The Bergman Projection on weighted spaces: L^1 and Herz spaces

Oscar Blasco*and Salvador Pérez-Esteva[†]

Abstract

In this paper we study conditions on radial weights w so that the Bergman projection is bounded on the Herz spaces $K_p^q(w)$.

2000 Mathematics Subject Classification 46E15, 46E30.

1 Introduction and preliminaries.

The purpose of this paper is to study spaces of analytic functions in the unit disc \mathbb{D} provided with a norm of a weighted Herz space. More precisely we will consider the classical family of Bergman projections P_s , s > -1, and we give necessary and sufficient conditions on the weight making these projections continuous in the corresponding weighted Herz space. The continuity of the projections P_s has been studied by many authors in several settings like weighted L^p continuity or weighted mixed norms (see for example [2, 5, 8, 12, 15, 16, 18] and [1, 3, 4, 17, 19] for related literature on Bergman type spaces).

Throughout the paper dm(z) is de normalized area measure on the disc, that is $dm(z) = \frac{1}{\pi} r dr d\theta$. For a weight w we understand a function such that $0 < w(z) < \infty$. If f is a function in $\mathbb D$ and $s \ge 0$, we will denote $f_s(z) = (1-|z|^2)^s f(z)$. We will write $r_n = 1-2^{-n}$, $I_n = \{r : r_n < r < r_{n+1}\}$ and $A_n = \{z \in \mathbb D : r_n < |z| < r_{n+1}\}$. We denote

$$||f||_{L^p(w)} = (\int_{\mathbb{D}} |f(z)|^p w(z) dm(z))^{1/p},$$

^{*}Partially supported by Proyecto DGICYT PB98-0146

 $^{^\}dagger Partially$ supported by PAPIIT-UNAM IN102799 and CONACyT 32408-E

and

$$M_p^p(f,r) = \int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi}.$$

We will write $w(A) = \int_A w(z)dm(z)$ for any measurable subset A of \mathbb{D} . Given a function ψ integrable on [0,1) we denote be $M_n(\psi) = \int_0^1 \psi(r)r^n dr$ the moment of order n for $n \in \mathbb{N}$ or n = 0.

Define the spaces $K_q^{\alpha,p}$ consisting of all measurable functions f in $\mathbb D$ such that

$$\sum_{n=1}^{\infty} 2^{-\alpha q n} \left(\int_{A_n} |f(z)|^p dm(z) \right)^{q/p} < \infty.$$

These spaces are a variant of those introduced by C. Herz in [10]. In this paper we will consider a more general class of spaces, the weighted Herz spaces $K_q^p(w)$, $1 \leq p, q \leq \infty$, introduced by Lu and Yang in [14] (see also [13] for power weights). These spaces consist of all measurable functions f in the disc such that $\left(\|f\|_{L_w^p(A_n)}\right) \in \ell^q$. The norm in $K_q^p(w)$ is defined by

$$||f||_{K_q^p(w)} = ||\left(||f||_{L_w^p(A_n)}\right)||_{\ell^q}.$$

Example 1.1 a) If $f = \sum_{m=1}^{\infty} a_n \chi_{A_n}$ then $f \in K_q^p(w)$ if and only if

$$\sum_{m=1}^{\infty} |a_n|^q w(A_n)^{q/p} < \infty.$$

b) Let w be a radial weight and $f(z) = \phi(r)\psi(\theta)$ for $z = re^{i\theta}$ where ϕ, ψ are measurable functions in [0,1) and $[0,2\pi)$ respectively. Then

$$||f||_{K_q^p(w)} = ||\psi||_{L^p([0,2\pi))} \left(\sum_{n=1}^{\infty} \int_{I_n} |\phi(r)|^p w(r) r dr\right)^{q/p}\right)^{1/q}.$$

For s > -1 we consider the family of Bergman projections

$$P_s f(z) = \int_{\mathbb{D}} K_s(z, \xi) f(\xi) (1 - |\xi|^2)^s dm(\xi),$$

where

$$K_s(z,\xi) = \frac{1}{(1-z\overline{\xi})^{2+s}} = \frac{1}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} z^n \overline{\xi}^n.$$

Lemma 1.2 a) If $f(z) = \phi(r)\psi(\theta)$ for $z = re^{i\theta}$ then

$$P_s(f)(z) = \frac{2}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} M_{n+1}(\phi_s) \hat{\psi}(n) z^n.$$

b) Fix s > -1 then $P_s(\chi_{A_n})(z) = c_{n,s} \sim 2^{-n(s+1)}$ for all $z \in \mathbb{D}$.

