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Abstract. In recent papers (cf [3], [4],[5], [20]) the concept of
(p, q)-summing multiplier was considered in both general and spe-
cial context. It has been shown that some geometric properties
of Banach spaces and some classical theorems can be described
using spaces of (p, q)-summing multipliers. The present paper is
a continuation of this study, whereby multiplier spaces for some
classical Banach spaces are considered. The scope of this research
is also broaden, by studying other classes of summing multipli-
ers. Generally spoken, a sequence of bounded linear operators
(un) ⊂ L(X, Y ) is called a multiplier sequence from E(X) to
F (Y ) if (unxn) ∈ F (Y ) for all (xi) ∈ E(X), whereby E(X) and
F (Y ) are two Banach spaces whose elements are sequences of vec-
tors in X and Y , respectively. Several cases where E(X) and F (Y )
are different (classical) spaces of sequences, including for instance
the spaces Rad(X) of almost unconditionally summable sequences
in X, are considered. Several examples, properties and relations
among spaces of summing multipliers are discussed. Important
concepts like R-bounded, semi-R-bounded and weak-R-bounded
from recent papers are also considered in this context.

1. Introduction.

Let X and Y be two real or complex Banach spaces and let E(X)
and F (Y ) be two Banach spaces whose elements are sequences of vec-
tors in X and Y (containing all eventually null sequence in X or Y ),
respectively. A sequence of operators (un) ∈ L(X, Y ) is called a mul-
tiplier sequence from E(X) to F (Y ) if there exists a constant C > 0
such that ∥∥(ujxj)

n
j=1

∥∥
F (Y )

≤ C
∥∥(xj)

n
j=1

∥∥
E(X)
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for all finite families x1, . . . , xn in X.

The set of all multiplier sequences from E(X) to F (Y ) is denoted
by (E(X), F (Y )). The reader is referred to [1] where (E(X), F (Y ))
is considered in the setting of spaces of distributions. We refer to
[7, 8, 10, 9, 13] for the case of vector-valued Hardy and BMO spaces
E(X) = H1(T, X) and F (Y ) = 
p(Y ) or F (Y ) = BMOA(T, Y ), to [2]
for the case E(X) = Bp(X) and F (Y ) = Bq(Y ) or F (Y ) = 
q(Y )
where Bp(X) stands for vector-valued Bergman spaces and to [11]
for the case E(X) = Bloch(X) and F (Y ) = 
q(Y ). Also, the cases
E(X) = Rad(X) and F (Y ) = Rad(Y ), were introduced by E. Berkson
and T.A. Gillespie [6] and used for different purposes.

In the papers [4, 12] the cases E(X) = 
wp (X) and F (Y ) = 
p(Y )
where considered (see also [3]). These spaces are defined as follows.
Given a real or complex Banach space X and 1 ≤ p ≤ ∞, we denote
by 
p(X), 
wp (X) and 
p〈X〉 the Banach spaces of sequences in X, which
are endowed with the norms ‖(xn)‖
p(X) = ‖(‖xn‖)‖
p ,

εp((xj)) = sup{‖(x∗xj)‖
p : x∗ ∈ X∗, ‖x∗‖ ≤ 1} and

‖(xj)‖〈p〉 = sup{‖(x∗
jxj)‖
1 : εp′((x

∗
j)) = 1}, respectively.

The space 
p〈X〉 was first introduced in [16] and recently it has been
described in different ways (see [3] for a description as the space of
integral operators from 
p′ into X or [15] and [20] for the identification
with the projective tensor product 
p⊗̂X).

We recall some basic notions in Banach space theory. Following
standard notation, L(X, Y ) will denote the space of bounded linear
operators between Banach spaces X and Y , BX denotes the unit ball
in X and by (ej) we denote the canonical basis of the classical sequence
spaces 
p (1 ≤ p < ∞) and c0. For 1 ≤ p < ∞, p′ will be the conjugate
exponent of p, i.e. 1

p
+ 1

p′ = 1 and (e∗j) will sometimes be used to denote

the canonical basis of (
p)
∗ = 
p′ for 1 < p < ∞ and c∗0 = 
1 to distinct

between the standard bases of the classical sequence space and its dual
space. K denotes R or C if no difference is relevant. Sequences in
Banach spaces are denoted by (xi), (yi), etc. and

(xi)(≤ n) := (x1, x2, . . . , xn, 0, 0 . . . ).

For 1 ≤ q ≤ p < ∞, the space Πp,q(X, Y ) of (p,q)-summing operators
is the vector space of those operators which map sequences in 
wq (X)
onto sequences in 
p(Y ); more precisely, u ∈ L(X, Y ) is in Πp,q(X, Y )
if there exists C > 0 such that

‖(uxj)‖
p(Y ) ≤ Cεq((xj))
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for all finite family of vectors xj in X; the least (meaning, infimum)
of such C > 0 is called the (p, q)-summing norm of u and is denoted
by πp,q(u). Thus, u ∈ Πp,q(X, Y ) ⇐⇒ û : 
wq (X) → 
p(Y ) :: (xi) �→
(uxi) is a bounded linear operator. Usually, (p, p)-summing is called p-
summing and 1-summing operators are also called absolutely summing ,
because for a 1-summing operator u ∈ L(X, Y ) we have that

∑
uxj is

absolutely convergent in Y for every unconditionally convergent series∑
xj in X.
Grothendieck’s theorem, in this setting, says that, for any measure

space (Ω, µ) and any Hilbert space H, L(L1(µ), H) = Π1(L
1(µ), H).

Because of this, a Banach space X is called a GT - space, i.e. X satisfies
the Grothendieck theorem, if L(X, 
2) = Π1(X, 
2) (see [25], page 71 ).

For each 1 ≤ p ≤ ∞, we denote by Radp(X) the space of sequences
(xn) in X such that

‖(xn)‖Rp = supn∈N‖
n∑
j=1

rjxj‖Lp([0,1],X) < ∞,

where (rj)j∈N are the Rademacher functions on [0, 1] defined by rj(t) =
sign(sin 2jπt).

The reader is referred to [26, 19, 27] for the difference between this
space and the space of sequences (xn) for which the series

∑∞
n=1 xnrn

is convergent in Lp([0, 1], X). It is easy to see that Rad∞(X) coincides
with 
w1 (X).

Making use of the Kahane’s inequalities (see [19], page 211) it follows
that the spaces Radp(X) coincide up to equivalent norms for all 1 ≤
p < ∞. The unique vector space so obtained, will therefore be denoted
by Rad(X), and we agree to (mostly) use the norm ‖ · ‖R2 on Rad(X).

