ON OPERATOR VALUED SEQUENCES OF
MULTIPLIERS AND R-BOUNDEDNESS.

OSCAR BLASCO, JAN FOURIE, ILSE SCHOEMAN

ABSTRACT. In recent papers (cf [3], [4],[5], [20]) the concept of
(p, q)-summing multiplier was considered in both general and spe-
cial context. It has been shown that some geometric properties
of Banach spaces and some classical theorems can be described
using spaces of (p, ¢)-summing multipliers. The present paper is
a continuation of this study, whereby multiplier spaces for some
classical Banach spaces are considered. The scope of this research
is also broaden, by studying other classes of summing multipli-
ers. Generally spoken, a sequence of bounded linear operators
(un) C L(X,Y) is called a multiplier sequence from E(X) to
F(Y) if (upxy) € F(Y) for all (z;) € E(X), whereby E(X) and
F(Y) are two Banach spaces whose elements are sequences of vec-
tors in X and Y, respectively. Several cases where E(X) and F(Y)
are different (classical) spaces of sequences, including for instance
the spaces Rad(X) of almost unconditionally summable sequences
in X, are considered. Several examples, properties and relations
among spaces of summing multipliers are discussed. Important
concepts like R-bounded, semi-R-bounded and weak-R-bounded
from recent papers are also considered in this context.

1. INTRODUCTION.

Let X and Y be two real or complex Banach spaces and let F(X)
and F(Y') be two Banach spaces whose elements are sequences of vec-
tors in X and Y (containing all eventually null sequence in X or Y),
respectively. A sequence of operators (u,) € L(X,Y) is called a mul-
tiplier sequence from E(X) to F(Y) if there exists a constant C' > 0

such that

H (ujxj)?ﬂ HF(Y) < CH <xj)?=1 HE(X)
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for all finite families x4, ..., z, in X.

The set of all multiplier sequences from FE(X) to F(Y) is denoted
by (E(X), F(Y)). The reader is referred to [1] where (E(X), F(Y))
is considered in the setting of spaces of distributions. We refer to
(7, 8, 10, 9, 13] for the case of vector-valued Hardy and BMO spaces
E(X) = HY(T, X) and F(Y) = (,(Y) or F(Y) = BMOA(T,Y), to [2]
for the case E(X) = B,(X) and F(Y) = B,(Y) or F(Y) = £,(Y)
where B,(X) stands for vector-valued Bergman spaces and to [11]
for the case E(X) = Bloch(X) and F(Y) = (,(Y). Also, the cases
E(X) = Rad(X) and F(Y) = Rad(Y"), were introduced by E. Berkson
and T.A. Gillespie [6] and used for different purposes.

In the papers [4, 12] the cases E(X) = ((X) and F(Y) = (,(Y)
where considered (see also [3]). These spaces are defined as follows.
Given a real or complex Banach space X and 1 < p < oo, we denote
by £,(X), £;(X) and £,(X) the Banach spaces of sequences in X, which
are endowed with the norms ||(z,)[e,x) = || ([|7a]])]e,

ep((25)) = sup{[[(z"z;)lg, : 2" € X7, [l2*|| <1} and

@)y = sup{ll@es) e : (@) = 1, respectively,
The space £,(X) was first introduced in [16] and recently it has been
described in different ways (see [3] for a description as the space of
integral operators from ¢,y into X or [15] and [20] for the identification
with the projective tensor product £,&X).

We recall some basic notions in Banach space theory. Following
standard notation, £(X,Y’) will denote the space of bounded linear
operators between Banach spaces X and Y, By denotes the unit ball
in X and by (e;) we denote the canonical basis of the classical sequence
spaces £, (1 < p < 00) and ¢g. For 1 < p < oo, p’ will be the conjugate
exponent of p, i.e. %4—1% = 1 and (e}) will sometimes be used to denote
the canonical basis of (¢,)* = ¢,y for 1 < p < 0o and ¢ = ¢; to distinct
between the standard bases of the classical sequence space and its dual
space. K denotes R or C if no difference is relevant. Sequences in
Banach spaces are denoted by (z;), (y;), etc. and

(x)(En):=(21,29,...,2,,0,0...).

For1 < ¢ < p < o0, the space I1,, ,(X,Y) of (p,q)-summing operators
is the vector space of those operators which map sequences in E;“(X )
onto sequences in £,(Y"); more precisely, u € £(X,Y) is in II, ,(X,Y)
if there exists C' > 0 such that

[(w;)lle, ) < Ceql(25))
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for all finite family of vectors z; in X; the least (meaning, infimum)
of such C' > 0 is called the (p,q)-summing norm of u and is denoted
by pq(u). Thus, u € I, ,(X,Y) <= 4 : (X)) — ,(Y) = (2) =
(ux;) is a bounded linear operator. Usually, (p, p)-summing is called p-
summing and 1-summing operators are also called absolutely summing,
because for a 1-summing operator u € £(X,Y) we have that > uz; is
absolutely convergent in Y for every unconditionally convergent series
Y ox;in X.

Grothendieck’s theorem, in this setting, says that, for any measure
space (Q, ) and any Hilbert space H, L(L'(u), H) = (L' (n), H).
Because of this, a Banach space X is called a GT- space, i.e. X satisfies
the Grothendieck theorem, if £(X, ¢y) = I1;(X, ¢2) (see [25], page 71 ).