Proof. To prove (a), we use polar coordinates to get

$$P_{s}f(z) = 2 \int_{0}^{1} \left(\int_{0}^{2\pi} \frac{\psi(\theta)}{(1 - re^{-i\theta}z)^{2+s}} \frac{d\theta}{2\pi} \right) (1 - r^{2})^{s} \phi(r) r dr$$

$$= \frac{2}{\Gamma(s+2)} \int_{0}^{1} \left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} \hat{\psi}(n) r^{n} z^{n} \right) (1 - r^{2})^{s} \phi(r) r dr$$

$$= \frac{2}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} M_{n+1}(\phi_{s}) \hat{\psi}(n) z^{n}.$$

The proof of (b) easily follows from (a).

Define now the spaces $H_{pq}(w)$ of all functions f holomorphic on the disc \mathbb{D} such that

$$\left(\int_0^1 M_p^q(f,r)w(r)rdr\right)^{1/q} < \infty.$$

For the weight $w(r) = (1 - r^2)^{q\alpha - 1}$ the spaces are sometimes denoted by $H(p, q, \alpha)$.

Using that $M_p(f,r)$ is increasing for holomorphic functions one gets the following

Proposition 1.3 Let w be a weight such that $w(A_n) \leq Cw(A_{n+1})$, for instance $w(r) = (1 - r^2)^{\beta}$ or $w = \sum a_n \chi_{A_i}$ with $a_n/a_{n+1} \leq M$. Then

1.
$$f \in H_{pq}(w)$$
 if and only if $\sum_{n=1}^{\infty} M_p^q(f, r_n) w(A_n) < \infty$.

2.
$$f \in K_q^p(w) \cap Hol(D)$$
 if and only if $\sum_{n=1}^{\infty} M_p^q(f, r_n) w^{q/p}(A_n) < \infty$.

In particular, $K_q^p(w) \cap Hol(D) = H_{pq}(w^{q/p})$.

1.1 The class B_s^p

In [2] Bekolle introduced the class B_s^p of weight functions. Let 1 , a radial weight <math>w = w(r) belongs to B_s^p if

$$\left(\int_{1-h}^{1} w(r)(1-r^2)^s r dr\right) \left(\int_{1-h}^{1} w(r)^{-p'/p} (1-r^2)^s r dr\right)^{p/p'} \le Ch^{(s+1)p}.$$
(1)

Example 1.4 a) If $w = \sum_{1}^{\infty} a_n \chi_{A_n}$, with $a_n > 0$ then $w \in B_s^p$ if and only if

$$\left(\sum_{k=n}^{\infty} a_k 2^{-(s+1)k}\right) \left(\sum_{k=n}^{\infty} a_k^{-p'/p} 2^{-(s+1)k}\right)^{p/p'} \le C 2^{-(s+1)np}$$

b) If $w(r) = (1 - r^2)^{\alpha - s}$ then $w \in B_s^p$ if and only if

$$0 < \alpha + 1 < p(s+1). (2)$$

In [2] it was proved that the B_s^p is precisely the class of weight functions making P_s a continuous projection, namely

Theorem 1.5 Let $1 . <math>P_s$ is continuous in $L^p(w_s)$ if and only if $w \in B_s^p$.