We recall the fundamentals on type and cotype. For 1 ≤ p ≤ 2
(respectively, q ≥ 2), a Banach space X is said to have (Rademacher)
type p (respectively, (Rademacher) cotype q) if there exists a constant
C > 0 such that∫ 1

0

||
n∑
j=1

xjrj(t)||dt ≤ C
( n∑
j=1

‖xj‖p
)1/p

(respectively,

( n∑
j=1

‖xj‖q
)1/q ≤ C

∫ 1

0

||
n∑
j=1

xjrj(t)||dt)

for any finite family x1, x2, . . . xn of vectors in X. Furthermore, a Ba-
nach space X is said to have the Orlicz property if there exists a
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constant C > 0 such that

( n∑
j=1

‖xj‖2
)1/2 ≤ C sup

t∈[0,1]

||
n∑
j=1

xjrj(t)||

for any finite family x1, x2, . . . xn of vectors in X.
The basic theory of p-summing and (p, q)-summing operators, type

and cotype can be found, for example, in the books [18, 19, 23, 25, 26,
28].

In this paper we shall consider some connections between different
notions of sequences of operators.

Definition 1.1. (see [4], [12]) Let X and Y be Banach spaces, and let
1 ≤ p, q ≤ ∞. A sequence (uj)j∈N of operators in L(X, Y ) is called a
(p, q)-summing multiplier, if there exists a constant C > 0 such that,
for any finite collection of vectors x1, x2, . . . xn in X, it holds that

( n∑
j=1

‖ujxj‖p
)1/p

≤ C sup
{( n∑

j=1

|x∗xj|q
)1/q

: x∗ ∈ BX∗

}
.

The vector space of all (p, q)-summing multipliers from X into Y is
denoted by (
wq (X), 
p(Y )). Note that the constant sequence uj = u for
all j ∈ N belonging to (
wq (X), 
p(Y )), corresponds to u being an op-
erator in Πp,q(X, Y ). Also the case (uj) = (λj.u) ∈ (
wq (X), 
1(Y ))
for all (λj) ∈ 
p′ , where (1/p) + (1/p′) = 1, corresponds to u ∈
Πp,q(X, Y ). These facts suggest the use of the notation 
πp,q(X, Y )
instead of (
wq (X), 
p(Y )) and 
πp(X, Y ) for the case q = p.

In the recent paper [3], J.L. Arregui and O. Blasco have considered
the previous notion for Y = K and have shown that some geometric
properties on X can be described using 
πp,q(X,K) and also that classi-
cal theorems, like Grothendieck theorem and others, can be rephrased
into this setting. Some results on the spaces 
πp,q(X, Y ) can be found
in [12] and [4]. The reader is also referred to [5, 20] for the particular
case p = q, X = Y and uj = αjIdX . In these papers a scalar sequence
(αj) is defined to be a p-summing multiplier if (uj) = (αjIdX) belongs
to 
πp,q(X, Y ).

In Section 2 we summarize some (recent) results on (p, q)-summing
multipliers and discuss some examples of (p, q)-summing multipliers
on classical Banach spaces. We extend the idea of (p, q)-summing mul-
tiplier to other families of multiplier sequences from E(X) to F (Y ),
considering some well known and important Banach spaces of vector
valued sequences in place of E(X) and F (Y ). Some duality results
with application to spaces of operators are also considered.
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In Section 3, we study R-bounded sequences and other variants
thereof, like for instance, semi-R-bounded and weak-R-bounded se-
quences in Banach spaces. Relations of several types of sequences
of bounded linear operators (like R-bounded, weak-R-bounded, semi-
R-bounded, uniformly bounded, unconditionally bounded and almost
summing) are studied. These relations build on well known results on
type and cotype and characterizations of different families of operators.

2. (p, q)-summing multipliers.

We refer to Definition 1.1 for the definition of (p, q)-summing multi-
plier. Some easy examples can be constructed by taking tensor prod-
ucts of some elements in classical spaces.

Proposition 2.1. (see [4]) Let X and Y be Banach spaces, and 1 ≤
p, q ≤ ∞.

(1) 
πr,q(X,K)⊗̂
s(Y ) ⊂ 
πp,q(X, Y ) for 1
p

= 1
r

+ 1
s
.

(2) 
s⊗̂Πr,q(X, Y ) ⊂ 
πp,q(X, Y ) for 1
p

= 1
r
+ 1

s
. In particular 
p⊗̂X ⊂


π1,p′ (X) = 
p〈X〉. Moreover, 
p⊗̂X = 
p〈X〉 isometrically (dif-

ferent proofs of this fact are discussed in [20] and [15]).
(3) 
s(Y )⊗̂X∗ ⊂ 
πp,q(X, Y ) for p < q and 1

p
= 1

q
+ 1

s
.

In particular, notice that

Remark 2.1. Let p, q, s ≥ 1 be real numbers such that 1
p

= 1
q

+ 1
s
.

(i) If p < q, x∗ ∈ X∗ and (yn) ∈ 
s(Y ) then (un) = (x∗ ⊗ yn) ∈

πp,q(X, Y ).

(ii) If (λn) ∈ 
s and u ∈ Πr,q(X, Y ), then (un) = (λnu) ∈ 
πp,q(X, Y ).

We consider some (elementary) examples:

Example 2.1. Let K be a compact set and µ a probability measure on
the Borel sets of K. Let 1 ≤ p < q < ∞, 1/r = 1/p − 1/q and (φj) a
sequence of continuous functions on K. Consider uj : C(K) → Lp(µ)
given by uj(ψ) = φjψ. Then (uj) ∈ 
πp,q(C(K), Lp(µ)) if and only if

(
∑
j

|φj|r)1/r ∈ Lp(µ).

Example 2.2. Let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be finite measure spaces.
Let 1 ≤ p ≤ q < ∞, 1

p
= 1

r
+ 1

q
. For each n ∈ N, let fn ∈ Lp(µ, L1(µ′))

and consider the operator un : L∞(µ′) → Lp(µ), defined by

un(φ)(·) =

∫
Ω′
φ(ω′)fn(·)(ω′) dµ′(ω′).
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Put fn(·, ω′) = fn(·)(ω′) and (
∑n

k=1 |fk|r)
1
r (ω)(·) = (

∑n
k=1 |fk(ω, ·)|r)

1
r .

Then, (
∑n

k=1 |fk|r)
1
r ∈ Lp(µ, L1(µ′)) =⇒ (un) ∈ 
πp,q(L

∞(µ′), Lp(µ)).