For each 1 < p < oo, we denote by Rad,(X) the space of sequences
() in X such that

n

()7, = supnenll D sl oo x) < oo,
j=1

where (r;);en are the Rademacher functions on [0, 1] defined by r;(t) =
sign(sin 27t).

The reader is referred to [26, 19, 27] for the difference between this
space and the space of sequences (x,,) for which the series Y x,r,
is convergent in LP(]0, 1], X). It is easy to see that Rad.(X) coincides
with ¢4'(X).

Making use of the Kahane’s inequalities (see [19], page 211) it follows
that the spaces Rad,(X) coincide up to equivalent norms for all 1 <
p < 0o. The unique vector space so obtained, will therefore be denoted
by Rad(X), and we agree to (mostly) use the norm || - ||z, on Rad(X).

We recall the fundamentals on type and cotype. For 1 < p < 2
(respectively, ¢ > 2), a Banach space X is said to have (Rademacher)
type p (respectively, (Rademacher) cotype q) if there exists a constant
C > 0 such that

1 n n
1/
[ I wmolide < o3 )
0 j=1 j=1
(respectively,
n 1 n
1
(Sl < ¢ [ 1Yzl
j=1 0 j=1

for any finite family x, zo, ... x, of vectors in X. Furthermore, a Ba-
nach space X is said to have the Orlicz property if there exists a



4 O. BLASCO, J. FOURIE, I. SCHOEMAN

constant C > 0 such that
n 12 n
(O lll1?) = < € sup [ 2]
=1 te[0,1] =1

for any finite family x1, s, ...z, of vectors in X.

The basic theory of p-summing and (p, ¢)-summing operators, type
and cotype can be found, for example, in the books [18, 19, 23, 25, 26,
28].

In this paper we shall consider some connections between different
notions of sequences of operators.

Definition 1.1. (see [4], [12]) Let X and Y be Banach spaces, and let
1 < p,qg <oo. A sequence (u;)jen of operators in L(X,Y) is called a
(p, q)-summing multiplier, if there ezists a constant C' > 0 such that,
for any finite collection of vectors x1,xa,...x, in X, it holds that

- 1/p - 1/q
(Z ||ujxj||p> < C’sup{(Z |£L‘*Ij|q> ot e BX*}.
j=1

Jj=1

The vector space of all (p, ¢)-summing multipliers from X into Y is
denoted by (£'(X),£,(Y’)). Note that the constant sequence u; = u for
all j € N belonging to (¢7'(X),£,(Y)), corresponds to u being an op-
erator in I, 4(X,Y). Also the case (u;) = (Mju) € (€7(X), 4H(Y))
for all (A\;) € ¢, where (1/p) + (1/p') = 1, corresponds to u €
IT,,(X,Y). These facts suggest the use of the notation ¢, (X,Y)
instead of (¢3'(X),£,(Y)) and £, (X,Y") for the case ¢ = p.

In the recent paper [3], J.L. Arregui and O. Blasco have considered
the previous notion for Y = K and have shown that some geometric
properties on X can be described using ¢, (X, K) and also that classi-
cal theorems, like Grothendieck theorem and others, can be rephrased
into this setting. Some results on the spaces {,, (X,Y) can be found
in [12] and [4]. The reader is also referred to [5, 20] for the particular
case p=¢q, X =Y and u; = ajIdx. In these papers a scalar sequence
(o) is defined to be a p-summing multiplier if (u;) = («;Idx) belongs
to £r, (X, Y).

In Section 2 we summarize some (recent) results on (p, ¢)-summing
multipliers and discuss some examples of (p, ¢)-summing multipliers
on classical Banach spaces. We extend the idea of (p, ¢)-summing mul-
tiplier to other families of multiplier sequences from E(X) to F(Y),
considering some well known and important Banach spaces of vector
valued sequences in place of E(X) and F(Y). Some duality results
with application to spaces of operators are also considered.

Tp,q



OPERATOR VALUED MULTIPLIERS 5

In Section 3, we study R-bounded sequences and other variants
thereof, like for instance, semi-R-bounded and weak-R-bounded se-
quences in Banach spaces. Relations of several types of sequences
of bounded linear operators (like R-bounded, weak-R-bounded, semi-
R-bounded, uniformly bounded, unconditionally bounded and almost
summing) are studied. These relations build on well known results on
type and cotype and characterizations of different families of operators.

2. (p,q)-SUMMING MULTIPLIERS.

We refer to Definition 1.1 for the definition of (p, ¢)-summing multi-
plier. Some easy examples can be constructed by taking tensor prod-
ucts of some elements in classical spaces.

Proposition 2.1. (see [4]) Let X and Y be Banach spaces, and 1 <
P, q < 00.

(1) 4r, (X, K)@/,(Y) C lr, (X,Y) for % + %

(2) LRI 4(X,Y) C by, (X,Y) for% =1+ 1 In particular (,0X C
e, ,(X) = £,(X). Moreover, 6,0X = (,(X) isometrically (dif-
ferent proofs of this fact are discussed in [20] and [15]).

(3) L(Y)®X* C by, (X,Y) forp < gq and % = -+

In particular, notice that

1

p
1
-

0 =

1

q

Remark 2.1. Let p,q,s > 1 be real numbers such that 1 =

(i) If p < q, * € X* and (y,) € (5(Y) then (uy)
lr, (X,Y).

(i) If (M) € €s and v € 1, 4(X,Y'), then (u,) = (MAu) € £r, (X,Y).