Notice in particular that P_s is continuous on $L^p((1-r^2)^{\alpha})$ if and only if the inequality (2) holds. Also for p=1 the weak type continuity result was achieved in [2] and the B_s^p condition was shown to be equivalent to the boundedness in $L^p(w_s)$ of P_s^* where

$$P_s^*(f)(z) = \frac{1}{\pi} \int_{\mathbb{D}} \frac{(1 - |\xi|^2)^s f(\xi)}{|1 - \bar{\xi}z|^{2+s}} dm(\xi).$$

4

2 Continuity on $L^1(w)$

If we write the condition B_s^p as the existence of a constant C>0 such that for all 0< h<1

$$||w^{1/p}||_{L^p([h,1),d\nu_{h,s})}||w^{-1/p}||_{L^{p'}([h,1),d\nu_{h,s})} \le C,$$
(3)

with

$$d\nu_{h,s} = \frac{(1-r^2)^s r dr}{(1-h)^{s+1}},$$

then the natural substitute of (3) for p = 1 is true, namely

Proposition 2.1 Let w = w(r) and let P_s be bounded on $L^1(w_s)$. Then

a)
$$M_{n+1}(w_s) \left(\sup_{0 < r < 1} r^n w^{-1}(r) \right) \le \frac{C}{(n+1)^{s+1}}$$
.

b)
$$||w||_{L^1([h,1),d\nu_{h,s})}||w^{-1}||_{L^\infty([h,1),d\nu_{h,s})} \le C.$$

Proof. Let $f_n(re^{i\theta}) = \phi(r)e^{in\theta}$ for $\phi \geq 0$. Then

$$P_s(f_n)(z) = 2 \frac{\Gamma(n+s+2)}{\Gamma(s+2)n!} M_{n+1}(\phi_s) z^n,$$

and

$$||P_s(f_n)||_{L^1(w_s)} = 2 \frac{\Gamma(n+s+2)}{\Gamma(s+2)n!} M_{n+1}(w_s) \left(\int_0^1 \phi(r) (1-r^2)^s r^{n+1} dr \right).$$

Therefore, using the boundedness of the operator P_s , one gets

$$2\frac{\Gamma(n+s+2)}{\Gamma(s+2)n!}M_{n+1}(w_s)\left(\int_0^1 \phi(r)w(r)w^{-1}(r)(1-r^2)^s r^{n+1}dr\right)$$

$$\leq C \int_0^1 \phi(r) w_s(r) r dr.$$

This, by duality, implies that for all $n \geq 0$

$$\sup_{0 < r < 1} r^n w^{-1}(r) \le \frac{C_s n!}{\Gamma(n+s+2) M_n(w_s)} \le \frac{C_s}{(n+1)^{s+1} M_n(w_s)},$$

since by the Stirling formula we have that

$$\frac{\Gamma(n+s+2)}{n!} \sim (n+1)^{s+1}.$$

Notice in particular that w_s is integrable in $\mathbb D$ and w^{-1} is bounded.

To see (b) observe that for each 0 < h < 1 we can take $n \in \mathbb{N}$ such that $1 - \frac{1}{n+1} < h \le 1 - \frac{1}{n}$ and that for $r > 1 - \frac{1}{n}$ we have $r^n \ge (1 - \frac{1}{n})^n \ge C$, provided $n \ge 2$.

Hence

$$||w||_{L^1([h,1),d\nu_{h,s})}||w^{-1}||_{L^\infty([h,1),d\nu_{h,s})} =$$

$$= \left(\frac{1}{(1-h)^{s+1}} \int_{h}^{1} w(r)(1-r^2)^{s} r dr\right) \left(\sup_{h < r < 1} w^{-1}(r)\right) \le$$

$$\leq C\left((n+1)^{s+1}\int_{1-\frac{1}{n}}^{1}w(r)(1-r^2)^srdr\right)\left(\sup_{1-\frac{1}{n+1}< r<1}w^{-1}(r)r^n\right)\leq$$

$$\leq C(n+1)^{s+1}M_n(w)\sup_{0< r<1}w^{-1}(r)r^n\leq C.$$

Remark 2.2 If P_s is bounded on $L^1(w_s)$ is then P_s is also bounded on $L^p(w_s)$ for all 1 . Indeed, part (b) in Proposition 2.1 implies Bekolle's condition as in (3).

Let us now get a neccesary condition for the boundedness of P_s on $L^1(w)$ for a general weight w.