Proof. Given n ∈ N and φ1, φ2, · · · , φn ∈ L∞(µ′), then
n∑
k=1

‖uk(φk)‖pLp(µ) =

∫
Ω

‖(
∫

Ω′
φk(ω

′)fk(ω, ω
′)dµ′(ω′))k≤n‖p
p dµ(ω)

≤
∫

Ω

(

∫
Ω′
‖(φk(ω′)fk(ω, ω

′))k≤n‖
p dµ′(ω′))p dµ(ω)

≤ ‖(
n∑
k=1

|φk(·)|q)
1
q ‖pL∞(µ′)

∫
Ω

(

∫
Ω′

(
n∑
k=1

|fk(ω, ω′)|r) 1
r dµ′(ω′))p dµ(ω).

Hence, since ‖(φn)‖
wq (L∞(µ′)) = ‖(
∑n

k=1 |φk(·)|q)
1
q ‖L∞(µ′), it follows that

πp,q((uk)) ≤ ‖(
n∑
k=1

|fk(ω, ω′)|r) 1
r ‖Lp(µ,L1(µ′)).

Example 2.3. Let 1 ≤ p ≤ q < ∞, 1
p

= 1
r
+ 1

q
and (An) be a sequence

of infinite matrices. Consider Tn ∈ L(c0, 
p) given by
Tn((λk)) = (

∑∞
k=1 An(k, j)λk)j. If

∞∑
k=1

{
∞∑
n=1

(
∞∑
j=1

|An(k, j)|p)
r
p} 1

r < ∞ then, (Tn) ∈ 
πp,q(c0, 
p).

Proof. (Tn) is of the form Tn =
∑∞

k=1 e
∗
k⊗ yn,k, where yn,k ∈ 
p is given

by yn,k = (An(k, j))j. Using the usual Hölder type inequalities, one
verifies easily for (xn) ⊂ c0 that

∞∑
n=1

‖Tn(xn)‖p ≤ ‖(xn)‖p
wq (c0)[
∞∑
k=1

(
∞∑
n=1

‖yn,k‖r)
1
r ]p .

Therefore, we conclude that

(
∞∑
n=1

‖Tn(xn)‖p)
1
p ≤ ‖(xn)‖
wq (c0)

∞∑
k=1

{
∞∑
n=1

(
∞∑
j=1

|An(k, j)|p)
r
p} 1

r .

Definition 2.2. Let X and Y be Banach spaces, and let 1 ≤ p, q ≤ ∞.
A sequence (uj)j∈N of operators in L(X, Y ) belongs to (
q(X), 
p〈Y 〉),
if there exists a constant C > 0 such that

n∑
j=1

| < ujxj, y
∗
j > | ≤ C

( n∑
j=1

‖xj‖q
)1/q

sup
‖y‖=1

( n∑
j=1

|y∗j y|p
′
)1/p′
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for all finite collections of vectors x1, x2, . . . xn in X and y∗1, y
∗
2, . . . y

∗
n in

Y ∗. The infimum of the numbers C > 0 for which the inequality holds,
is denoted by ‖(ui)‖(
q(X),
p〈Y 〉).

Proposition 2.3. Let X and Y be Banach spaces, 1 ≤ p, q ≤ ∞
and let (uj)j∈N be a sequence of operators in L(X, Y ). Then (uj) ∈
(
q(X), 
p〈Y 〉) if and only if (u∗

j) ∈ 
πq′,p′ (Y
∗, X∗). In this case

‖(ui)‖(
q(X),
p〈Y 〉) = πq′,p′((u
∗
i )).

Proof. Let (u∗
j) ∈ 
πq′,p′ (Y

∗, X∗). If x1, · · · , xn is a finite set in X and

if (y∗i ) ∈ 
wp′(Y
∗), we have

n∑
i=1

|〈uixi, y∗i 〉| ≤ (
n∑
i=1

‖u∗
i (y

∗
i )‖q

′
)

1
q′ (

n∑
i=1

‖xi‖q)
1
q

≤ πq′,p′((u
∗
i ))εp′((y

∗
i ))‖(xi)‖
q(X).

Taking the supremum over the unit ball in 
wp′(Y
∗), we conclude that

(uj) ∈ (
q(X), 
p〈Y 〉) and ‖(ui)‖(
q(X),
p〈Y 〉) ≤ πq′,p′((u
∗
i )).

Conversely, assume (uj) ∈ (
q(X), 
p〈Y 〉). Let y∗1, · · · , y∗n be a finite
set in Y ∗ and let (xi) ∈ 
q(X). It follows that

n∑
i=1

|〈u∗
i y

∗
i , xi〉| ≤ ‖(uixi)‖〈p〉εp′((y∗i ))

≤ ‖(ui)‖(
q(X),
p〈Y 〉)‖(xi)‖
q(X)εp′((y
∗
i )).

If we take the supremum over the unit ball in 
q(X), we obtain (u∗
i ) ∈


πq′,p′ (Y
∗, X∗) and πq′,p′((u

∗
i )) ≤ ‖(ui)‖(
q(X),
p〈Y 〉).

Example 2.4. Let µ be a probability measure on Ω. Let 1 ≤ p <
q < ∞, 1/r = 1/p − 1/q and (φj) a sequence of functions in Lq

′
(µ).

Consider uj : Lq(µ) → L1(µ) given by uj(ψ) = φjψ. Then

(
∑
j

|φj|r)1/r ∈ Lq
′
(µ) =⇒ (uj) ∈ (
q(L

q(µ)), 
p〈L1(µ)〉).
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Proof. Let ψ1, ψ2, ..., ψn ∈ Lq(µ). Taking into account that 
p〈L1(µ)〉 =

p⊗̂L1(µ) = L1(µ, 
p), we have

‖(ujψj)‖
p〈L1(µ)〉 = ‖(
n∑
j=1

|φjψj|p)1/p‖L1(µ)

≤ ‖(
n∑
j=1

|φj|r)1/r(
n∑
j=1

|ψj|q)1/q‖L1(µ)

≤ ‖(
n∑
j=1

|φj|r)1/r‖Lq′ (µ)(
n∑
j=1

‖ψj‖qLq(µ))
1/q.

Remarks 2.1. (1) Under the conditions of Example 2.4, we let νj :
L∞(µ) → Lq

′
(µ), be defined by νj(χ) = φjχ. Then νj = u∗

j , ∀j and

Example 2.4 and Proposition 2.3 yield that (νj) ∈ 
πq′,p′ (L
∞(µ), Lq

′
(µ)).

(2) Let 1 ≤ p, q < ∞. If X is a Banach lattice and Y a Banach space,
then we call an operator u ∈ L(X, Y ) strongly (p, q)−concave (and
write u ∈ SCp,q(X, Y )) if there exists a c > 0 such that for all
x1, · · · , xn in X we have

‖(uxi)(i ≤ n)‖〈p〉 ≤ c ‖(
n∑
i=1

|xi|q)
1
q ‖X .

