The Bergman Projection on weighted spaces: L^{1} and Herz spaces

Oscar Blasco*and Salvador Pérez-Esteva ${ }^{\dagger}$

Abstract

In this paper we study conditions on radial weights w so that the Bergman projection is bounded on the Herz spaces $K_{p}^{q}(w)$.

2000 Mathematics Subject Classification 46E15, 46E30.

1 Introduction and preliminaries.

The purpose of this paper is to study spaces of analytic functions in the unit disc \mathbb{D} provided with a norm of a weighted Herz space. More precisely we will consider the classical family of Bergman projections $P_{s}, s>-1$, and we give necessary and sufficient conditions on the weight making these projections continuous in the corresponding weighted Herz space. The continuity of the projections P_{s} has been studied by many authors in several settings like weighted L^{p} continuity or weighted mixed norms (see for example $[2,5,8$, $12,15,16,18]$ and $[1,3,4,17,19]$ for related literature on Bergman type spaces).

Throughout the paper $d m(z)$ is de normalized area measure on the disc, that is $d m(z)=\frac{1}{\pi} r d r d \theta$. For a weight w we understand a function such that $0<w(z)<\infty$. If f is a function in \mathbb{D} and $s \geq 0$, we will denote $f_{s}(z)=\left(1-|z|^{2}\right)^{s} f(z)$. We will write $r_{n}=1-2^{-n}, I_{n}=\left\{r: r_{n}<r<r_{n+1}\right\}$ and $A_{n}=\left\{z \in \mathbb{D}: r_{n}<|z|<r_{n+1}\right\}$. We denote

$$
\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{D}}|f(z)|^{p} w(z) d m(z)\right)^{1 / p}
$$

[^0]and
$$
M_{p}^{p}(f, r)=\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}
$$

We will write $w(A)=\int_{A} w(z) d m(z)$ for any measurable subset A of \mathbb{D}. Given a function ψ integrable on $[0,1)$ we denote be $M_{n}(\psi)=\int_{0}^{1} \psi(r) r^{n} d r$ the moment of order n for $n \in \mathbb{N}$ or $n=0$.

Define the spaces $K_{q}^{\alpha, p}$ consisting of all measurable functions f in \mathbb{D} such that

$$
\sum_{n=1}^{\infty} 2^{-\alpha q n}\left(\int_{A_{n}}|f(z)|^{p} d m(z)\right)^{q / p}<\infty
$$

These spaces are a variant of those introduced by C. Herz in [10]. In this paper we will consider a more general class of spaces, the weighted Herz spaces $K_{q}^{p}(w), 1 \leq p, q \leq \infty$, introduced by Lu and Yang in [14] (see also [13] for power weights). These spaces consist of all measurable functions f in the disc such that $\left(\|f\|_{L_{w}^{p}\left(A_{n}\right)}\right) \in \ell^{q}$. The norm in $K_{q}^{p}(w)$ is defined by

$$
\|f\|_{K_{q}^{p}(w)}=\left\|\left(\|f\|_{L_{w}^{p}\left(A_{n}\right)}\right)\right\| \|_{\ell q} .
$$

Example 1.1 a) If $f=\sum_{m=1}^{\infty} a_{n} \chi_{A_{n}}$ then $f \in K_{q}^{p}(w)$ if and only if

$$
\sum_{m=1}^{\infty}\left|a_{n}\right|^{q} w\left(A_{n}\right)^{q / p}<\infty .
$$

b) Let w be a radial weight and $f(z)=\phi(r) \psi(\theta)$ for $z=r e^{i \theta}$ where ϕ, ψ are measurable functions in $[0,1)$ and $[0,2 \pi)$ respectively. Then

$$
\left.\|f\|_{K_{q}^{p}(w)}=\|\psi\|_{L^{p}([0,2 \pi))}\left(\sum_{n=1}^{\infty} \int_{I_{n}}|\phi(r)|^{p} w(r) r d r\right)^{q / p}\right)^{1 / q} .
$$

For $s>-1$ we consider the family of Bergman projections

$$
P_{s} f(z)=\int_{\mathbb{D}} K_{s}(z, \xi) f(\xi)\left(1-|\xi|^{2}\right)^{s} d m(\xi)
$$

where

$$
K_{s}(z, \xi)=\frac{1}{(1-z \bar{\xi})^{2+s}}=\frac{1}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} z^{n} \bar{\xi}^{n} .
$$

Lemma 1.2 a) If $f(z)=\phi(r) \psi(\theta)$ for $z=r e^{i \theta}$ then

$$
P_{s}(f)(z)=\frac{2}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} M_{n+1}\left(\phi_{s}\right) \hat{\psi}(n) z^{n} .
$$

b) Fix $s>-1$ then $P_{s}\left(\chi_{A_{n}}\right)(z)=c_{n, s} \sim 2^{-n(s+1)}$ for all $z \in \mathbb{D}$.