Theorem 2.3 Let w be a radial weight. If P_s is bounded on $L^1(w)$ then there exists a constant C > 0 so that

$$\int_0^1 \frac{w(r)}{(1-rt)^{s+1}} r dr \le C \frac{w(t)}{(1-t)^s} log(\frac{1}{1-t}),$$

and there exist $C_{\alpha} > 0$ for all $\alpha > 0$ such that

$$\int_0^1 \frac{w(r)}{(1-rt)^{s+\alpha+1}} dr \le C \frac{w(t)}{(1-t)^{s+\alpha}}.$$

Proof. Let us assume P_s is bounded on $L^1(w)$ and take $f = \phi(r)\psi(\theta)$ where $\psi \in H^1(\mathbb{T}) = \{\psi \in L^1([0, 2\pi) : \hat{\psi}(n) = 0 \ n < 0\}$. Recall that Hardy inequality (see [7]) gives that for all 0 < r < 1

$$\sum_{n=0}^{\infty} \frac{|\hat{\psi}(n)|r^n}{n+1} \le CM_1(\psi, r).$$

Then

$$||P_{s}f||_{L^{1}(w)} = \int_{0}^{1} w(r)M_{1}((P_{s}(f), r)rdr$$

$$\geq C_{s} \int_{0}^{1} w(r) \left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{(n+1)!} M_{n+1}(\phi_{s}) |\hat{\psi}(n)| r^{n} \right) rdr$$

$$= C_{s} \int_{0}^{1} G(t)(1-t^{2})^{s} \phi(t) tdt,$$

where

$$G(t) = \int_0^1 \left(\sum_{n=0}^\infty \frac{\Gamma(n+s+2)}{(n+1)!} t^n r^n |\hat{\psi}(n)| \right) w(r) r dr.$$

Using the continuity of P_s we obtain by duality that

$$\sup_{0 < t < 1} (1 - t^2)^s w^{-1}(t) G(t) \le C \|\psi\|_1.$$

If for each $\alpha \geq 0$ and 0 < t < 1 we let $\psi(z) = \frac{1}{(1-tz)^{\alpha+1}}$, we have that

$$\|\psi\|_1 \sim \begin{cases} \frac{1}{(1-t)^{\alpha}}, \ \alpha > 0\\ \log\left(\frac{1}{1-t}\right), \ \alpha = 0 \end{cases}$$

For this ψ we obtain

$$G(t) = \int_0^1 \left(\sum_{n=0}^\infty \frac{\Gamma(n+s+2)}{(n+1)!} \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)n!} t^{2n} r^n \right) w(r) r dr.$$

Then from $\frac{\Gamma(n+\lambda)}{n!} \sim n^{\lambda-1}$ and the expansion

$$\frac{1}{(1-t)^{\lambda}} = \sum_{n=0}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(\lambda)n!} t^n,$$

it follows that

$$G(t) \sim \int_0^1 \frac{w(r)}{(1 - rt^2)^{s + \alpha + 1}} r dr \sim \int_0^1 \frac{w(r)}{(1 - rt)^{s + \alpha + 1}} r dr,$$

and the proof is complete.

We finish this section by showing that $\int_0^1 \frac{w(r)}{(1-rt)^{s+1}} r dr \leq C \frac{w(t)}{(1-t)^s}$ implies the continuity of P_s on $L^1(w)$. Actually this will be equivalent to the boundedness of P_s^* .

Lemma 2.4 Let w be weight. If P_s^* is bounded on $L^1(w)$ if and only if

$$\int_{\mathbb{D}} \frac{w(z)}{|1 - \overline{y}z|^{2+s}} dm(z) \le C \frac{w(y)}{(1 - |y|^2)^s} \ a.e.$$

Proof. For any positive function f one has

$$\int_{\mathbb{D}} P_s^*(f)(z) w(z) dm(z) = \int_{\mathbb{D}} f(y) \left(1 - |y|^2 \right)^s \left(\int_{\mathbb{D}} \frac{w(z)}{|1 - \overline{y}z|^{2+s}} dm(z) \right) dm(w).$$

Then the lemma follows by duality.

