = fIhI ,
then

[Tσ, U ](f) =
∑
I∈D

σI [ΦI , U ](f).

Observe that (36) yields, for I ∈ D,∫
T
〈ΦI(Uf)(t), U(ΦIf)(t)〉dt = 〈(Uf)I ,

∫
T

U(fIhI)(t)hI(t)dt〉 = 0.

Hence ∫
Σ

‖[Tσ, U ]f‖2L2(H)dσ =
∑
I∈D

‖[ΦI , U ]f‖2L2(H)

=
∑
I∈D

‖ΦI(Uf)− U(ΦIf)‖2L2(H)

=
∑
I∈D

‖ΦI(Uf)‖2L2(H) +
∑
I∈D

‖U(ΦIf)‖2L2(H)

= ‖U(f)‖2L2(H) +
∑
I∈D

‖U(fIhI)‖2L2(H).

Now (38) follows from the previous estimates and the fact

‖[Tσ, U ]‖ = ‖TσU − UTσ‖ ≤ 2‖U‖.

�

We also obtain that average boundedness of the commutator [πB , Tσ] coincides
with boundedness of πB :

Corollary 4.8. Let B ∈ F00.
(39)

‖πB‖ ≤ sup
‖f‖=1

(
∫

Σ

‖[Tσ, πB ]f‖2L2(T,H)dσ)1/2 ≤ (‖πB‖2 + ‖B‖2SBMOd)1/2 ≤ C‖πB‖.

Proof. Apply (37) in Lemma 4.7 with U = πB together with the fact∑
I∈D

‖πB(fIhI)‖2L2(H) =
∑
I∈D

∑
J(I

‖BJ(fI)‖2

|I|
≤ sup
‖e‖=1

‖Be‖2BMO(H)

∑
I∈D

‖fI‖2

�

We can also describe ‖B‖BMOmult as an average condition of the commutator.

Corollary 4.9. Let B ∈ F00 and f ∈ L2(T,L(H)) with
∫

T f = 0. Let us define

[Tσ, B](f) = Tσ(Bf)−B(Tσf).
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Then

(40)
∫

Σ

‖[Tσ, B]f‖2L2(T,H)dσ = ‖ΛB(f)‖2L2(T,H) +
∑
I∈D

‖ΛB(fIhI)‖2L2(T,H).

In particular,

(41) ‖B‖BMOmult ≈ sup
‖f‖=1

(
∫

Σ

‖[Tσ, B]f‖2L2(T,H)dσ)1/2 ≈ (
∫

Σ

‖[Tσ, B]‖2dσ)1/2.

Proof. It is elementary to see that

[Tσ, B] = [Tσ,ΛB ].

Now observe that 〈∆B(ehI), hI〉 = 〈BI(e)χI

|I| , hI〉 = 0 and that 〈πB(ehI), hI〉 = 0,
and use Lemma 4.7 for U = ΛB .

�

Theorem 4.10. (see also [GPTV]) Let B ∈ F00. Then

(42) sup
f∈L2(T,H),‖f‖=1

(
∫

Σ

∫
Σ

‖[Tσ, (TτB)]f‖2L2(T,H)dσdτ)1/2 ≈ ‖πB‖

and

(43) (
∫

Σ

∫
Σ

‖[Tσ, (TτB)]‖2L(L2(T,H))dσdτ)1/2 ≈ ‖πB‖+ ‖∆B‖.

Proof. To show (42), use Corollary 4.9 again to get for any τ ∈ Σ,∫
Σ

‖[Tσ, (TτB)]f‖2L2(T,H)dσ = ‖ΛTτ B(f)‖2L2(T,H) +
∑
I∈D

‖ΛTτ B(fIhI)‖2L2(T,H).