Proof. To prove (a), we use polar coordinates to get

$$
\begin{aligned}
P_{s} f(z) & =2 \int_{0}^{1}\left(\int_{0}^{2 \pi} \frac{\psi(\theta)}{\left(1-r e^{-i \theta} z\right)^{2+s}} \frac{d \theta}{2 \pi}\right)\left(1-r^{2}\right)^{s} \phi(r) r d r \\
& =\frac{2}{\Gamma(s+2)} \int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} \hat{\psi}(n) r^{n} z^{n}\right)\left(1-r^{2}\right)^{s} \phi(r) r d r \\
& =\frac{2}{\Gamma(s+2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{n!} M_{n+1}\left(\phi_{s}\right) \hat{\psi}(n) z^{n} .
\end{aligned}
$$

The proof of (b) easily follows from (a).
Define now the spaces $H_{p q}(w)$ of all functions f holomorphic on the disc \mathbb{D} such that

$$
\left(\int_{0}^{1} M_{p}^{q}(f, r) w(r) r d r\right)^{1 / q}<\infty
$$

For the weight $w(r)=\left(1-r^{2}\right)^{q \alpha-1}$ the spaces are sometimes denoted by $H(p, q, \alpha)$.

Using that $M_{p}(f, r)$ is increasing for holomorphic functions one gets the following

Proposition 1.3 Let w be a weight such that $w\left(A_{n}\right) \leq C w\left(A_{n+1}\right)$, for instance $w(r)=\left(1-r^{2}\right)^{\beta}$ or $w=\sum a_{n} \chi_{A_{i}}$ with $a_{n} / a_{n+1} \leq M$. Then

1. $f \in H_{p q}(w)$ if and only if $\sum_{n=1}^{\infty} M_{p}^{q}\left(f, r_{n}\right) w\left(A_{n}\right)<\infty$.
2. $f \in K_{q}^{p}(w) \cap \operatorname{Hol}(D)$ if and only if $\sum_{n=1}^{\infty} M_{p}^{q}\left(f, r_{n}\right) w^{q / p}\left(A_{n}\right)<\infty$.

In particular, $K_{q}^{p}(w) \cap \operatorname{Hol}(D)=H_{p q}\left(w^{q / p}\right)$.

1.1 The class B_{s}^{p}

In [2] Bekolle introduced the class B_{s}^{p} of weight functions. Let $1<p<\infty$, a radial weight $w=w(r)$ belongs to B_{s}^{p} if

$$
\begin{equation*}
\left(\int_{1-h}^{1} w(r)\left(1-r^{2}\right)^{s} r d r\right)\left(\int_{1-h}^{1} w(r)^{-p^{\prime} / p}\left(1-r^{2}\right)^{s} r d r\right)^{p / p^{\prime}} \leq C h^{(s+1) p} \tag{1}
\end{equation*}
$$

Example 1.4 a) If $w=\sum_{1}^{\infty} a_{n} \chi_{A_{n}}$, with $a_{n}>0$ then $w \in B_{s}^{p}$ if and only if

$$
\left(\sum_{k=n}^{\infty} a_{k} 2^{-(s+1) k}\right)\left(\sum_{k=n}^{\infty} a_{k}^{-p^{\prime} / p} 2^{-(s+1) k}\right)^{p / p^{\prime}} \leq C 2^{-(s+1) n p}
$$

b) If $w(r)=\left(1-r^{2}\right)^{\alpha-s}$ then $w \in B_{s}^{p}$ if and only if

$$
\begin{equation*}
0<\alpha+1<p(s+1) \tag{2}
\end{equation*}
$$

In [2] it was proved that the B_{s}^{p} is precisely the class of weight functions making P_{s} a continuous projection, namely

Theorem 1.5 Let $1<p<\infty$. P_{s} is continuous in $L^{p}\left(w_{s}\right)$ if and only if $w \in B_{s}^{p}$.

Notice in particular that P_{s} is continuous on $L^{p}\left(\left(1-r^{2}\right)^{\alpha}\right)$ if and only if the inequality (2) holds. Also for $p=1$ the weak type continuity result was achieved in [2] and the B_{s}^{p} condition was shown to be equivalent to the boundedness in $L^{p}\left(w_{s}\right)$ of P_{s}^{*} where

$$
P_{s}^{*}(f)(z)=\frac{1}{\pi} \int_{\mathbb{D}} \frac{\left(1-|\xi|^{2}\right)^{s} f(\xi)}{|1-\bar{\xi} z|^{2+s}} d m(\xi)
$$