Proposition 2.5 Let w be a radial weight. The following are equivalent

- a) P_s^* is bounded on $L^1(w)$,
- **b)** There exists a constant C > 0 so that $\int_0^1 \frac{w(r)}{(1-rt)^{s+1}} r dr \leq C \frac{w(t)}{(1-t)^s}$ a.e.
- c) $\int_0^t \frac{w(r)}{(1-r)^{s+1}} r dr \le C \frac{w(t)}{(1-t)^s}$ a.e. and $\frac{1}{(1-t)} \int_t^1 w(r) r dr \le C w(t)$ a.e.

Proof. (a) is equivalent to (b) according to the previous lemma using that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{|1 - zre^{-i\theta}|^{2+s}} \sim \frac{C}{(1 - |z|^2 r^2)^{1+s}}.$$

To see that (b) is equivalent to (c) observe that

$$\int_0^1 \frac{w(r)}{(1-rt)^{s+1}} r dr = \int_0^t \frac{w(r)}{(1-rt)^{s+1}} r dr + \int_t^1 \frac{w(r)}{(1-rt)^{s+1}} r dr$$

$$\sim \int_0^t \frac{w(r)}{(1-r)^{s+1}} dr + \frac{1}{(1-t)^{s+1}} \int_t^1 w(r) r dr.$$

Let us recall that a weight w is called a normal weight (see [8] or [18]) if there exist a and b, 0 < a < b, such that

- i) $\frac{w(r)}{(1-r)^a}$ is nonincreasing with $\lim_{r\to 1} \frac{w(r)}{(1-r)^a} = 0$ and
- ii) $\frac{w(r)}{(1-r)^b}$ is nondecreasing with $\lim_{r\to 1} \frac{w(r)}{(1-r)^b} = \infty$.

We shall denote by $b(w) = \inf\{b : b \text{ satisfies (ii)}\}.$

Corollary 2.6 Let w be a normal weight. If s > b(w) then P_s^* is bounded on $L^1(w)$.

Proof. Let us check that (c) in Proposition 2.5 is satisfied. Set b = b(w).

$$\int_0^t \frac{w(r)}{(1-r)^{s+1}} r dr = \int_0^t \frac{w(r)}{(1-r)^b} \frac{(1-r)^b}{(1-r)^{s+1}} r dr \le C \frac{w(t)}{(1-t)^s}$$

and

$$\frac{1}{(1-t)} \int_{t}^{1} w(r) r dr = \frac{1}{(1-t)} \int_{t}^{1} \frac{w(r)}{(1-r)^{a}} (1-r)^{a} r dr \le Cw(t).$$

3 Necessary conditions for the boundedness on Herz spaces

Proposition 3.1 Let $1 \leq p, q < \infty$, and assume the constant functions belong to $K_q^p(w)$, that is $\sum_{n=1}^{\infty} w(A_n)^{q/p} < \infty$. If P_s is bounded on $K_q^p(w)$ then the sequence $\left(2^{-n(s+1)}w^{-1/p}(A_n)\right) \in \ell_{q'}$.

Proof. Fix N and take $f = \sum_{n=1}^{N} \frac{a_n}{w(A_n)^{1/p}} \chi_{A_n}$. From Lemma 1.2

$$P_s(f) = \sum_{n=1}^{N} \frac{a_n}{w(A_n)^{1/p}} c_{n,s}.$$

Hence

$$||P_s f(z)||_{K_q^p(w)} = |\sum_{n=1}^N \frac{a_n}{w(A_n)^{1/p}} c_{n,s}| (\sum_{n=1}^\infty w(A_n)^{q/p})^{1/q}$$

and

$$||f||_{K_q^p(w)} = (\sum_{m=1}^{\infty} |a_n|^q)^{1/q}.$$

Now the result follows by duality.

Corollary 3.2 Let $\alpha > -1$. If P_s is bounded on $K_q^p((1-r^2)^{\alpha})$ then $\alpha + 1 < (s+1)p$.

Proof. The proof follows from Proposition 3.1 and the fact that $w(A_n) \sim 2^{-n(\alpha+1)}$ in this case.