The infimum of the numbers c > 0 such that the inequality holds
for all choices of finite sets in X, is denoted by ‖u‖SCp,q .
u ∈ L(Lq(µ), Y ) is strongly (p, q)-concave iff there exists a c > 0

such that for all finite sets χ1, χ2, · · · , χn in Lq(µ), we have

‖(u(χi))(i ≤ n)‖〈p〉 ≤ c ‖(
n∑
i=1

|χi|q)
1
q ‖Lq(µ)

= c (
n∑
i=1

‖χi‖qLq(µ))
1
q .

Thus it follows that u ∈ L(Lq(µ), Y ) is strongly (p, q)−concave iff
the constant sequence (u, u, · · · ) belongs to (
q(L

q(µ)), 
p〈Y 〉) and
moreover, ‖u‖SCp,q = ‖(u, u, · · · )‖(
q(Lq(µ)), 
p〈Y 〉). Proposition 2.3
tells us that this is the case iff

(u∗, u∗, · · · ) ∈ 
πq′,p′ (Y
∗, Lq

′
(µ)) = (
wp′(Y

∗), 
q′(L
q′(µ))),

which corresponds to u∗ ∈ Πq′,p′(Y
∗, Lq

′
(µ)).

We have thus proved that u : Lq(µ) → Y is strongly (p, q)−concave
iff u∗ : Y ∗ → Lq

′
(µ) is (q′, p′)-summing, with ‖u‖SCp,q = ‖u∗‖πq′,p′ .
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The following two examples are conclusions of Proposition 2.3 and
([12], Example 2.2, 2.3).

Example 2.5. Let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be finite measure spaces
and 1 ≤ p < ∞. Let (fn) ⊂ Lp(µ, L1(µ′)) and consider the operator
Sn : Lp

′
(µ) → L1(µ′) defined by

Sn(g)(·) =

∫
Ω

g(ω)fn(ω, ·) dµ(ω),

where, as before, we let fn(ω, ·) := fn(ω)(·). If supn |fn| ∈ Lp(µ, L1(µ′))
(where, supn |fn|(ω)(·) = supn |fn(ω, ·)|), then (Sn) ∈ (
p′(L

p′(µ)), 
p′〈L1(µ′)〉).
Example 2.6. Let 1 ≤ p < ∞ and (An) be a sequence of matrices.
Consider the bounded operator Sn : 
p′ → 
1 given by

Sn((ξj)) = (
∞∑
j=1

An(k, j)ξj)k.

Then (Sn) ∈ (
∞(
p′), 
∞〈
1〉) if
∑∞

k=1 supn(
∑∞

j=1 |An(k, j)|p)
1
p < ∞.

Definition 2.4. Let X and Y be Banach spaces, and let 1 ≤ p, q ≤ ∞.
A sequence (uj)j∈N of operators in L(X, Y ) belongs to (
wq (X), 
p〈Y 〉),
if there exists a constant C > 0 such that, for any finite collections of
vectors x1, x2, . . . xn in X and y∗1, y

∗
2, . . . y

∗
n in Y ∗, it holds that

n∑
j=1

| < ujxj, y
∗
j > | ≤ C sup

‖x∗‖=1

( n∑
j=1

|x∗xj|q
)1/q

sup
‖y‖=1

( n∑
j=1

|y∗j y|p
′
)1/p′

.

The infimum of all C > 0 such that the inequality holds for all finite
sets in X and Y ∗, is denoted by ‖(ui)‖(
wq (X),
p〈Y 〉).

Proposition 2.5. Let X and Y be Banach spaces, 1 ≤ p, q ≤ ∞
and let (uj)j∈N be a sequence of operators in L(X, Y ). Then (uj) ∈
(
wq (X), 
p〈Y 〉) if and only if (u∗

j) ∈ (
wp′(Y
∗), 
q′〈X∗〉) and

‖(ui)‖(
wq (X),
p〈Y 〉) = ‖(u∗
i )‖(
w

p′ (Y
∗),
q′ 〈X∗〉).

Proof. Consider (u∗
j) ∈ (
wp′(Y

∗), 
q′〈X∗〉) and let x1, x2, · · · , xn ∈ X.
Verifying the inequalities
n∑
i=1

|〈uixi, z∗i 〉| ≤ ‖(u∗
i z

∗
i )(i ≤ n)‖〈q′〉εq((xi)(i ≤ n))

≤ ‖(u∗
i )‖(
w

p′ (Y
∗),
q′ 〈X∗〉)εp′((z

∗
i )(i ≤ n))εq((xi)(i ≤ n)),

for all (z∗i ) ∈ 
wp′(Y
∗), one obtains that

‖(uixi)(i ≤ n)‖〈p〉 ≤ ‖(u∗
i )‖(
w

p′ (Y
∗),
q′ 〈X∗〉)εq((xi)(i ≤ n))
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and hence that ‖(ui)‖(
wq (X),
p〈Y 〉) ≤ ‖(u∗
i )‖(
w

p′ (Y
∗),
q′ 〈X∗〉).

Conversely, take (ui) ∈ (
wq (X), 
p〈Y 〉). Let y∗1, · · · , y∗n be a finite set
in Y ∗ and let (xi) ∈ B
wq (X). Then

n∑
i=1

|〈xi, u∗
i y

∗
i 〉| =

n∑
i=1

|〈uixi, y∗i 〉| ≤ ‖(ui)‖(
wq (X),
p〈Y 〉)εq((xi))εp′((y
∗
i )).

Taking the supremum over all sequences (xi) ∈ B
wq (X), we conclude

that (u∗
i ) ∈ (
wp′(Y

∗), 
q′〈X∗〉), ‖(u∗
i )‖(
w

p′ (Y
∗),
q′ 〈X∗〉) ≤ ‖(ui)‖(
wq (X),
p〈Y 〉).

Example 2.7. Let K be a compact set and µ a probability measure on
the Borel sets of K. Let 1 ≤ p < q < ∞, 1/r = 1/p − 1/q and (φj) a
sequence of continuous functions on K. Consider uj : C(K) → L1(µ)
given by uj(ψ) = φjψ. Then

(
∑
j

|φj|r)1/r ∈ Lq
′
(µ) =⇒ (uj) ∈ (
wq (C(K)), 
p〈L1(µ)〉).