2 Continuity on $L^{1}(w)$

If we write the condition B_{s}^{p} as the existence of a constant $C>0$ such that for all $0<h<1$

$$
\begin{equation*}
\left\|w^{1 / p}\right\|_{L^{p}\left([h, 1), d \nu_{h, s}\right)}\left\|w^{-1 / p}\right\|_{L^{p^{\prime}}\left([h, 1), d \nu_{h, s}\right)} \leq C, \tag{3}
\end{equation*}
$$

with

$$
d \nu_{h, s}=\frac{\left(1-r^{2}\right)^{s} r d r}{(1-h)^{s+1}}
$$

then the natural substitute of (3) for $p=1$ is true, namely
Proposition 2.1 Let $w=w(r)$ and let P_{s} be bounded on $L^{1}\left(w_{s}\right)$. Then
a) $M_{n+1}\left(w_{s}\right)\left(\sup _{0<r<1} r^{n} w^{-1}(r)\right) \leq \frac{C}{(n+1)^{s+1}}$.
b) $\|w\|_{L^{1}\left([h, 1), d \nu_{h, s}\right)}\left\|w^{-1}\right\|_{L^{\infty}\left([h, 1), d \nu_{h, s}\right)} \leq C$.

Proof. Let $f_{n}\left(r e^{i \theta}\right)=\phi(r) e^{i n \theta}$ for $\phi \geq 0$. Then

$$
P_{s}\left(f_{n}\right)(z)=2 \frac{\Gamma(n+s+2)}{\Gamma(s+2) n!} M_{n+1}\left(\phi_{s}\right) z^{n}
$$

and

$$
\left\|P_{s}\left(f_{n}\right)\right\|_{L^{1}\left(w_{s}\right)}=2 \frac{\Gamma(n+s+2)}{\Gamma(s+2) n!} M_{n+1}\left(w_{s}\right)\left(\int_{0}^{1} \phi(r)\left(1-r^{2}\right)^{s} r^{n+1} d r\right)
$$

Therefore, using the boundedness of the operator P_{s}, one gets

$$
\begin{gathered}
2 \frac{\Gamma(n+s+2)}{\Gamma(s+2) n!} M_{n+1}\left(w_{s}\right)\left(\int_{0}^{1} \phi(r) w(r) w^{-1}(r)\left(1-r^{2}\right)^{s} r^{n+1} d r\right) \\
\leq C \int_{0}^{1} \phi(r) w_{s}(r) r d r .
\end{gathered}
$$

This, by duality, implies that for all $n \geq 0$

$$
\sup _{0<r<1} r^{n} w^{-1}(r) \leq \frac{C_{s} n!}{\Gamma(n+s+2) M_{n}\left(w_{s}\right)} \leq \frac{C_{s}}{(n+1)^{s+1} M_{n}\left(w_{s}\right)},
$$

since by the Stirling formula we have that

$$
\frac{\Gamma(n+s+2)}{n!} \sim(n+1)^{s+1}
$$

Notice in particular that w_{s} is integrable in \mathbb{D} and w^{-1} is bounded.
To see (b) observe that for each $0<h<1$ we can take $n \in \mathbb{N}$ such that $1-\frac{1}{n+1}<h \leq 1-\frac{1}{n}$ and that for $r>1-\frac{1}{n}$ we have $r^{n} \geq\left(1-\frac{1}{n}\right)^{n} \geq C$, provided $n \geq 2$.

Hence

$$
\begin{gathered}
\|w\|_{L^{1}\left([h, 1), d \nu_{h, s}\right)}\left\|w^{-1}\right\|_{L^{\infty}\left([h, 1), d \nu_{h, s}\right)}= \\
=\left(\frac{1}{(1-h)^{s+1}} \int_{h}^{1} w(r)\left(1-r^{2}\right)^{s} r d r\right)\left(\sup _{h<r<1} w^{-1}(r)\right) \leq \\
\leq C\left((n+1)^{s+1} \int_{1-\frac{1}{n}}^{1} w(r)\left(1-r^{2}\right)^{s} r d r\right)\left(\sup _{1-\frac{1}{n+1}<r<1} w^{-1}(r) r^{n}\right) \leq \\
\leq C(n+1)^{s+1} M_{n}(w) \sup _{0<r<1} w^{-1}(r) r^{n} \leq C .
\end{gathered}
$$

Remark 2.2 If P_{s} is bounded on $L^{1}\left(w_{s}\right)$ is then P_{s} is also bounded on $L^{p}\left(w_{s}\right)$ for all $1<p<\infty$. Indeed, part (b) in Proposition 2.1 implies Bekolle's condition as in (3).

Let us now get a neccesary condition for the boundedness of P_{s} on $L^{1}(w)$ for a general weight w.