We consider some (elementary) examples:

1 1
1yl
(* ® yn) €

Il ~

Example 2.1. Let K be a compact set and j a probability measure on
the Borel sets of K. Let 1 <p < q<oo, 1/r=1/p—1/q and (¢;) a
sequence of continuous functions on K. Consider u; : C(K) — LP(u)

gwen by u;(y) = ¢;9. Then (uj) € by, (C(K), LP(1)) if and only if
O lesN'r e 1P (u).
J
Example 2.2. Let (Q,%, p) and (Y, %, 1) be finite measure spaces.

Let 1 <p < q< oo, % =14 %. For eachm € N, let f, € LP(u, L*(i/))
and consider the operator w,, : L= (y') — LP(u), defined by

()0 = | P(w") fu () (W) dpa/ ().
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Put fu( o) = fa() (W) and (35, [ful” )7 (@) () = (i [, )7
Then, (3op—i 1 fel")™ € LP(p, LY(1)) = (un) € lr, ,(L¥(1), LP(1)).
Proof. Given n € N and ¢1, ¢o,- -+ , ¢, € L(1), then

S k(60 = [ 1] 000Nl el i)

< [ IO Dl ') )
. 1
< Z 0D / (f Il N )
Hence, since ||(¢n)[lew (oo (ur)) = 1D 5=y 196 (-)]9) 7 | oo (ur), it follows that
Tpa(( Z | fie(w, ') ||LP(u LY(p')).

L]

Example 2.3. Let 1 < p < g < 0, %-%—i—% and (A,) be a sequence
of infinite matrices. Consider T, € L(cy,{,) given by

T(( )) (Zk:l (k J)Ak) If
Z{Z(Z |An(k, j)P)7 Y < oo then, (T,,) € lr, (o, £p).

Proof. (T,,) is of the form T,, = > 77 | €} ® Y, where y,, 1, € £, is given
by Ynir = (A,(k,j));. Using the usual Hélder type 1nequaht1es one
verifies easily for (z,) C ¢ that

ZHT zn)|[” < [[(20)]

Therefore, we conclude that

Qo ITu@l)> < ll@allegien YLD (O 1Ak, I}

k=1 n=1 j=1

[e.@] . )
(D llyasl)7I7-

1 n=1

o0
gw CO
k=

O

Definition 2.2. Let X andY be Banach spaces, and let 1 < p,q < o0.
A sequence (uj);jen of operators in L(X,Y) belongs to (£,(X),,(Y)),
if there exists a constant C' > 0 such that

Sl <umy; > 1< (X llel?) " sup (D lyul)
j=1 7j=1 ”y”:l j=1
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for all finite collections of vectors x1,xa, ..., in X and yi,ys, ... y: in
Y*. The infimum of the numbers C' > 0 for which the inequality holds,
is denoted by ||(w)||(e,(x).0,v)) -

Proposition 2.3. Let X and Y be Banach spaces, 1 < p,q < o0

and let (uj);en be a sequence of operators in L(X,Y). Then (u;) €
(g(X), €,(Y)) if and only if (u}) € lr, , (Y™, X7). In this case

1)l ey x),80007) = T ((45))-

Proof. Let (u}) € £y, (Y*, X*). If 21,--+ , 2z, is a finite set in X and
if (y;) € £y (Y™), we have

S sl < 2 DI (3 o)
< ey (D) e

Taking the supremum over the unit ball in £};(Y™), we conclude that

(uj) € (€(X), 6,(Y)) and [|(wi) |l (e, (x),60(v)) < g (1))

Conversely, assume (u;) € ({,(X),4,(Y)). Let yi,--- , vy} be a finite
set in Y* and let (z;) € £,(X). It follows that

Z| wiyp x| < ([ (wi) |l pyew ((97))
< Cua)lleeg x0.8 rn 1(a) g () €9 (7)) -

If we take the supremum over the unit ball in £,(X), we obtain (u}) €
Uy (Y, X7) and 7gr pr ((u7)) <1 (i) g 200, 00))- -

Example 2.4. Let o be a probability measure on Q. Let 1 < p <
q < oo, 1/r =1/p—1/q and (¢;) a sequence of functions in L7 (p).
Consider u; : LY () — L'(u) given by u;(y) = ¢;9. Then

(ZI%I")”’" € L7 (n) = (u;) € (L(L(w), (L ()))-
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Proof. Let 11,1y, ..., %, € LY(u). Taking into account that £,(L'(n)) =
C,LY () = LY, £,), we have

oy = 1016785l
j=1

< NQ_ oMY Qo i)Y g
j=1 j=1

1103 Wy (D 105l ).
j=1

j=1

IN

OJ

Remarks 2.1. (1) Under the conditions of Example 2.4, we let v; :

(2)

L=(p) — L9 (1), be defined by v;(x) = ¢;x. Thenv; = ui, Vj and

Ezample 2.4 and Proposition 2.3 yield that (v;) € lx, (L>(u), L7 ().