Proof. As in Example 2.4, if ψ1, ψ2, ..., ψn ∈ C(K) we have

‖(uj(ψj))j‖
p〈L1(µ)〉 ≤ ‖(
n∑
j=1

|φj|r)1/r(
n∑
j=1

|ψj|q)1/q‖L1(µ)

≤ ‖(
n∑
j=1

|φj|r)1/r‖L1(µ) sup
t∈K

(
n∑
j=1

|ψj(t)|q)1/q

≤ ‖(
n∑
j=1

|φj|r)1/r‖L1(µ) sup
‖ν‖M(K)=1

(
n∑
j=1

| < ψj, ν > |q)1/q

In the discussion above we restricted ourselves to the Banach spaces
(
wq (X), 
p(Y )), (
wq (X), 
p〈Y 〉) and (
q(X), 
p〈Y 〉); thus we considered
special cases of the vector space (E(X), F (X)) of multiplier sequences
– introduced in Section 1 – and defined suitable norms on them. Con-
tinuing in this fashion, we shall in the following section discuss the
important concept of R-boundedness of sequences of operators and
some related concepts in the setting of multiplier sequences.

3. R-bounded sequences

In this section we consider notions that have been shown to be rele-
vant in some recent problems.
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Definition 3.1. (cf. [17] and [21]) Let X and Y be Banach spaces.
A sequence of operators (uj) ∈ L(X, Y ) is said to be Rademacher
bounded i.e. R-bounded if there exists C > 0 such that

(

∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖2dt)
1
2 ≤ C (

∫ 1

0

‖
n∑
j=1

xjrj(t)‖2dt)
1
2

for all finite collections x1, x2, ..., xn ∈ X.

The space of R-bounded sequences of operators from X into Y is
denoted by R(X, Y ) and ‖(uj)‖R denotes the infimum of the constants
satisfying the previous inequality for all finite subsets of X. It is easy to
see that (Rad(X, Y ), ‖(uj)‖R) is a Banach space which coincides with
the multiplier space (Rad(X),Rad(Y )).

Definition 3.2. (cf. [24]) Let X and Y be Banach spaces. A sequence
of operators (uj) ⊂ L(X, Y ) is called weakly Rademacher bounded,
shortly WR-bounded if there exists a constant C > 0 such that for
all finite collections x1, · · · , xn ∈ X and y∗1, · · · , y∗n ∈ Y ∗ we have

n∑
k=1

|〈ukxk, y∗k〉| ≤ C(

∫ 1

0

‖
n∑
j=1

xjrj(t)‖2 dt)
1
2 (

∫ 1

0

‖
n∑
j=1

y∗j rj(t)‖2 dt)
1
2 .

The space of WR-bounded sequences in L(X, Y ), is denoted by
WR(X, Y ) and ‖(un)‖WR is the infimum of the constants in the pre-
vious inequality, taken over all finite subsets of X and Y ∗. Then
‖(un)‖WR is a norm on WR(X, Y ), which is exactly the norm of the bi-
linear map Rad(X)×Rad(Y ∗) → 
1 defined by ((xk), (y

∗
k)) → (〈ukxk, y∗k〉).

Definition 3.3. (cf. [12]) Let X and Y be Banach spaces. A sequence
of operators (uj) ∈ L(X, Y ) is said to be almost summing if there
exists C > 0 such that for any finite set of vectors {x1, · · · , xn} ⊂ X
we have

(

∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖2)1/2 dt ≤ C sup
‖x∗‖=1

(
n∑
j=1

|〈x∗, xj〉|2)
1
2 .(3.1)

(or, equivalently, (uj) ∈ L(X, Y ) is almost summing if there exists
C ′ > 0 such that for any finite set of vectors {x1, · · · , xn} ⊂ X we have∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖ dt ≤ C ′ sup
‖x∗‖=1

(
n∑
j=1

|〈x∗, xj〉|2)
1
2 .)

We write 
πas(X, Y ) for the space of almost summing sequences, which
is endowed with the norm

‖(ui)‖as := inf{C > 0 | such that (3.1) holds}.
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Notice that 
πas(X, Y ) = (
w2 (X), Rad(Y )). If the constant sequence
(u, u, u, . . . ) is in 
πas(X, Y ), then the operator u is called almost sum-
ming (see [19], page 234). The space of almost summing operators is
denoted by Πas(X, Y ) and the norm on this space is given by

πas(u) = ‖(u, u, u . . . )‖as = ‖û‖,
where in this case û : 
w2 (X) → Rad(Y ) is given by û((xj)) = (uxj).

Definition 3.4. (cf. [24]) Let X and Y be Banach spaces. A sequence
of operators (uj) ∈ L(X, Y ) is called unconditionally bounded or
U-bounded if there exists a constant C > 0 such that for all finite
collections x1, · · · , xn ∈ X and y∗1, · · · , y∗n ∈ Y ∗ we have

n∑
k=1

|〈ukxk, y∗k〉| ≤ C max
εk=±1

‖
n∑
k=1

εkxk‖ max
εk=±1

‖
n∑
k=1

εky
∗
k‖.

We write UR(X, Y ) for the space of U -bounded sequences in L(X, Y ).
The space UR(X, Y ) is endowed with the norm ‖(un)‖UR, which is
given by the infimum (taken over all finite subsets of X and Y ∗) of the
constants in the previous inequality.

Proposition 3.5. Let X and Y be Banach spaces. The following in-
clusions hold.


πas(X, Y ) ⊆ R(X, Y ) ⊆ WR(X, Y ) ⊆ UR(X, Y ) ⊆ 
∞(L(X, Y )).

Proof. The inclusion 
πas(X, Y ) ⊆ R(X, Y ) is a trivial consequence of
the embedding Rad(X) ⊆ 
w2 (X).

Suppose (ui) ∈ R(X, Y ). Orthogonality of the Rademacher vari-
ables, duality and the contraction principle, allow us to write

n∑
k=1

|〈ukxk, y∗k〉| = sup
εk=±1

n∑
k=1

〈ukxk, εky∗k〉

= sup
εk=±1

∫ 1

0

〈
∑
k≤n

rk(t)ukxk,
∑
k≤n

rk(t)εkyk〉 dt

≤ sup
εk=±1

(

∫ 1

0

‖
n∑
k=1

ukxkrk(t)‖2dt)1/2(

∫ 1

0

‖
n∑
k=1

εky
∗
krk(t)‖2dt)1/2

≤ ‖(uj)‖R(

∫ 1

0

‖
n∑
k=1

xkrk(t)‖2dt)1/2(

∫ 1

0

‖
n∑
k=1

y∗krk(t)‖2dt)1/2.