Theorem 2.3 Let w be a radial weight. If P_{s} is bounded on $L^{1}(w)$ then there exists a constant $C>0$ so that

$$
\int_{0}^{1} \frac{w(r)}{(1-r t)^{s+1}} r d r \leq C \frac{w(t)}{(1-t)^{s}} \log \left(\frac{1}{1-t}\right)
$$

and there exist $C_{\alpha}>0$ for all $\alpha>0$ such that

$$
\int_{0}^{1} \frac{w(r)}{(1-r t)^{s+\alpha+1}} d r \leq C \frac{w(t)}{(1-t)^{s+\alpha}}
$$

Proof. Let us assume P_{s} is bounded on $L^{1}(w)$ and take $f=\phi(r) \psi(\theta)$ where $\psi \in H^{1}(\mathbb{T})=\left\{\psi \in L^{1}([0,2 \pi): \hat{\psi}(n)=0 n<0\}\right.$. Recall that Hardy inequality (see [7]) gives that for all $0<r<1$

$$
\sum_{n=0}^{\infty} \frac{|\hat{\psi}(n)| r^{n}}{n+1} \leq C M_{1}(\psi, r)
$$

Then

$$
\begin{aligned}
\left\|P_{s} f\right\|_{L^{1}(w)} & =\int_{0}^{1} w(r) M_{1}\left(\left(P_{s}(f), r\right) r d r\right. \\
& \geq C_{s} \int_{0}^{1} w(r)\left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{(n+1)!} M_{n+1}\left(\phi_{s}\right)|\hat{\psi}(n)| r^{n}\right) r d r \\
& =C_{s} \int_{0}^{1} G(t)\left(1-t^{2}\right)^{s} \phi(t) t d t
\end{aligned}
$$

where

$$
G(t)=\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{(n+1)!} t^{n} r^{n}|\hat{\psi}(n)|\right) w(r) r d r
$$

Using the continuity of P_{s} we obtain by duality that

$$
\sup _{0<t<1}\left(1-t^{2}\right)^{s} w^{-1}(t) G(t) \leq C\|\psi\|_{1}
$$

If for each $\alpha \geq 0$ and $0<t<1$ we let $\psi(z)=\frac{1}{(1-t z)^{\alpha+1}}$, we have that

$$
\|\psi\|_{1} \sim\left\{\begin{array}{c}
\frac{1}{(1-t)^{\alpha}}, \alpha>0 \\
\log \left(\frac{1}{1-t}\right), \alpha=0
\end{array}\right.
$$

For this ψ we obtain

$$
G(t)=\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{\Gamma(n+s+2)}{(n+1)!} \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1) n!} t^{2 n} r^{n}\right) w(r) r d r .
$$

Then from $\frac{\Gamma(n+\lambda)}{n!} \sim n^{\lambda-1}$ and the expansion

$$
\frac{1}{(1-t)^{\lambda}}=\sum_{n=0}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(\lambda) n!} t^{n}
$$

it follows that

$$
G(t) \sim \int_{0}^{1} \frac{w(r)}{\left(1-r t^{2}\right)^{s+\alpha+1}} r d r \sim \int_{0}^{1} \frac{w(r)}{(1-r t)^{s+\alpha+1}} r d r
$$

and the proof is complete.
We finish this section by showing that $\int_{0}^{1} \frac{w(r)}{(1-r t)^{s+1}} r d r \leq C \frac{w(t)}{(1-t)^{s}}$ implies the continuity of P_{s} on $L^{1}(w)$. Actually this will be equivalent to the boundedness of P_{s}^{*}.

Lemma 2.4 Let w be weight. If P_{s}^{*} is bounded on $L^{1}(w)$ if and only if

$$
\int_{\mathbb{D}} \frac{w(z)}{|1-\bar{y} z|^{2+s}} d m(z) \leq C \frac{w(y)}{\left(1-|y|^{2}\right)^{s}} \text { a.e. }
$$

Proof. For any positive function f one has
$\int_{\mathbb{D}} P_{s}^{*}(f)(z) w(z) d m(z)=\int_{\mathbb{D}} f(y)\left(1-|y|^{2}\right)^{s}\left(\int_{\mathbb{D}} \frac{w(z)}{|1-\bar{y} z|^{2+s}} d m(z)\right) d m(w)$.
Then the lemma follows by duality.

Proposition 2.5 Let w be a radial weight. The following are equivalent
a) P_{s}^{*} is bounded on $L^{1}(w)$,
b) There exists a constant $C>0$ so that $\int_{0}^{1} \frac{w(r)}{(1-r t)^{s+1}} r d r \leq C \frac{w(t)}{(1-t)^{s}}$ a.e.
c) $\int_{0}^{t} \frac{w(r)}{(1-r)^{s+1}} r d r \leq C \frac{w(t)}{(1-t)^{s}}$ a.e. and $\frac{1}{(1-t)} \int_{t}^{1} w(r) r d r \leq C w(t) \quad$ a.e.