Let1 <p,q < oo. If X 1s a Banach lattice and 'Y a Banach space,
then we call an operatoru € L(X,Y) strongly (p, q)—concave (and
write u € SCpq4(X,Y)) if there exists a ¢ > 0 such that for all
X1, , T, n X we have

. . 1
(i< m)lly < € ICY Lol
i=1
The infimum of the numbers ¢ > 0 such that the inequality holds
for all choices of finite sets in X, is denoted by ||ullsc,.,-
u € L(LYu),Y) is strongly (p, q)-concave iff there ezists a c > 0
such that for all finite sets x1, X2, , Xn 0 Li(1), we have

lOanG < mlloy < e N bl llzago

- 1
= ¢ O Ixill )7 -
i=1

Thus it follows that uw € L(L%(w),Y) is strongly (p, q)— concave iff
the constant sequence (u,u,---) belongs to ((,(L (1)), ¢,(Y)) and
moreover, ||ul|sc,, = ||(w,u, )|l Lo, ¢,(vy)- Proposition 2.3
tells us that this is the case iff

(’LL*, U*a T ) S gﬂ'q/’p/ (Y*7 Lq/ (lu)) = (611;)’ (Y*)7 éq/(Lq/ (M)))?
which corresponds to u* € My, (Y*, LY (11)).

We have thus proved thatu : Li(u) — Y is strongly (p, q) — concave
iffu* 1 Y* — L7 (u) is (¢, p')-summing, with |ul|sc,, = Hu*HW -
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The following two examples are conclusions of Proposition 2.3 and
([12], Example 2.2, 2.3).

Example 2.5. Let (Q, %, ) and ()%, 1) be finite measure spaces
and 1 < p < oo. Let (f,) C LP(u, L*(1/')) and consider the operator
S, L (1) — LY() defined by

5.(9)() = / 9() falw, ) dp(w),

where, as before, we let f,(w,) = fu(w)(-). If sup, |fn] € L’j(,u,Ll(,u’))
(where, sup,, | ful(w)(-) = sup,, | fu(w, )| ), then (Sn) € (Ly (LY (1)), Ly (L*(1))).

Example 2.6. Let 1 < p < oo and (A,) be a sequence of matrices.
Consider the bounded operator Sy, : £,y — {1 given by

Sul(&)) = (3 Aulk. )&

Then (Sn) € (Coo(£y ), Loo(€1)) if D2y sup, (32574 [An(k, J)[P)? < o0
Definition 2.4. Let X andY be Banach spaces, and let 1 < p,q < o0.
A sequence (uj)jen of operators in L(X,Y) belongs to (£5(X), £,(Y)),
if there exists a constant C' > 0 such that, for any finite collections of
vectors x1,%a, ... Ty i X and Yy, ys5, ...y, in Y™, it holds that

- - 1/q = N /P
D I <wzy,y; > <C sup (Z |x*xqu) s (Z Iy}‘y\p> :

=1

. *: . =
= Joll=1 N4 N

The infimum of all C' > 0 such that the inequality holds for all finite
sets in X and Y™, is denoted by ||(u;) || ew(x).6,0v)-

Proposition 2.5. Let X and Y be Banach spaces, 1 < p,q < 00
and let (uj)jen be a sequence of operators in L(X,Y). Then (u;) €
(05 (X), €,(Y)) if and only if (u}) € (£(Y™), £y (X)) and

(i)l )0, 001) = M) les, o)., x)-

Proof. Consider (u}) € (£;(Y™),ly(X™)) and let @1, 79, 2, € X.

J
Verifying the inequalities

Z\<uixi,z?>| < [[(wiz) @ < n)lligyeq((2:) (@ < n))

< @) e vy xen e ((20) (@ < m))eq((2:) (0 < m)),
for all (z)) € £;(Y™), one obtains that

s (0 < m)lly < M)l ) 0 €q () (8 < )
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and hence that [|(u;)]] e x)e,v)) < [|(u Z)H(@(Y*Mq,(p)).
Conversely, take (u;) € ((7'(X),€,(Y)). Let y7,--- ,y; be a finite set
in Y and let (z;) € Bgw(x). Then

Z| 2o ufyi )| = D Huss, yi) | < )l e 00,00 €0 (@) ((47))-
i=1

Taking the supremum over all sequences (z;) € Bw(x), we conclude

that (u7) € (€ (Y™), by (X)), (i) llem, vy ey < (i)l ey 0).000))-
]

Example 2.7. Let K be a compact set and jv a probability measure on
the Borel sets of K. Let 1 <p < q<oo, 1/r=1/p—1/q and (¢;) a
sequence of continuous functions on K. Consider u; : C(K) — L'(u)
gwen by u;(¢) = ¢;. Then

D16V € L (1) = (w;) € (£5(C(K)), £(L (1))
J
Proof. As in Example 2.4, if 91,9, ..., 1, € C(K) we have
1ty @) llepzrgmy < MO 1650 151D o
j=1 j=1
Z 65177 L p) SUD Z [ (1)] %)/

n

< H(Zlfﬁjlr)”’"lln(m sup (Y| <wy,v > |9

j=1 Ivllar ) =1 j=1

IN

A

O

In the discussion above we restricted ourselves to the Banach spaces
(G (X), £,(Y)), (£7(X),£6,(Y)) and (£4(X), £,(Y')); thus we considered
special cases of the vector space (F(X), F(X)) of multiplier sequences
— introduced in Section 1 — and defined suitable norms on them. Con-
tinuing in this fashion, we shall in the following section discuss the
important concept of R-boundedness of sequences of operators and
some related concepts in the setting of multiplier sequences.

3. R-BOUNDED SEQUENCES

In this section we consider notions that have been shown to be rele-
vant in some recent problems.
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Definition 3.1. (c¢f. [17] and [21]) Let X and Y be Banach spaces.
A sequence of operators (u;) € L(X,Y) is said to be Rademacher
bounded i.e. R-bounded if there exists C' > 0 such that

1 1
/||Zwm |2dt)t < © /nzxm )Pt}

for all finite collections x1,xa,...,z, € X.