This proves the inclusion R(X, Y ) ⊆ WR(X, Y ). The inclusion
WR(X, Y ) ⊆ UR(X, Y ) is clear from the definitions.
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If (un) ∈ UR(X, Y ), then from the definition of unconditional bound-
edness there exists C > 0 such that for x ∈ X, y∗ ∈ Y ∗, we have

|〈ukx, y∗〉| ≤ C‖x‖‖y∗‖
for all k ∈ N. Thus the inclusion UR(X, Y ) ⊆ 
∞(L(X, Y )) also fol-
lows.

Remark 3.1. If u ∈ L(X, Y ) then (u, u, . . . ) ∈ R(X, Y ) and ‖(u, u, . . . )‖R =
‖u‖. However, (u, u, . . . ) ∈ 
πas(X, Y ) if and only if u ∈ Πas(X, Y ).
This shows that 
πas(X, Y ) ⊂ R(X, Y ) is strict.

Recall that for 1 ≤ p < ∞, the p-convexity and p-concavity of Lp(µ)
imply the following equivalence of norms:

‖(φj)‖Rad(Lp(µ)) ≈ ‖(
n∑
j=1

|φj|2)1/2‖Lp(µ)

for any collection φ1, φ2, ..., φn in Lp(µ) (cf [19], 16.11).
Also, if X = C(K) for any compact set K or if X = 
∞, then

εp((φj)) ≈ ‖(
n∑
j=1

|φj|p)1/p‖X

for all finite subsets φ1, φ2, ..., φn of X.
Therefore we have the following versions of Definitions 3.1, 3.2, 3.3

and 3.4 in some special cases:

Proposition 3.6. (i) Let X = C(K) and Y = Lq(ν) for 1 ≤ q < ∞.
Then (uj) ∈ 
πas(X, Y ) if and only if there exists C > 0 such that

‖(
n∑
j=1

|uj(φj)|2)1/2‖Lq(ν) ≤ C‖(
n∑
j=1

|φj|2)1/2‖C(K)

for any finite collection φ1, φ2, ..., φn in C(K).
(ii) Let X = Lp(µ) and Y = Lq(ν) for 1 ≤ p, q < ∞. Then (uj) ∈

R(X, Y ) if and only if there exists C > 0 such that

‖(
n∑
j=1

|uj(φj)|2)1/2‖Lq(ν) ≤ C‖(
n∑
j=1

|φj|2)1/2‖Lp(µ)

for all finite collections φ1, φ2, ..., φn in Lp(µ).
(iii) Let X = 
p and Y = c0 for 1 ≤ p < ∞. Then (uj) ∈ WR(X, Y )

if and only if there exists C > 0 such that
n∑
j=1

|〈uj(φj), ϕj〉| ≤ C‖(
n∑
j=1

|φj|2)1/2‖
p‖(
n∑
j=1

|ϕj|2)1/2‖
1
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for all collections φ1, φ2, ..., φn in 
p and ϕ1, ϕ2, ..., ϕn in 
1.
(iv) Let X = 
∞ and Y = 
1. Then (uj) ∈ UR(X, Y ) if and only if

there exists C > 0 such that
n∑
j=1

|〈uj(φj), ϕj〉| ≤ C‖(
n∑
j=1

|φj|2)1/2‖
∞‖(
n∑
j=1

|ϕj|2)1/2‖
∞

for all finite collections φ1, φ2, ..., φn and ϕ1, ϕ2, ..., ϕn in 
∞.

Proposition 3.7. Let 2 ≤ r ≤ ∞. If uj = λju for u ∈ Πas(X, Y ) and
(λj) ∈ 
r then (uj) ∈ (
wq (X), Rad(Y )) for 1/q = 1/2 − 1/r.

In particular, if u ∈ Πas(X, Y ) and (λj) ∈ 
∞ then (uj) = (λju) ∈

πas(X, Y ).

Proof. From u ∈ Πas(X, Y ), we have

(

∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖2 dt)1/2

≤ πas(u)‖(λj)‖
r sup
‖x∗‖=1

( n∑
j=1

|x∗xj|q
)1/q

.

Remark 3.2. We would like to point out that ∪pΠp,p(X, Y ) ⊂ Πas(X, Y )
(see [19], 12.5). Nevertheless this is not the case for sequences of op-
erators. Indeed, it suffices to take un = x∗ ⊗ yn for fixed x∗ ∈ X∗

and (yn) ∈ 
∞(Y ). In this case, (un) belongs to 
π2,2(X, Y ), but not
to 
πas(X, Y ) (consider for example Y = c0 and yn = en the canonical
basis).

Proposition 3.8. Let Y be a Banach space of type 1 ≤ p = p(Y ) and
cotype q = q(Y ) ≤ ∞. Then 
πp,2(X, Y ) ⊂ 
πas(X, Y ) ⊂ 
πq,2(X, Y ).

In particular if Y is a Hilbert space then 
π2,2(X, Y ) = 
πas(X, Y ).

Proof. It follows from the fact 
p(Y ) ⊂ Rad(Y ) ⊂ 
q(Y ).

Let us mention that it was pointed out in ([24]) that if X has non-
trivial type then WR(X,X) = R(X,X). Actually the assumption only
needs to be taken in the second space.

Recall that the notion of nontrivial type is equivalent to K-convexity
(see [19], page 260). X is said to be K-convex if f → (

∫ 1

0
f(t)rn(t)dt)n

defines a bounded operator from Lp([0, 1]) onto Radp(X) for some
(equivalently for all) 1 < p < ∞.

For K-convex spaces one has Rad(X∗) = Rad(X)∗ (see [26], or [14]
for more general systems).
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Let us point out that this shows that there are no infinite dimensional
K-convex GT-spaces of cotype 2. Indeed, assume X is K-convex and
a GT-space of cotype 2. On the one hand Rad(X) = 
2〈X〉 and on
the other hand Rad(X)∗ = Rad(X∗) with equivalent norms. Therefore
Rad(X∗) = (
2〈X〉)∗ = 
w2 (X∗). Hence the identity on X∗ is almost
summing and then X∗ is finite dimensional.

It is well known that, in general, one can only expect Rad(X∗) to be
continuously embedded in Rad(X)∗, but that the embedding needs not
even be isomorphically. Take, for instance, X = 
1. Then Rad(
1) =

2〈
1〉 = 
2⊗̂
1, that is to say (xn)n ⊂ 
1 (with xn = (xn(k))k) belongs
to Rad(
1) if and only if∑

k∈N

(
∑
n∈N

|xn(k)|2)1/2 < ∞.

As a matter of fact, it follows from earlier discussions that

Rad(
1) = 
2〈
1〉 = 
2⊗̂
1 = 
1⊗̂
2 = 
1〈
2〉 = 
1(
2).