Proof. (a) is equivalent to (b) according to the previous lemma using that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|1-z r e^{-i \theta}\right|^{2+s}} \sim \frac{C}{\left(1-|z|^{2} r^{2}\right)^{1+s}}
$$

To see that (b) is equivalent to (c) observe that

$$
\begin{aligned}
\int_{0}^{1} \frac{w(r)}{(1-r t)^{s+1}} r d r & =\int_{0}^{t} \frac{w(r)}{(1-r t)^{s+1}} r d r+\int_{t}^{1} \frac{w(r)}{(1-r t)^{s+1}} r d r \\
& \sim \int_{0}^{t} \frac{w(r)}{(1-r)^{s+1}} d r+\frac{1}{(1-t)^{s+1}} \int_{t}^{1} w(r) r d r
\end{aligned}
$$

Let us recall that a weight w is called a normal weight (see [8] or [18]) if there exist a and $b, 0<a<b$, such that
i) $\frac{w(r)}{(1-r)^{a}}$ is nonincreasing with $\lim _{r \rightarrow 1} \frac{w(r)}{(1-r)^{a}}=0$ and
ii) $\frac{w(r)}{(1-r)^{b}}$ is nondecreasing with $\lim _{r \rightarrow 1} \frac{w(r)}{(1-r)^{b}}=\infty$.

We shall denote by $b(w)=\inf \{b: b$ satisfies (ii) $\}$.
Corollary 2.6 Let w be a normal weight. If $s>b(w)$ then P_{s}^{*} is bounded on $L^{1}(w)$.

Proof. Let us check that (c) in Proposition 2.5 is satisfied. Set $b=b(w)$.

$$
\int_{0}^{t} \frac{w(r)}{(1-r)^{s+1}} r d r=\int_{0}^{t} \frac{w(r)}{(1-r)^{b}} \frac{(1-r)^{b}}{(1-r)^{s+1}} r d r \leq C \frac{w(t)}{(1-t)^{s}}
$$

and

$$
\frac{1}{(1-t)} \int_{t}^{1} w(r) r d r=\frac{1}{(1-t)} \int_{t}^{1} \frac{w(r)}{(1-r)^{a}}(1-r)^{a} r d r \leq C w(t) .
$$

3 Necessary conditions for the boundedness on Herz spaces

Proposition 3.1 Let $1 \leq p, q<\infty$, and assume the constant functions belong to $K_{q}^{p}(w)$, that is $\sum_{n=1}^{\infty} w\left(A_{n}\right)^{q / p}<\infty$. If P_{s} is bounded on $K_{q}^{p}(w)$ then the sequence $\left(2^{-n(s+1)} w^{-1 / p}\left(A_{n}\right)\right) \in \ell_{q^{\prime}}$.

Proof. Fix N and take $f=\sum_{n=1}^{N} \frac{a_{n}}{w\left(A_{n}\right)^{1 / p}} \chi_{A_{n}}$. From Lemma 1.2

$$
P_{s}(f)=\sum_{n=1}^{N} \frac{a_{n}}{w\left(A_{n}\right)^{1 / p}} c_{n, s} .
$$

Hence

$$
\left\|P_{s} f(z)\right\|_{K_{q}^{p}(w)}=\left|\sum_{n=1}^{N} \frac{a_{n}}{w\left(A_{n}\right)^{1 / p}} c_{n, s}\right|\left(\sum_{n=1}^{\infty} w\left(A_{n}\right)^{q / p}\right)^{1 / q}
$$

and

$$
\|f\|_{K_{q}^{p}(w)}=\left(\sum_{m=1}^{\infty}\left|a_{n}\right|^{q}\right)^{1 / q} .
$$

Now the result follows by duality.
Corollary 3.2 Let $\alpha>-1$. If P_{s} is bounded on $K_{q}^{p}\left(\left(1-r^{2}\right)^{\alpha}\right)$ then $\alpha+1<$ $(s+1) p$.

Proof. The proof follows from Proposition 3.1 and the fact that $w\left(A_{n}\right) \sim$ $2^{-n(\alpha+1)}$ in this case.

Let us now give some more accurate neccesary conditions for the boundedness of P_{s} on $K_{q}^{p}\left(w_{s}\right)$

Proposition 3.3 Let w be a radial weight. If $1<p, q<\infty$ and P_{s} is bounded on $K_{q}^{p}\left(w_{s}\right)$, then there exists a constant C such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|\left.r^{n}\right|_{K_{q}^{p}\left(w_{s}\right)}| | r^{n}\right\|_{K_{q^{\prime}}^{p^{\prime}}\left(\left(w^{-p^{\prime} / p}\right)_{s}\right)} \leq \frac{C}{(n+1)^{s+1}} \tag{4}
\end{equation*}
$$