The space of R-bounded sequences of operators from X into Y is
denoted by R(X,Y') and ||(u;)||r denotes the infimum of the constants
satisfying the previous inequality for all finite subsets of X. It is easy to
see that (Rad(X,Y),||(u;)||r) is a Banach space which coincides with
the multiplier space (Rad(X),Rad(Y")).

Definition 3.2. (cf. [24]) Let X and Y be Banach spaces. A sequence
of operators (u;) C L(X,Y) is called weakly Rademacher bounded,
shortly W R-bounded if there exists a constant C' > 0 such that for
all finite collections x1,--- ,x, € X and y7,--- ,y; € Y* we have

1 1
>l < O szm H?dmfuzym CIROR

The space of W R-bounded sequences in L(X,Y), is denoted by
WR(X,Y) and ||(u,)|lwg is the infimum of the constants in the pre-
vious inequality, taken over all finite subsets of X and Y*. Then

Il(wn)|lwr is @ norm on W R(X,Y"), which is exactly the norm of the bi-
linear map Rad(X)xRad(Y™*) — ¢; defined by ((z), (v5)) — ((urxr, yi))-

Definition 3.3. (cf. [12]) Let X and Y be Banach spaces. A sequence
of operators (uj) € L(X,Y) is said to be almost summing if there

exists C' > 0 such that for any finite set of vectors {xy, -+ ,x,} C X
we have
(3.1) / ”Z% O de < sup (3 [t a) P
0 le*ll=1 =

(or, equlvalently, (uj) € L(X,Y) is almost summing if there exists

C" > 0 such that for any finite set of vectors {zy,--- ,x,} C X we have
/HZUJ%TJ )| dt < C" sup Z|x z;)| %)
la*ll=1 {5

We write £, (X,Y) for the space of almost summing sequences, which
is endowed with the norm

|(wi)||as := inf{C" > 0 | such that (3.1) holds}.
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Notice that ¢, (X,Y) = ((¥(X), Rad(Y)). If the constant sequence
(u,u,u,...)isin £,, (X,Y), then the operator u is called almost sum-
ming (see [19], page 234). The space of almost summing operators is
denoted by I1,4(X,Y) and the norm on this space is given by

Tas (1) = [(w, w,w . )las = [|al];
where in this case @ : £5(X) — Rad(Y) is given by 4((x;)) = (ux;).

Definition 3.4. (cf. [24]) Let X and Y be Banach spaces. A sequence
of operators (u;) € L(X,Y) is called unconditionally bounded or
U-bounded if there exists a constant C' > 0 such that for all finite
collections xq,--- ,x, € X and yi,--- ,y; € Y we have

n n n
0l < > > il
> lans | < € o 13- el o 13- e

We write UR(X,Y) for the space of U-bounded sequences in L(X,Y").
The space UR(X,Y) is endowed with the norm ||(u,)||yr, which is
given by the infimum (taken over all finite subsets of X and Y*) of the
constants in the previous inequality.

Proposition 3.5. Let X and Y be Banach spaces. The following in-
clusions hold.

le (X,Y) C R(X,Y) CWR(X,Y) CUR(X,Y) C b (L(X,Y)).

Proof. The inclusion /., (X,Y) C R(X,Y) is a trivial consequence of
the embedding Rad(X) C 5 (X).

Suppose (u;) € R(X,Y). Orthogonality of the Rademacher vari-
ables, duality and the contraction principle, allow us to write

E |(ukzr, yr)| = sup E (ukTr, €xYr)

ep==%1
1
= sup / (Zrk(t)ukxk,Zrk(t)ekyk)dt
a=tlJo 32 k<n
< sugl/ qukm )||2dt) 1/2/ HZEWW )||2dt)"/?
€=

< Iyl / Hzm (0)|Pdt) 2 / ||Zym (0)|Pdt)2.

This proves the inclusion R(X,Y) C WR(X,Y). The inclusion
WR(X,Y) CUR(X,Y) is clear from the definitions.
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If (u,) € UR(X,Y), then from the definition of unconditional bound-
edness there exists C' > 0 such that for x € X, y* € Y*, we have

[(ur, y™)| < Cllllfly”]
for all £ € N. Thus the inclusion UR(X,Y) C (. (L(X,Y)) also fol-
lows. O
Remark 3.1. Ifu € L(X,Y) then (u,u,...) € R(X,Y) and ||(u,u,...)||r =
llu||. However, (u,u,...) € €., (X,Y) if and only if u € Tx(X,Y).
This shows that 0, (X,Y) C R(X,Y) is strict.