Therefore Rad(X)∗ can be identified with L(
2, 
∞) or with 
∞(
2), and

‖(x∗
n)‖Rad(X)∗ = sup

k∈N

(
∑
n∈N

|x∗
n(k)|2)1/2.

However

‖(x∗
n)‖Rad(X∗) =

∫ 1

0

sup
k∈N

|
∑
n∈N

x∗
n(k)rn(t)|dt.

Proposition 3.9. If Y is a K-convex space then WR(X, Y ) = R(X, Y ).

Proof. Let (un) ∈ WR(X, Y ) and let xi ∈ X for i = 1, ..., n. Using
that Rad(Y )∗ = Rad(Y ∗), we have

(

∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖2dt)1/2

≈ sup{|
n∑
j=1

〈uj(xj), y∗j 〉| : ‖
n∑
j=1

y∗j rj‖L2(Y ∗) ≤ 1}

≤ ‖(un)‖WR‖
n∑
j=1

xjrj‖L2(X).

It is clear from the proof of Proposition 3.9 that WR(X, Y ) =
R(X, Y ) for all Banach spaces Y such that Rad(Y )∗ = Rad(Y ∗).

For later use, we point out that
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Lemma 3.10. Let 1 ≤ p, q ≤ ∞. For a sequence (uj) in L(X, Y ) we
have (uj) ∈ 
πp,q(X, Y ) if and only if F : 
wq (X) × 
p′(Y

∗) → 
1 defined
by F ((xn), (y

∗
n)) = (〈unxn, y∗n〉) is a bounded bilinear operator. In this

case ‖F‖ = πp,q((uj)).

Theorem 3.11. Let 1 ≤ p ≤ 2.
(i) If Y has type p then 
πp,2(X, Y ) ⊂ 
πas(X, Y ).
(ii) If Y ∗ has cotype p′ then 
πp,2(X, Y ) ⊂ WR(X, Y ).
(iii) If Y ∗ has cotype p′ then 
πp,1(X, Y ) ⊂ UR(X, Y ).
(iv) If Y ∗ has the Orlicz property then 
π2,1(X, Y ) ⊂ UR(X, Y ).

Proof. (i) This follows from 
p(Y ) ⊂ Rad(Y ).
(ii) Assume Y ∗ has cotype p′. Then Rad(Y ∗) ⊂ 
p′(Y

∗) continuously,
whereby ‖(y∗i )‖
p′ (Y ∗) ≤ Cp′(Y

∗)‖(y∗i )‖Rad(Y ∗) and Cp′(Y
∗) is the cotype

p′ constant of Y ∗ (cf. [19]). Also, Rad(X) ⊂ 
w2 (X), with ε2((xi)) ≤
‖(xi)‖Rad(X) (cf. [19], p. 234). Suppose (uj) ∈ 
πp,2(X, Y ). Then F :

w2 (X) × 
p′(Y

∗) ⇒ 
1 : ((xn), (y
∗
n)) �→ (〈unxn, y∗n〉) is bounded with

‖F‖ = πp,2((ui)). Thus for all finite sets of elements x1, x2, · · · , xn in
X and y∗i , · · · , y∗n in Y ∗, we have

n∑
k=1

|〈ukxk, y∗k〉| = ‖F ((xi), (y∗i ))‖

≤ πp,2((ui))Cp′(Y
∗)‖(xi)‖Rad(X)‖(y∗i )‖Rad(Y ∗).

(iii) Use Lemma 3.10 and the fact that Y ∗ of cotype p′ gives 
w1 (Y ∗) ⊂

p′(Y

∗).
(iv) Same argument as in the proof of (iii), now using that by the

Orlicz property of Y ∗, we have 
w1 (Y ∗) ⊂ 
2(Y
∗).

Theorem 3.12. Let 1 ≤ p ≤ 2.
(i) If Y has cotype p′ then 
πas(X, Y ) ⊂ 
πp′,2(X, Y ).

(ii) If Y has cotype p′ then R(X, Y ) ⊂ 
πp′,1(X, Y ).

(iii) If Y ∗ has type p then WR(X, Y ) ⊂ 
πp′,1(X, Y ).

Remark 3.3. Let 1 ≤ p ≤ 2 ≤ q ≤ ∞ and denote by Cq(X, Y ) and
Tp(X, Y ) the spaces of operators of cotype q and type p, that is

Cq(X, Y ) = {u : X → Y : (uj)j ∈ (Rad(X), 
q(Y )), uj = u, j ∈ N}
and

Tp(X, Y ) = {u : X → Y : (uj)j ∈ (
p(X), Rad(Y )), uj = u, j ∈ N}.
Let X and Y be Banach spaces.

(1) If (uj) ∈ Rad(X, Y ) and u ∈ Cq(Y, Z) then (uuj) ∈ 
πq,1(X,Z).
(2) If (uj) ∈ Rad(X, Y ) and u ∈ Tp(Z,X) then (uju) ∈ (
p(Z), 
2(Y )).
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(3) If (uj) ∈ Rad(X, Y ), v ∈ Cq(Y, U) and u ∈ Πas(Z,X) then
(vuju) ∈ 
πq,2(Z,U).

Theorem 3.13. Let 1 ≤ p ≤ 2 and X be a Banach space such that X
has cotype p′, let Y be a GT -space of cotype 2 and let uj : X → Y be
bounded linear operators for all j ∈ N. Then

(u∗
j) ∈ 
πp,2(Y

∗, X∗) =⇒ (uj) ∈ R(X, Y ).

Proof. Recall from Proposition 2.3 that (uj) ∈ (
p′(X), 
2〈Y 〉). Since
we can identify Rad(Y ) with 
2〈Y 〉 (see [3] and [20]), it follows that
there exists a C > 0 such that∫ 1

0

‖
n∑
j=1

uj(xj)rj(t)‖dt ≤ ‖(uj(xj))‖
2〈Y 〉

≤ C‖(ui)‖(
p′ (X),
2〈Y 〉)‖(xj)‖p′

≤ K

∫ 1

0

‖
n∑
j=1

xjrj(t)‖dt, where, K = C‖(ui)‖(
p′ (X),
2〈Y 〉)Cp′(X).

Corollary 3.14. Let 1 ≤ r ≤ ∞ and uj : Lr(µ) → L1(ν) be bounded
operators. If (u∗

j) ∈ 
πp,2(L
∞(ν), Lr

′
(µ)) for p = min{r′, 2}, then there

exists C > 0 such that

‖(
n∑
j=1

|uj(φj)|2)1/2‖L1(ν) ≤ C‖(
n∑
j=1

|φj|2)1/2‖Lr(µ)

for any collection φ1, φ2, ..., φn in Lr(µ).