Let us now give some more accurate necessary conditions for the boundedness of P_s on $K_q^p(w_s)$

Proposition 3.3 Let w be a radial weight. If $1 < p, q < \infty$ and P_s is bounded on $K_q^p(w_s)$, then there exists a constant C such that for all $n \in \mathbb{N}$

$$||r^n||_{K_q^p(w_s)}||r^n||_{K_{q'}^{p'}(\left(w^{-p'/p}\right)_s)} \le \frac{C}{(n+1)^{s+1}}.$$
(4)

Proof. Applying the boundedness to functions $f_n(z) = \phi(r)e^{in\theta}$, $\phi \ge 0$ and $n \in \mathbb{Z}$ we have that

$$P_s(f_n)(z) = 2 \frac{\Gamma(n+s+2)}{n!} M_{n+1}(\phi_s) z^n,$$

hence

$$||P(f_n)||_{K_q^p(w_s)} = M_{n+1}(\phi_s) \frac{\Gamma(n+s+2)}{\Gamma(s+2)n!} ||r^n||_{K_q^p(w_s)} \le C||\phi||_{K_q^p(w_s)},$$

what implies that for all $n \geq 0$

$$\int_0^1 \phi(r)r^{n+1}(1-r^2)^s dr \le \frac{C \Gamma(s+2)n!}{\Gamma(n+s+2)||r^n||_{K_q^p(w_s)}} ||\phi||_{K_q^p(w_s)}.$$
 (5)

Writing

$$\int_0^1 \phi(r) r^{n+1} (1-r^2)^s dr = \sum_{k=1}^\infty \int_{I_k} \phi(r) w^{1/p}(r) w^{-1/p}(r) r^n (1-r^2)^s r dr$$

and taking the supremum over all $||\phi||_{K_q^p(w_s)} \leq 1$ one gets from the duality in Herz spaces (see [9, Th. 2.1]) that

$$\left(\sum_{k=1}^{\infty} \left(\int_{I_k} w^{-p'/p}(r) r^{np'} (1-r^2)^s r dr\right)^{q'/p'}\right)^{1/q'} \le \frac{C \Gamma(s+2) n!}{\Gamma(n+s+2) ||r^n||_{K_q^p(w)}} \le \frac{C_s}{(n+1)^{s+1} ||r^n||_{K_q^p(w)}}.$$

Corollary 3.4 Let w be a radial weight. If $1 < p, q < \infty$ and P_s is bounded on $K_q^p(w_s)$ then there exists a constant C such that for all $n \in \mathbb{N}$

$$||\chi_{[h,1)}||_{K_q^p(w_s)}||\chi_{[h,1)}||_{K_{a'}^{p'}((w^{-p'/p})_s)} \le C(1-h)^{s+1}.$$
(6)

Proof. Notice that there exists a positive number C such that $\chi_{[1-\frac{1}{n},1)} \leq Cr^n$ for all $n \in \mathbb{N}$. Given 0 < h < 1 take n such that $1 - \frac{1}{n} < h \leq 1 - \frac{1}{n+1}$, then the lattice structure of these spaces gives

$$||\chi_{[h,1)}||_{K_q^p(w_s)}||\chi_{[h,1)}||_{K_{q'}^{p'}((w^{-p'/p})_s)} \le C(1-h)^{s+1}.$$

Remark 3.5 a) If $w(r) = v(r^2)$, then for p = q = 2, the condition (4) can be written as

$$M_n((1-r^2)^s v)^{1/2} M_n((1-r^2)^s v^{-1})^{1/2} \le \frac{C}{(n+1)^{s+1}}.$$

b) If p = q, then inequality (6) is precisely Bekolle's condition (1).

4 Sufficient conditions for the boundedness on Herz spaces

Let us start with some conditions on the weight to have $w \in B_t^p$ for $s - \varepsilon < t < s + \varepsilon$.