Proof. Applying the boundedness to functions $f_{n}(z)=\phi(r) e^{i n \theta}, \phi \geq 0$ and $n \in \mathbb{Z}$ we have that

$$
P_{s}\left(f_{n}\right)(z)=2 \frac{\Gamma(n+s+2)}{n!} M_{n+1}\left(\phi_{s}\right) z^{n}
$$

hence

$$
\left\|P\left(f_{n}\right)\right\|_{K_{q}^{p}\left(w_{s}\right)}=M_{n+1}\left(\phi_{s}\right) \frac{\Gamma(n+s+2)}{\Gamma(s+2) n!}\left\|r^{n}\right\|_{K_{q}^{p}\left(w_{s}\right)} \leq C\|\phi\|_{K_{q}^{p}\left(w_{s}\right)}
$$

what implies that for all $n \geq 0$

$$
\begin{equation*}
\int_{0}^{1} \phi(r) r^{n+1}\left(1-r^{2}\right)^{s} d r \leq \frac{C \Gamma(s+2) n!}{\Gamma(n+s+2)\left\|r^{n}\right\|_{K_{q}^{p}\left(w_{s}\right)}}\|\phi\|_{K_{q}^{p}\left(w_{s}\right)} \tag{5}
\end{equation*}
$$

Writing

$$
\int_{0}^{1} \phi(r) r^{n+1}\left(1-r^{2}\right)^{s} d r=\sum_{k=1}^{\infty} \int_{I_{k}} \phi(r) w^{1 / p}(r) w^{-1 / p}(r) r^{n}\left(1-r^{2}\right)^{s} r d r
$$

and taking the supremum over all $\|\phi\|_{K_{q}^{p}\left(w_{s}\right)} \leq 1$ one gets from the duality in Herz spaces (see [9, Th. 2.1]) that

$$
\begin{aligned}
\left(\sum_{k=1}^{\infty}\left(\int_{I_{k}} w^{-p^{\prime} / p}(r) r^{n p^{\prime}}\left(1-r^{2}\right)^{s} r d r\right)^{q^{\prime} / p^{\prime}}\right)^{1 / q^{\prime}} & \leq \frac{C \Gamma(s+2) n!}{\Gamma(n+s+2)\left\|r^{n}\right\|_{K_{q}^{p}(w)}} \\
& \leq \frac{C_{s}}{(n+1)^{s+1}\left\|r^{n}\right\|_{K_{q}^{p}(w)}}
\end{aligned}
$$

Corollary 3.4 Let w be a radial weight. If $1<p, q<\infty$ and P_{s} is bounded on $K_{q}^{p}\left(w_{s}\right)$ then there exists a constant C such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|\chi_{[h, 1)}| |_{K_{q}^{p}\left(w_{s}\right)}| | \chi_{[h, 1)}\right\|_{K_{q^{\prime}}^{p^{\prime}}\left(\left(w^{-p^{\prime} / p}\right)_{s}\right)} \leq C(1-h)^{s+1} \tag{6}
\end{equation*}
$$

Proof. Notice that there exists a positive number C such that $\chi_{\left[1-\frac{1}{n}, 1\right)} \leq$ $C r^{n}$ for all $n \in \mathbb{N}$. Given $0<h<1$ take n such that $1-\frac{1}{n}<h \leq 1-\frac{1}{n+1}$, then the lattice structure of these spaces gives

$$
\left\|\chi _ { [h , 1) } \left|\left\|_{K_{q}^{p}\left(w_{s}\right)} \mid\right\| \chi_{[h, 1)} \|_{K_{q^{\prime}}^{p^{\prime}}\left(\left(w^{-p^{\prime} / p}\right)_{s}\right)} \leq C(1-h)^{s+1} .\right.\right.
$$

Remark 3.5 a) If $w(r)=v\left(r^{2}\right)$, then for $p=q=2$, the condition (4) can be written as

$$
M_{n}\left(\left(1-r^{2}\right)^{s} v\right)^{1 / 2} M_{n}\left(\left(1-r^{2}\right)^{s} v^{-1}\right)^{1 / 2} \leq \frac{C}{(n+1)^{s+1}}
$$

b) If $p=q$, then inequality (6) is precisely Bekolle's condition (1).

4 Sufficient conditions for the boundedness on Herz spaces

Let us start with some conditions on the weight to have $w \in B_{t}^{p}$ for $s-\varepsilon<$ $t<s+\varepsilon$.