Recall that for 1 < p < oo, the p-convexity and p-concavity of LP(u)
imply the following equivalence of norms:

(@) Raaczooy = 1D 1651 2l zng
j=1

for any collection ¢y, ¢a, ..., ¢, in LP(u) (cf [19], 16.11).
Also, if X = C(K) for any compact set K or if X = {, then

e ((¢5)) ~ H(Z [05[7) 7 x

for all finite subsets ¢y, @9, ..., ¢, of X.
Therefore we have the following versions of Definitions 3.1, 3.2, 3.3
and 3.4 in some special cases:

Proposition 3.6. (i) Let X = C(K) and Y = Li(v) for 1 < ¢ < oc.
Then (u;) € lr, (X,Y) if and only if there exists C' > 0 such that

1O 1 (6) )2y < O 1651°) Pl
j=1 j=1
for any finite collection ¢1, P, ..., ¢, in C(K).
(ii) Let X = LP(u) and Y = Li(v) for 1 < p,q < co. Then (u;) €
R(X,Y) if and only if there exists C' > 0 such that

1O 1w (@) ) 2l zawy < CHOQ 16512 oo
j=1

j=1
for all finite collections ¢y, ¢a, ..., Dy in LP(p).
(1ii) Let X = ¢, andY = ¢y for 1 <p < oco. Then (u;) € WR(X,Y)
iof and only if there exists C' > 0 such that

> Hwi(85), 0001 < CIQ10s ) 2l I sl
j=1 j=1 j=1
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for all collections ¢1, P, ..., Pn in £y, and @1, P2, ..., 0 in L.
() Let X = lo, and Y = 4. Then (u;) € UR(X,Y) if and only if
there exists C' > 0 such that

D K@), 0l < CHQ 165D Pl 1 L) e
j=1 j=1 j=1

for all finite collections @1, ¢, ..., op and o1, Yo, ...y Pp N Lo.

Proposition 3.7. Let 2 <r < oo. Ifu; = \u foru € l,4(X,Y) and
(Aj) € L, then (u;) € (£(X), Rad(Y)) for 1/q=1/2—1/r.

In particular, if u € ,5(X,Y) and (X)) € s then (uj) = (\ju) €
lr (X,Y).

Proof. From u € I,4(X,Y), we have

(/0 | Z“j(xj)rj(t)”z dt)'/?
< mulI)l, sup (le i)

z*||=1
0

Remark 3.2. We would like to point out that U,I1, ,(X,Y) C I1s(X,Y)
(see [19], 12.5). Nevertheless this is not the case for sequences of op-
erators. Indeed, it suffices to take u, = x* ® y, for firted x* € X*
and (yn) € loo(Y). In this case, (un) belongs to lr,,(X,Y), but not
to U, (X,Y) (consider for example Y = co and y, = e, the canonical
basis).

Proposition 3.8. Let Y be a Banach space of type 1 < p = p(Y') and
cotype ¢ = q(Y) < o0o. Then Uy, ,(X,Y) C Ly, (X,Y) C L, ,(X,Y).
In particular if Y is a Hilbert space then (r,,(X,Y) = (, (X,Y).

Proof. Tt follows from the fact £,(Y) C Rad(Y) C £,(Y). O

Let us mention that it was pointed out in ([24]) that if X has non-
trivial type then WR(X, X) = R(X, X). Actually the assumption only
needs to be taken in the second space.

Recall that the notion of nontrivial type is equivalent to K-convexity
(see [19], page 260). X is said to be K-convex if f — (fol fr
defines a bounded operator from LP([0,1]) onto Rad,(X) for some
(equivalently for all) 1 < p < oo.

For K-convex spaces one has Rad(X*) = Rad(X)* (see [26], or [14]
for more general systems).
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Let us point out that this shows that there are no infinite dimensional
K-convex GT-spaces of cotype 2. Indeed, assume X is K-convex and
a GT-space of cotype 2. On the one hand Rad(X) = ¢3(X) and on
the other hand Rad(X)* = Rad(X*) with equivalent norms. Therefore
Rad(X*) = (lo(X))* = ¢¥(X*). Hence the identity on X* is almost
summing and then X* is finite dimensional.

It is well known that, in general, one can only expect Rad(X™) to be
continuously embedded in Rad(X)*, but that the embedding needs not
even be isomorphically. Take, for instance, X = ¢;. Then Rad((;) =
lo(ly) = €y, that is to say (x,), C {1 (with z,, = (,(k))x) belongs
to Rad(¢y) if and only if

Z kan 2)1/2 <

keN neN

As a matter of fact, it follows from earlier discussions that
Rad(fl) = €2<£1> = €2®€1 = £1®£2 = gl <€2> = 61(62)
Therefore Rad(X)* can be identified with L(Kg, l) or with £ (¢s), and

[ (@) Raax)» —SUP Z|Jf 1/2

neN

(@) || Rad(x+) =/ SuP|Z$ (t)|dt.

neN
Proposition 3.9. IfY is a K-convex space then WR(X,Y) = R(X,Y).

Proof. Let (u,) € WR(X,Y) and let z; € X for i = 1,...,n. Using
that Rad(Y)* = Rad(Y™), we have

([ I ol

~ sup{] D> (wi(y), u)] 1) yirillze) <13
i=1 i=1

However

< @) llwrll D arillzec

O

It is clear from the proof of Proposition 3.9 that WR(X,Y) =
R(X,Y) for all Banach spaces Y such that Rad(Y)* = Rad(Y™).
For later use, we point out that
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Lemma 3.10. Let 1 < p,q < co. For a sequence (u;) in L(X,Y) we
have (uj) € Ly, (X,Y) if and only if F: £)(X) x £y (Y™) — £y defined
by F((n), () = ((unZn, ys)) is a bounded bilinear operator. In this
case | Fll = ool ().

Theorem 3.11. Let 1 <p < 2.
(i) If Y has type p then ly ,(X,Y) C lr, (X,Y).
(i) If Y* has cotype p' then (., ,(X,Y) C WR(X,Y).
(iii) If Y* has cotype p" then (., (X,Y) C UR(X,Y).
(iv) If Y* has the Orlicz property then (r, (X,Y) C UR(X,Y).