Now integrate over Σ and use Theorem 4.4.
For the estimate “&” in (43), note (42) together with the invariance of the left

hand side under passing to the adjoint function B∗. For the estimate “.”, use that

‖[Tσ, (TτB)]‖ = ‖[Tσ,ΛTτ B ]‖ ≤ 2(‖∆Tτ B‖+ ‖πTτ B‖) = 2(‖∆B‖+ ‖πB‖).

�

5. Sweeps of operator-valued functions.

In the final chapter, we investigate the action of the sweep on operator-valued
BMO spaces. It turns out that the sweep can easily be extended to a sesquilinear
map, which acts on cartesian products of BMO spaces. One way to express the
John-Nirenberg inequality on scalar-valued BMOd is to say that the mapping

(44) BMOd → BMOd, b 7→ Sb,

is bounded. In the operator-valued setting, this John-Nirenberg property breaks
down. Our main result is that any space of operator-valued functions which is
contained in BMOd

so(T,L(H)) and on which the mapping (44) acts boundedly is
already contained in BMOpara(T,L(H)).

However, we find that (44) acts boundedly between different operator-valued
BMO spaces. We also obtain the precise rate of growth of the norm of the mapping
(44) on BMOd

so(T,L(H)) in terms of the dimension of H.
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Definition 5.1. Let us denote by ∆ : F00×F00 → L1(T,L(H)) the bilinear map
given by

∆(B,F ) =
∑
I∈D

B∗
I FI

χI

|I|
.

In particular SB = ∆(B,B) and ∆(B,F )∗ = ∆(F,B).

Lemma 5.2. Let B ∈ F00. Then

PI∆(B,F ) = PI∆(B,PIF ) = PI

∑
J⊆I

χJ

|J |
B∗

JFJ = PI

∑
J(I

χJ

|J |
B∗

JFJ .

In particular, PI(SB) = PI(SPIB) = PI(S(PI++PI− )B).

Proof. PI∆(B∗, (FJhJ)) = PI(B∗
JFJ

χJ

|J| ) = 0 if I ⊆ J . Hence

PI∆(B,F ) = PI∆(B,PIF ) = PI∆(B, (PI+ + PI−)F ).

�

A similar proof as in Lemma 3.4 shows that

Lemma 5.3. Let B,F ∈ F00. Then

π∗BπF = π∆(B,F ) + π∗∆(F,B) + DB,F = Λ∆(B,F ) + DB,F ,

where DB,F is defined by DB,F (hI ⊗ x) = hI
1
|I|
∑

J(I B∗
JFJx for x ∈ H, I ∈ D.

Moreover, ‖DB,F ‖ ≤ sup‖e‖=1 ‖Be‖BMO(H) sup‖e‖=1 ‖Fe‖BMO(H).

Let us now study the boundedness of the sesquilinear map ∆ in various BMO
norms.

Theorem 5.4. There exists a constant C > 0 such that for B,F ∈ F00,
(1) ‖∆(B,F )‖BMOmult ≤ C‖B‖BMOpara‖F‖BMOpara

(2) ‖∆(B,F )‖WBMOd ≤ C‖B‖SBMOd‖F‖SBMOd

(3) ‖∆(B,F )‖SBMOd ≤ C‖πB‖‖F‖SBMOd

(4) ‖∆(B,F )‖BMOd
norm

≤ C‖B‖BMOd
Carl

‖F‖BMOd
Carl

Proof. (i) follows from Lemma 5.3.

(ii) Using Lemma 5.2, one obtains

〈PI∆(B,F )e, f〉 = PI

∑
J∈D

〈(PIF )Je, (PIB)Jf〉χJ

|J |

for e, f ∈ H. Therefore,

‖〈PI∆(B,F )e, f〉‖L1 = ‖PI

∑
J∈D

〈(PIF )Je, (PIB)Jf〉χJ

|J |
‖L1

≤ 2‖
∑
J∈D

〈(PIF )Je, (PIB)Jf〉χJ

|J |
‖L1

≤ 2‖(
∑
J∈D

‖(PIB)Jf‖2 χJ

|J |
)1/2‖L2‖(

∑
J∈D

‖(PIF )Je‖2 χJ

|J |
)1/2‖L2

≤ 2(
∑
J∈D

‖(PIB)Jf‖2)1/2(
∑
J∈D

‖(PIF )Je‖2)1/2.