Lemma 4.1 If there exists $\gamma>1$ such that

$$
\int_{0}^{1} \frac{w(r)^{\gamma}\left(1-r^{2}\right)^{s}}{(1-r t)^{s+1}} r d r \leq C w(t)^{\gamma}
$$

then $\left(1-r^{2}\right)^{ \pm \varepsilon} w \in B_{s}^{p}$ for all $0<\varepsilon<\min \left\{\frac{(s+1)}{\gamma^{\prime}},\left(p / p^{\prime}\right)(s+1)\right\}$.
Proof. By Proposition 2.5 we have that P_{s}^{*} is continuous in $L^{1}\left(\left(w^{\gamma}\right)_{s}\right)$. Then Proposition 2.1 implies that

$$
\left(\int_{1-h}^{1} w^{\gamma}(r)\left(1-r^{2}\right)^{s} r d r\right)\left(\sup _{1-h<r<1} w^{-\gamma}(r)\right) \leq C h^{s+1}
$$

Let $-\frac{(s+1)}{\gamma^{\prime}}<\varepsilon<\left(p / p^{\prime}\right)(s+1)$, then

$$
\begin{aligned}
&\left.\left(\int_{1-h}^{1} w(r)\left(1-r^{2}\right)^{\varepsilon+s} r d r\right)\right)\left(\int_{1-h}^{1} w(r)^{-p^{\prime} / p}\left(1-r^{2}\right)^{-\varepsilon\left(p^{\prime} / p\right)+s} r d r\right)^{p / p^{\prime}} \\
& \leq\left(\int_{1-h}^{1} w(r)^{\gamma}\left(1-r^{2}\right)^{s} r d r\right)^{1 / \gamma}\left(\int_{1-h}^{1}\left(1-r^{2}\right)^{\gamma^{\prime} \varepsilon+s} r d r\right)^{1 / \gamma^{\prime}} \\
& \times \sup _{1-h<r<1} w^{-1}(r)\left(\int_{1-h}^{1}\left(1-r^{2}\right)^{-\varepsilon\left(p^{\prime} / p\right)+s} r d r\right)^{p / p^{\prime}} \\
& \leq C\left(\sup _{1-h<r<1} w^{-\gamma}(r)\left(\int_{1-h}^{1} w(r)^{\gamma}\left(1-r^{2}\right)^{s} r d r\right)\right)^{1 / \gamma} h^{\varepsilon+(s+1) / \gamma^{\prime}} h^{-\varepsilon+(s+1) p / p^{\prime}} \\
& \leq C h^{(s+1) p} .
\end{aligned}
$$

Theorem 4.2 If there exists $\gamma>1$ such that

$$
\int_{0}^{1} \frac{w(r)^{\gamma}\left(1-r^{2}\right)^{s}}{(1-r t)^{s+1}} r d r \leq C w(t)^{\gamma}
$$

then P_{s} is bounded on $K_{q}^{p}\left(w_{s}\right)$ for every $1<p<\infty$ and $1 \leq q<\infty$.
Proof. By Lemma 4.1, there exists $\varepsilon>0$ such that $\left(1-r^{2}\right)^{ \pm \varepsilon} w \in B_{s}^{p}$, hence P_{s} is continuous in $L^{p}\left(\left(1-r^{2}\right)^{ \pm \varepsilon} w_{s}\right)$, that is, there exists $C>0$ such that

$$
\int_{D}\left|P_{s} f(z)\right|^{p}\left(1-r^{2}\right)^{ \pm \varepsilon} w_{s}(z) d m(z) \leq C \int_{D}|f(z)|^{p}\left(1-r^{2}\right)^{ \pm \varepsilon} w_{s}(z) d m(z)
$$

In particular, given $n, m \in$, if $\operatorname{supp}(f) \subset A_{n}$

$$
\int_{A_{m}}\left|P_{s} f(z)\right|^{p} w_{s}(z) d m(z) \leq C 2^{ \pm \varepsilon(m-n)} \int_{D}|f(z)|^{p} w_{s}(z) d m(z) .
$$

Let f be any function in $K_{q}^{p}(w)$. Write $f=\sum f_{n}$, with $f_{n}=f \chi_{A_{n}}$. Assume that the series is a sum with only a finite number of terms.

Then

$$
\begin{aligned}
\left\|P_{s} f\right\|_{L_{w_{s}\left(A_{m}\right)}} & \leq C \sum_{n}\left\|P_{s} f_{n}\right\|_{L_{w_{s}}^{p}\left(A_{m}\right)}=C \sum_{n} 2^{ \pm \frac{\varepsilon}{p}(m-n)}\left\|f_{n}\right\|_{L_{w_{s}}^{p}\left(A_{n}\right)} \\
& =C \sum_{n<m} 2^{ \pm \frac{\varepsilon}{p}(m-n)}\left\|f_{n}\right\|_{L_{w_{s}}^{p}\left(A_{n}\right)}+C \sum_{n \geq m} 2^{ \pm \frac{\varepsilon}{p}(m-n)}\left\|f_{n}\right\|_{L_{w_{s}}^{p}\left(A_{n}\right)} \\
& =I_{1}+I_{2}
\end{aligned}
$$

Consider the sequences $X=\left(x_{n}\right)$, and $Y=\left(y_{n}\right)$, with $x_{n}=2^{-\varepsilon|n| / p}$ and

$$
y_{n}=\left\{\begin{array}{cc}
\left\|f_{n}\right\|_{L_{w_{s}}^{p}\left(A_{n}\right)} \quad n \geq 0 \\
0 & n<0
\end{array}\right.
$$