Proof. (i) This follows from ¢,(Y) C Rad(Y").

(ii) Assume Y™* has cotype p’. Then Rad(Y™*) C ¢,y (Y™*) continuously,
whereby [[(y7)|le,, v+) < Cw (Y )(47) | Raay=) and Cp (Y™) is the cotype
p’ constant of Y* (cf. [19]). Also, Rad(X) C ¢5(X), with ex((z;)) <
(i)l Raacxy (cf. [19], p. 234). Suppose (u;) € £, ,(X,Y). Then F :
(X)) x Ly(Y*) = 01 2 ((z), () — ((unxn,y)) is bounded with
|F'|| = mp2((u;)). Thus for all finite sets of elements x1, s, -+ ,x, in
X and y;,---,y; in Y*, we have

Y Nwrey)l = [F (@), (u7)]

< Tp2((u) Cp (Y (@) Radx) | ()| Rady+)-

(iii) Use Lemma 3.10 and the fact that Y* of cotype p’ gives £ (Y™*) C
Cy(Y).

(iv) Same argument as in the proof of (iii), now using that by the
Orlicz property of Y*, we have £{(Y*) C lo(Y™). O
Theorem 3.12. Let 1 <p < 2.

(i) If Y has cotype p' then lr, (X,Y) C by, (X,Y).

(it) If Y has cotype p’ then R(X,Y) C Ly, (X,Y).

(111) If Y* has type p then WR(X,Y) C Eﬂp,’l(X, Y).

Remark 3.3. Let 1 < p <2 < ¢ < oo and denote by Cy(X, Y) and
T,(X,Y) the spaces of operators of cotype q and type p, that is

Co(X)Y)={u: X =Y :(u;); € (Rad(X),0,(Y)),u; =u,j € N}
and

T,(X,)Y)={u: X =Y :(u;); € ((,(X),Rad(Y)),u; =u,j € N}.

Let X and Y be Banach spaces.

(1) If (u;) € Rad(X,Y) and u € Co(Y, Z) then (uu;) € £y, (X, Z).
(2) If (u;) € Rad(X,Y) andu € T,(Z, X) then (uju) € (€,(2),62(Y)).
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(3) If (u;) € Rad(X,)Y), v € Co(Y,U) and u € Il,,(Z,X) then
(vuju) € lr, ,(Z,U).

Theorem 3.13. Let 1 < p <2 and X be a Banach space such that X
has cotype p', let Y be a GT-space of cotype 2 and let u; : X — Y be
bounded linear operators for all 7 € N. Then

(uf) € br, (Y, X*) = () € R(X,Y).

Proof. Recall from Proposition 2.3 that (u;) € (€y(X),¢2(Y)). Since
we can identify Rad(Y) with £5(Y) (see [3] and [20]), it follows that
there exists a C' > 0 such that

1 n
/ 1S s ()t < 1oy @) sy
< Oll(udllee, x).e0 (@)l
1 n
K/O 1Y~ ar(t)|ldt, where, K = C||(u), (x).20) Cor (X)-
j=1

O

Corollary 3.14. Let 1 <r < oo and u; : L"(u) — L'(v) be bounded
operators. If (u}) € Ly, ,(L>(v), L™ () for p = min{r’, 2}, then there
exists C' > 0 such that

1O s (61 llirwy < CHO 16513 Ml
j=1 j=1

IN

for any collection ¢1, P, ..., Py in L7 ().
Another related notion is the following:

Definition 3.15. (¢f. [22]) Let X and Y be Banach spaces. A se-
quence of operators (u;) € L(X,Y) is said to be semi-R-bounded
(i.e. (u,) € SR(X,Y)) if there exists C > 0 such that for every v € X
and ay,- -+ ,a, € C we have

62 ([ I sl < (O Pl

|(wi)||sg = inf{C > 0| such that (3.2) holds} is the norm on SR(X,Y).

It was observed (see [22], Prop 2.1) that SR(X, X) = (- (L(X, X))
if and only if X is of type 2. Note that R-boundedness of sequences
in £(X,Y) implies semi-R-boundedness of the same. It is known

that if X is a Hilbert space or X is a GT-space of cotype 2, then
SR(X,X) = R(X,X) (see [22] for a proof). The proof of this fact
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(in [22]) is however very much simplified in the context of multiplier
sequences and basically follows from the following characterization of
SR(X,Y).

Theorem 3.16. The space (SR(X,Y), ||.||sr) is isometrically isomor-
phic to the space ({(X),Rad(Y")).

Proof. Suppose (u,,) € SRad(X,Y) and {z1,---,z,} C X. From [20]
we know that ||(@;)||i2) = || Doy € @ x| 4 in LRX.

It is clear that if ();) € {3 and x € X we have that (\ju;z) € Rad(Y)
and [|(Aju;z)[|r, < [[(wi)llsell(X)le |l z]]. Hence
(07 0 s 0 , Ui Ty, 0, < ) = ((5”71]1‘1) c R(ld(Y) and

[(Sijuzzi)jllry < [[(wi)llsrll(if)llex |2l = [|(ui) lsrllilll[eille, -
Therefore, (wz;) = Y o (0;u;x;); € Rad(Y) and |[(wiz;)||r, <
(O Neilles |z D] (wi)||sr- By definition of the projective norm || - ||

on /,®X, we have

[(wiz:)|[ Ry < | Zez- @ @il [all(ui)llsr = [[(z:)[l2) [1(u) [ s
i=1
This holds for all finite sets {xy,---,z,} C X, showing that (u;) €
(£2(X), Rad(Y)) and || (u:)|(@2).82) < [[(wi)l[ sk
Conversely, suppose (u;) € ((2(X),Rad(Y)) and let ay, -+ ,ap, € C
and z € X. Then we have

([ Il df < @l ol @)l

< (w2 RQZI% 2.