Thus if ‖B‖BMOd
so

= ‖F‖BMOd
so

= 1, then

‖〈PI∆(B,F )e, f〉‖L2 ≤ 2‖PIBf‖L2(H)‖PIFe‖L2(H) ≤ 2|I|.
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This, again using John-Nirenberg’s lemma, gives ‖∆(B,F )‖WBMOd(L(H)) ≤ C.

(iii) From Lemma 5.2, we obtain

‖PI∆(B,F )e‖L2(H) = ‖∆B∗(PIFe)‖L2(H) ≤ ‖πB‖‖PIFe‖L2(H).

(iv) This follows from John-Nirenberg’s lemma and

‖PI∆(B,F )‖L1(T,L(H) ≤ ‖
∑
J⊆I

‖B∗
J‖‖FJ‖

χJ

|J |
‖L1

≤
∑
J⊆I

‖B∗
J‖‖FJ‖ ≤ C|I|‖B‖BMOd

Carl
‖F‖BMOd

Carl
.

�

Here comes the main result of this section.

Theorem 5.5. Let H be a separable, finite or infinite-dimensional Hilbert space.
Let ρ be a positive homogeneous functional on the space F00 of L(H)-valued func-
tions on T with finite formal Haar expansion such that there exists constants c1, c2

with
(1) ‖B‖BMOd

so
≤ c1ρ(B) and

(2) ρ(SB) ≤ c2ρ(B)2 for all B ∈ F00.
Then there exists a constant C, depending only on c1 and c2, such that
‖B‖BMOpara ≤ Cρ(B) for all B ∈ F00.

Proof. For n ∈ N, let En denote the subspace {f ∈ L2(T,H) : fI = 0 for |I| < 2−n}
of L2(T,H). Let c(n) = sup{‖πB‖En

: ρ(B) ≤ 1}. An elementary estimate shows
that c(n) is well-defined and finite for each n ∈ N. For ε > 0, n ∈ N, we can find
f ∈ En, ‖f‖ = 1, B ∈ F00, ρ(B) ≤ 1 such that

c(n)2(1− ε)2 ≤ ‖πBf‖2 = 〈πSB
f, f〉+ 〈f, πSB

f〉+ 〈DBf, f〉
≤ 2c(n)ρ(SB) + c1‖B‖BMOd

so
≤ 2c2c(n) + c1.

It follows that the sequence (c(n))n∈N is bounded by C = c2 +
√

c2
2 + c1, and

therefore ‖πB‖ ≤ Cρ(B) for all B ∈ F00. �
One immediate consequence is the following answer to Question 5.1 in [GPTV].

Theorem 5.6. There exists an absolute constant C > 0 such that for each n ∈ N
and each measurable function B : T → Mat(C, n× n),

(45) ‖SB‖BMOd
so
≤ C log(n + 1)‖B‖2BMOd

so
,

and this is sharp.

Proof. From (iii) in Theorem 5.4 one obtains:

‖SB‖BMOso ≤ C‖B‖BMOpara‖B‖BMOd
so
≤ C log(n + 1)‖B‖BMOd

so
,

since there exists an absolute constant C > 0 with

‖B‖BMOpara ≤ C log(n + 1)‖B‖BMOd
so

by [K] and [NTV]. On the other hand, denoting by Cn the smallest constant such
that

‖SB‖BMOd
so
≤ Cn‖B‖2BMOd

so
,
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for each integrable function B : T → Mat(C, n × n), we obtain from Theorem 5.5
that