Then we have that

$$
\left\|P_{s} f\right\|_{L_{w_{s}}^{p}\left(A_{m}\right)} \leq C X * Y(m), m \in \mathbb{N}
$$

Finally from Young's inequality it follows that

$$
\left\|P_{s} f\right\|_{K_{p q}\left(w_{s}\right)} \leq C\|X\|_{\ell^{1}}\|f\|_{K_{q}^{p}\left(w_{s}\right)} .
$$

We notice that the proof of Theorem 4.2 was based on the existence of a positive number ε such that $\left(1-r^{2}\right)^{ \pm \varepsilon} w \in B_{s}^{p}$. With the same idea we have the following

Theorem 4.3 If $w \in B_{t}^{p}$ then P_{s} is bounded on $K_{q}^{p}\left(w_{s}\right)$ for every $s>t$.
Proof. An easy calculation shows that for $\varepsilon>0$ we have

$$
\begin{aligned}
& \left(1-r^{2}\right)^{-\varepsilon} w \in B_{t+\varepsilon}^{p} \\
& \left(1-r^{2}\right)^{\varepsilon} w \in B_{t+\varepsilon p^{\prime} / p}^{p}
\end{aligned}
$$

If we let $\varepsilon>0$ small enough so that $\max \left(t+\varepsilon p^{\prime} / p, t+\varepsilon\right)<s$, we obtain

$$
\left(1-r^{2}\right)^{ \pm \varepsilon} w \in B_{s}^{p}
$$

since the class B_{t}^{p} increases in t.

Corollary 4.4 Let $\alpha>-1$ and $w(r)=\left(1-r^{2}\right)^{\alpha}$. Then P_{s} is continuous in $K_{q}^{p}(w)$ if and only if $\alpha+1<p(s+1)$. In this case P_{s} maps $K_{q}^{p}(w)$ onto $H_{p q}\left(w^{q / p}\right)$.

References

[1] J.L. Ansorena and O. Blasco, Characterization of weighted Besov spaces, Math. Nach. 171 (1995), 5-17.
[2] D. Bekollé, Inégalité à poids pour le projecteur de Bergman dans la boule unité de \mathbb{C}^{n}, Studia Math. 71 (1981/82), no. 3, 305-323.
[3] O. Blasco, Operators on weighted Bergman spaces and applications, Duke Math. J. 66 (1992) 443-467.
[4] O. Blasco, Multipliers on weighted Besov spaces of analytic functions, Contemporary. Math. 144 (1993), 23-33.
[5] F. Forelli and W. Rudin, Projections on Spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
[6] T.M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc., Vol 20, No3, (1976), 749-768.
[7] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequialities and Related Topics, North-Holland, 1985.
[8] D. Gu, Bergman projections and duality in weighted mixed-norm spaces of analytic functions, Michigan Math. J. 39 (1992), no. 1, 71-84.
[9] E. Hernández and D. Yang, Interpolation of Herz spaces and applications, Math. Nachr. 205 (1999), 69-87.
[10] C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283-323.
[11] S. Janson, Generalization of Lipschitz and application to Hardy spaces and bounded mean oscillation, Duke Math. J., 47, (1980), 959-982.
[12] M. Jevtić, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Variables Theory Appl. 8 (1987) no.3-4, , 293-301.
[13] S. Lu and F. Soria, On the Herz spaces with power weights, Fourier Analysis and Partial Differential Equations, CRC Press (1995),n. 15, 227-237.
[14] S. Lu and D. Yang, The decomposition of weighted Herz space on \mathbb{R}^{n} and its applications, Sci. China Ser. A 38 (1995), no. 2, 147-158.
[15] M. Mateljević, Bounded projections and decompositions in spaces of holomorphic functions, Second international symposium on complex analysis and applications (Budva, 1986), Mat. Vesnik 38 (1986) no. 4, 521-528.
[16] M. Mateljević and M. Pavlović, An extension of the Forelli-Rudin projection theorem, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 3, 375389.
[17] S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, Studia Math. 118 (1) (1996), 37-47.
[18] A.L. Shields and D.L. Williams Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162 (1971), 287-302 .
[19] A.L. Shields and D.L. Williams Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math., 299/300 (1978), 256-279.

Departamento de Matemáticas
Universidad de Valencia
46100 Burjassot
Valencia
Spain
oblasco@uv.es

Instituto de Matemáticas
Universidad Nacional Autónoma
de México
Unidad Cuernavaca
A.P. 273-3 ADMON. 3
Cuernavaca, Morelos
62251 México
salvador@matcuer.unam.mx

[^0]: *Partially supported by Proyecto DGICYT PB98-0146
 ${ }^{\dagger}$ Partially supported by PAPIIT-UNAM IN102799 and CONACyT 32408-E