Lemma 4.1 If there exists $\gamma > 1$ such that

$$\int_0^1 \frac{w(r)^{\gamma} (1 - r^2)^s}{(1 - rt)^{s+1}} r dr \le C w(t)^{\gamma}$$

then $(1-r^2)^{\pm\varepsilon}w \in B_s^p$ for all $0 < \varepsilon < \min\{\frac{(s+1)}{\gamma'}, (p/p')(s+1)\}.$

Proof. By Proposition 2.5 we have that P_s^* is continuous in $L^1\left((w^\gamma)_s\right)$. Then Proposition 2.1 implies that

$$\left(\int_{1-h}^{1} w^{\gamma}(r)(1-r^2)^s r dr\right)\left(\sup_{1-h < r < 1} w^{-\gamma}(r)\right) \le Ch^{s+1}.$$

Let
$$-\frac{(s+1)}{\gamma'} < \varepsilon < (p/p')(s+1)$$
, then
$$\left(\int_{1-h}^{1} w(r)(1-r^2)^{\varepsilon+s}rdr\right) \left(\int_{1-h}^{1} w(r)^{-p'/p}(1-r^2)^{-\varepsilon(p'/p)+s}rdr\right)^{p/p'}$$

$$\leq \left(\int_{1-h}^{1} w(r)^{\gamma}(1-r^2)^{s}rdr\right)^{1/\gamma} \left(\int_{1-h}^{1} (1-r^2)^{\gamma'\varepsilon+s}rdr\right)^{1/\gamma'}$$

$$\times \sup_{1-h< r<1} w^{-1}(r) \left(\int_{1-h}^{1} (1-r^2)^{-\varepsilon(p'/p)+s}rdr\right)^{p/p'}$$

$$\leq C \left(\sup_{1-h< r<1} w^{-\gamma}(r) \left(\int_{1-h}^{1} w(r)^{\gamma}(1-r^2)^{s}rdr\right)\right)^{1/\gamma} h^{\varepsilon+(s+1)/\gamma'} h^{-\varepsilon+(s+1)p/p'}$$

$$\leq C h^{(s+1)p}.$$

Theorem 4.2 If there exists $\gamma > 1$ such that

$$\int_0^1 \frac{w(r)^{\gamma} (1 - r^2)^s}{(1 - rt)^{s+1}} r dr \le C w(t)^{\gamma},$$

then P_s is bounded on $K_q^p(w_s)$ for every $1 and <math>1 \le q < \infty$.

Proof. By Lemma 4.1, there exists $\varepsilon > 0$ such that $(1 - r^2)^{\pm \varepsilon} w \in B_s^p$, hence P_s is continuous in $L^p((1 - r^2)^{\pm \varepsilon} w_s)$, that is, there exists C > 0 such that

$$\int_{D} |P_{s}f(z)|^{p} (1-r^{2})^{\pm \varepsilon} w_{s}(z) dm(z) \leq C \int_{D} |f(z)|^{p} (1-r^{2})^{\pm \varepsilon} w_{s}(z) dm(z).$$

In particular, given $n, m \in$, if $supp(f) \subset A_n$

$$\int_{A_m} |P_s f(z)|^p w_s(z) dm(z) \le C 2^{\pm \varepsilon (m-n)} \int_D |f(z)|^p w_s(z) dm(z).$$

Let f be any function in $K_q^p(w)$. Write $f = \sum f_n$, with $f_n = f\chi_{A_n}$. Assume that the series is a sum with only a finite number of terms.

Then

$$||P_s f||_{L^p_{w_s}(A_m)} \le C \sum_n ||P_s f_n||_{L^p_{w_s}(A_m)} = C \sum_n 2^{\pm \frac{\varepsilon}{p}(m-n)} ||f_n||_{L^p_{w_s}(A_n)}$$

$$= C \sum_{n < m} 2^{\pm \frac{\varepsilon}{p}(m-n)} ||f_n||_{L^p_{w_s}(A_n)} + C \sum_{n \ge m} 2^{\pm \frac{\varepsilon}{p}(m-n)} ||f_n||_{L^p_{w_s}(A_n)}$$

$$= I_1 + I_2.$$

Consider the sequences $X = (x_n)$, and $Y = (y_n)$, with $x_n = 2^{-\varepsilon |n|/p}$ and

$$y_n = \begin{cases} ||f_n||_{L_{w_s}^p(A_n)} & n \ge 0\\ 0 & n < 0 \end{cases}$$

Then we have that

$$||P_s f||_{L^p_{w_s}(A_m)} \le CX * Y(m), \ m \in \mathbb{N}.$$

Finally from Young's inequality it follows that

$$||P_s f||_{K_{pq}(w_s)} \le C ||X||_{\ell^1} ||f||_{K_q^p(w_s)}.$$

We notice that the proof of Theorem 4.2 was based on the existence of a positive number ε such that $(1-r^2)^{\pm\varepsilon}w \in B_s^p$. With the same idea we have the following

Theorem 4.3 If $w \in B_t^p$ then P_s is bounded on $K_q^p(w_s)$ for every s > t.