Since this is true for all a7,---,a, € C and x € X, it follows that
(u;) € SR(X,Y) and ||[(w:)||lsr < [[(u)ll(@),Ro). O

It follows from the continuous inclusion ¢5(X) C Rad(X) and The-
orem 3.16, that R(X,Y) C SR(X,Y) for all Banach spaces X and Y.
The reader is referred to [22] (p. 380) for an example of a sequence of
operators which is semi-R-bounded, but not R-bounded; indeed, the
authors in [22] show that if (e}) is the standard basis of ¢, (where,
2 < g <o0)and w = (§) € ¢, is fixed, then the uniformly bounded
sequence of operators (Si) := (ef ®w) in L(¢,,¢,) is not WR-bounded,
whereas it is semi-R-bounded because ¢, has type 2.
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The following proposition sheds more light on the question of when
the equality SR(X,Y) = R(X,Y) holds.

Proposition 3.17.
(1) If X is a Grothendieck space of cotype 2, then SR(X,Y) = R(X,Y)
for all Banach spaces Y .
(ii) If for some Banach space Y (thus also for Y = X) the equality
SR(X,Y) = R(X,Y) holds, then X has cotype 2.
(iii) If X is a Hilbert space and Y is a Banach space of type 2, then
SR(X,Y) = R(X,Y).

Proof. (i) This follows from Theorem 3.16 and the characterization of
Grothendieck spaces of cotype 2 by £o(X) = (o0 X = Rad(X).

(ii)) We show that SR(X,Y) = R(X,Y) implies that Rad(X) is a
linear subspace of ¢5(X). Consider (z;) € Rad(X) and let 7 € X*,

with ||z} || = 1 and @} (x;) = ||z;|. Put u; = 2} ®y, where y € Y is fixed,
with ||y|| = 1. Then, (u;) € SR(X,Y) = ((2(X), Rad(Y")), because of

1 n
AHZWWMMWi:/HZn ()l dt
=1
= /|Z7“z )P dt = Z|x zi)|
< Sl < I
=1

for all (2;) € €5(X) C ly(X). Hence, (u;) € (Rad(X), Rad(Y)). How-
ever, for all n € N, we also have

2Nm2zjﬂzmmmwm
- [ I s o
=AHZMmmmwt

Therefore, it follows that

00 1 n
meijanmmmwmm,
i=1 n Jo i=1

showing that Rad(X) < ¢3(X) is a norm < 1 embedding.
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(iii) Refer to Remarks 3.4 and 3.6 below, where a more general case
is discussed. O

In the following few remarks, we analyse the relationship of £, (L(X,Y"))
to the other families of multiplier sequences.

Remark 3.4. (see forinstance [12]) Let X be a Banach space of cotype
q , Y be a Banach space of type p for some 1 < p < q < oo and r such
that 1/r =1/p —1/q. Then

0(L(X,Y)) C R(X,Y) C loo(L(X,Y)).

In particular, if X has cotype 2 and Y has type 2 then R(X,Y) =
lo(L(X,Y)).

Remark 3.5. If X and Y™ have the Orlicz property then {o(L(X,Y)) =
UR(X,Y).

Proof. By Proposition 3.5 we only need to show that (. (L£(X,Y)) C
UR(X,Y). Notice that the continuous inclusions £}(X) C l5(X) and
0Y(Y*) C ly(Y*)correspond to the Orlicz properties of X and Y*, re-
spectively. Then, for (u,) € loo(L(X,Y)), we have

D Nwzeyd)l <D luellllzellyi
k=1 k=1
< (Sgpl\ukﬂ)(z lzel®)2 () Mzl
k=1 k=1

n n
< > > i
< C(Sl;p||uk||)£1:a§<1ll 2 exti|| max | 2 exYill,

where in the last step of the proof the existence of C' > 0 such that the
inequality holds, is a direct consequence of the inclusions mentioned in
the first line of the proof.

O

Remark 3.6. Let Y be a Banach space of type p for some 1 < p < 2
and let v > 1 satisfy 1/r =1/p —1/2. Then

C(L(X,Y)) C SR(X,Y) C Lu(L(X,Y)).

In particular if Y has type 2, then SR(X,Y) = lo(L(X,Y)).
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Proof. We prove the inclusion ¢"(L(X,Y)) C SR(X,Y). There exists
C > 0 such that

([ I wiar@al?an < o(3 fus(ao)l)

IA

Cll] ||(uj)H7~(Z )2,

The other inclusion is immediate. O

Remark 3.7. Neither SR(X,Y) C WR(X,Y) norWR(X,Y) C SR(X,Y)
is generally true. For instance, if Y has type 2, then SR(X,Y) =
loo(L(X,Y)) and WR(X,Y) = R(X,Y) . So, WR(X,Y) C SR(X,Y)

for all X in this case. On the other hand, if we consider a GT space X
space having cotype 2, then SR(X,Y) = R(X,Y) for all Y (cf Propo-
sition 3.17). So, in this case, SR(X,Y) C WR(X,Y) for all Y.
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