‖B‖BMOpara ≤ (Cn +
√

C2
n + 1)‖B‖BMOd

so
≤ 3Cn‖B‖BMOd

so

for each integrable B. It was shown in [NPiTV] that there exists an absolute
constant c > 0 such that for each n ∈ N, there exists B(n) : T → Mat(n × n, C)
such that ‖B(n)‖BMOpara ≥ log(n + 1)c‖B(n)‖BMOd

so
. Therefore Cn ≥ c

3 log(n + 1),
and (45) is sharp. �

The following corollary gives an estimate of ‖ · ‖BMOpara in terms of ‖ · ‖SBMOd

with an “imposed” John-Nirenberg property. We need some notation: Let S
(0)
B = B

and let S
(n)
B = SS(n−1)B for n ∈ N, B ∈ F00.

Corollary 5.7. There exists a constant C > 0 such that

‖B‖BMOpara ≤ C sup
n≥0

‖S(n)
B ‖1/2n

SBMOd (B ∈ F00).

Proof. Define ρ(B) = supn≥0 ‖S
(n)
B ‖1/2n

SBMOd . One sees easily that this expression is
finite for B ∈ F00. Now apply 5.5. �

The space SBMOd can be characterised by the test function condition
supe∈H,‖e‖=1,I∈D ‖πBehI‖ < ∞. Here is a test function characterization for
B,SB ∈ SBMOd.

Proposition 5.8.

‖SB‖BMOd
so

+ ‖B‖2SBMOd ≈ sup
e∈H,‖e‖=1,I∈D

‖π∗BπBehI‖ (B ∈ F00).

Proof. First notice that for I ∈ D, e ∈ H,
1
|I|
‖PISBe‖2 =

1
|I|
‖PIS(PI++PI− )Be‖2 ≤ 4

|I|
‖S(PI++PI− )Be‖2 = 4‖π∗BπBhIe‖2

and
1
|I|
‖PIBe‖2 = 2‖πBhĨe‖

2 = 2〈π∗BπBhĨe, hĨe〉,

where Ĩ denotes the parent interval of I.
Conversely, note that

‖π∗BπBehI‖2 =
1
|I|
‖S(PI++PI− )Be‖2

≤ 1
|I|

(‖PIS(PI++PI−B)e‖+ |I|1/2‖mIS(PI++PI− )Be‖)2

=
1
|I|

(‖PIS(PIB)e‖+ |I|−1/2‖
∑
J(I

B∗
JBJe‖)2

≤ 2(
1
|I|
‖PISBe‖2 +

1
|I|2

‖
∑
J(I

B∗
JBJe‖2)

≤ 2(‖SB‖2BMOd
so

+ ‖B‖4SBMOd)‖e‖2.

�
This result can be used to characterise a type of L4 average boundedness of πB

in terms of ‖B‖BMOd
so

and ‖SB‖BMOd
so

.
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Theorem 5.9.

(‖SB‖2BMOso
+‖B‖4BMOso

)1/4 ≈ ( sup
f∈L2(T,H),‖f‖=1

∫
Σ

‖πB(Tσf)‖4dσ)1/4 (B ∈ F00).

Proof. We obtain the estimate “.” from Proposition 5.8, setting f = ehI , e ∈ H,
‖e‖ = 1, I ∈ D.

For the reverse estimate, use Lemma 3.4 to write

‖πB(Tσf)‖2 = 〈ΛSB
(Tσf), Tσf〉+ 〈DB(Tσf), Tσf〉

Hence
‖πB(Tσf)‖2 ≤ ‖ΛSB

(Tσf)‖‖f‖+ ‖DB(Tσf)‖‖f‖.
Now we can write

sup
‖f‖=1

∫
Σ

‖πB(Tσf)‖4dσ

≤ C

(
sup
‖f‖=1

∫
Σ

‖ΛSB
(Tσf)‖2dσ + sup

‖f‖=1

∫
Σ

‖DB(Tσf)‖2dσ

)
≤ C(‖SB‖2BMOso

+ ‖B‖4BMOso
).

�
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