Proof. An easy calculation shows that for $\varepsilon > 0$ we have

$$(1 - r^2)^{-\varepsilon} w \in B_{t+\varepsilon}^p$$

$$(1 - r^2)^{\varepsilon} w \in B^p_{t + \varepsilon p'/p}.$$

If we let $\varepsilon > 0$ small enough so that $\max(t + \varepsilon p'/p, t + \varepsilon) < s$, we obtain

$$(1 - r^2)^{\pm \varepsilon} w \in B_s^p$$

since the class B_t^p increases in t.

Corollary 4.4 Let $\alpha > -1$ and $w(r) = (1 - r^2)^{\alpha}$. Then P_s is continuous in $K_q^p(w)$ if and only if $\alpha + 1 < p(s+1)$. In this case P_s maps $K_q^p(w)$ onto $H_{pq}(w^{q/p})$.

References

- [1] J.L. Ansorena and O. Blasco, *Characterization of weighted Besov spaces*, Math. Nach. 171 (1995), 5-17.
- [2] D. Bekollé, Inégalité à poids pour le projecteur de Bergman dans la boule unité de \mathbb{C}^n , Studia Math. 71 (1981/82), no. 3, 305–323.
- [3] O. Blasco, Operators on weighted Bergman spaces and applications, Duke Math. J. 66 (1992) 443-467.
- [4] O. Blasco, Multipliers on weighted Besov spaces of analytic functions, Contemporary. Math. 144 (1993), 23-33.
- [5] F. Forelli and W. Rudin, *Projections on Spaces of holomorphic functions in balls*, Indiana Univ. Math. J. 24 (1974), 593-602.
- [6] T.M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc., Vol 20, No3, (1976), 749-768.
- [7] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequialities and Related Topics, North-Holland, 1985.
- [8] D. Gu, Bergman projections and duality in weighted mixed-norm spaces of analytic functions, Michigan Math. J. 39 (1992), no. 1, 71–84.
- [9] E. Hernández and D. Yang, Interpolation of Herz spaces and applications, Math. Nachr. 205 (1999), 69–87.
- [10] C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283–323.
- [11] S. Janson, Generalization of Lipschitz and application to Hardy spaces and bounded mean oscillation, Duke Math. J., 47, (1980), 959-982.

- [12] M. Jevtić, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Variables Theory Appl. 8 (1987) no.3-4, , 293–301.
- [13] S. Lu and F. Soria, On the Herz spaces with power weights, Fourier Analysis and Partial Differential Equations, CRC Press (1995),n. 15, 227–237.
- [14] S. Lu and D. Yang, The decomposition of weighted Herz space on \mathbb{R}^n and its applications, Sci. China Ser. A 38 (1995), no. 2, 147–158.
- [15] M. Mateljević, Bounded projections and decompositions in spaces of holomorphic functions, Second international symposium on complex analysis and applications (Budva, 1986), Mat. Vesnik 38 (1986) no. 4, 521–528.
- [16] M. Mateljević and M. Pavlović, An extension of the Forelli-Rudin projection theorem, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 3, 375– 389.
- [17] S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, Studia Math. 118 (1) (1996), 37-47.
- [18] A.L. Shields and D.L. Williams Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162 (1971), 287-302.
- [19] A.L. Shields and D.L. Williams Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math., 299/300 (1978), 256-279.

Departamento de Matemáticas Universidad de Valencia 46100 Burjassot Valencia Spain oblasco@uv.es

Instituto de Matemáticas
Universidad Nacional Autónoma
de México
Unidad Cuernavaca
A.P. 273-3 ADMON. 3
Cuernavaca, Morelos
62251 México
salvador@matcuer.unam.mx