Another related notion is the following:

Definition 3.15. (cf. [22]) Let X and Y be Banach spaces. A se-
quence of operators (uj) ∈ L(X, Y ) is said to be semi-R-bounded
(i.e. (un) ∈ SR(X, Y )) if there exists C > 0 such that for every x ∈ X
and a1, · · · , an ∈ C we have

(

∫ 1

0

‖
n∑
j=1

uj(x)rj(t)aj‖2 dt)1/2 ≤ C (
n∑
j=1

|aj|2)
1
2‖x‖.(3.2)

‖(ui)‖SR := inf{C > 0 | such that (3.2) holds} is the norm on SR(X, Y ).

It was observed (see [22], Prop 2.1) that SR(X,X) = 
∞(L(X,X))
if and only if X is of type 2. Note that R-boundedness of sequences
in L(X, Y ) implies semi-R-boundedness of the same. It is known
that if X is a Hilbert space or X is a GT -space of cotype 2, then
SR(X,X) = R(X,X) (see [22] for a proof). The proof of this fact
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(in [22]) is however very much simplified in the context of multiplier
sequences and basically follows from the following characterization of
SR(X, Y ).

Theorem 3.16. The space (SR(X, Y ), ‖.‖SR) is isometrically isomor-
phic to the space (
2〈X〉,Rad(Y )).

Proof. Suppose (un) ∈ SRad(X, Y ) and {x1, · · · , xn} ⊂ X. From [20]
we know that ‖(xi)‖〈2〉 = ‖

∑n
i=1 ei ⊗ xi‖∧ in 
2⊗̂X.

It is clear that if (λi) ∈ 
2 and x ∈ X we have that (λjujx) ∈ Rad(Y )
and ‖(λjujx)‖R2 ≤ ‖(ui)‖SR‖(λi)‖
2‖x‖. Hence
(0, 0, · · · , 0, uixi, 0, · · · ) = (δijujxi)j ∈ Rad(Y ) and

‖(δijujxi)j‖R2 ≤ ‖(ui)‖SR‖(δij)j‖
2‖xi‖ = ‖(ui)‖SR‖xi‖‖ei‖
2 .
Therefore, (uixi) =

∑n
i=1(δijujxi)j ∈ Rad(Y ) and ‖(uixi)‖R2 ≤

(
∑n

i=1 ‖ei‖
2‖xi‖)‖(ui)‖SR. By definition of the projective norm ‖ · ‖∧
on 
2⊗̂X, we have

‖(uixi)‖R2 ≤ ‖
n∑
i=1

ei ⊗ xi‖∧‖(ui)‖SR = ‖(xi)‖〈2〉‖(ui)‖SR.

This holds for all finite sets {x1, · · · , xn} ⊂ X, showing that (ui) ∈
(
2〈X〉,Rad(Y )) and ‖(ui)‖(〈2〉,R2) ≤ ‖(ui)‖SR.
Conversely, suppose (ui) ∈ (
2〈X〉,Rad(Y )) and let α1, · · · , αn ∈ C

and x ∈ X. Then we have

(

∫ 1

0

‖
n∑
i=1

ri(t)αiuix‖2 dt)
1
2 ≤ ‖(ui)‖(〈2〉,R2)‖(αix)‖〈2〉

≤ ‖(ui)‖(〈2〉,R2)(
n∑
i=1

|αi|2)
1
2‖x‖.

Since this is true for all α1, · · · , αn ∈ C and x ∈ X, it follows that
(ui) ∈ SR(X, Y ) and ‖(ui)‖SR ≤ ‖(ui)‖(〈2〉,R2).

It follows from the continuous inclusion 
2〈X〉 ⊂ Rad(X) and The-
orem 3.16, that R(X, Y ) ⊆ SR(X, Y ) for all Banach spaces X and Y .
The reader is referred to [22] (p. 380) for an example of a sequence of
operators which is semi-R-bounded, but not R-bounded; indeed, the
authors in [22] show that if (e∗k) is the standard basis of 
q′ (where,
2 < q < ∞) and w = (ξi) ∈ 
q is fixed, then the uniformly bounded
sequence of operators (Sk) := (e∗k⊗w) in L(
q, 
q) is not WR-bounded,
whereas it is semi-R-bounded because 
q has type 2.
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The following proposition sheds more light on the question of when
the equality SR(X, Y ) = R(X, Y ) holds.

Proposition 3.17.

(i) If X is a Grothendieck space of cotype 2, then SR(X, Y ) = R(X, Y )
for all Banach spaces Y .

(ii) If for some Banach space Y (thus also for Y = X) the equality
SR(X, Y ) = R(X, Y ) holds, then X has cotype 2.

(iii) If X is a Hilbert space and Y is a Banach space of type 2, then
SR(X, Y ) = R(X, Y ).

Proof. (i) This follows from Theorem 3.16 and the characterization of
Grothendieck spaces of cotype 2 by 
2〈X〉 = 
2⊗̂X = Rad(X).

(ii) We show that SR(X, Y ) = R(X, Y ) implies that Rad(X) is a
linear subspace of 
2(X). Consider (xi) ∈ Rad(X) and let x∗

i ∈ X∗,
with ‖x∗

i ‖ = 1 and x∗
i (xi) = ‖xi‖. Put ui = x∗

i⊗y, where y ∈ Y is fixed,
with ‖y‖ = 1. Then, (ui) ∈ SR(X, Y ) = (
2〈X〉, Rad(Y )) , because of

∫ 1

0

‖
n∑
i=1

ui(zi)ri(t)‖2 dt =

∫ 1

0

‖
n∑
i=1

ri(t)x
∗
i (zi)y‖2 dt

=

∫ 1

0

|
n∑
i=1

ri(t)x
∗
i (zi)|2 dt =

n∑
i=1

|x∗
i (zi)|2

≤
∞∑
i=1

‖zi‖2 ≤ ‖(zi)‖2
〈2〉,

for all (zi) ∈ 
2〈X〉 ⊂ 
2(X). Hence, (ui) ∈ (Rad(X), Rad(Y )). How-
ever, for all n ∈ N, we also have

n∑
i=1

‖xi‖2 =

∫ 1

0

|
n∑
i=1

ri(t)‖xi‖|2 dt

=

∫ 1

0

‖
n∑
i=1

ri(t)x
∗
i (xi)y‖2 dt

=

∫ 1

0

‖
n∑
i=1

ri(t)ui(xi)‖2 dt .

Therefore, it follows that
∞∑
i=1

‖xi‖2 ≤ sup
n

∫ 1

0

‖
n∑
i=1

ri(t)ui(xi)‖2 dt < ∞ ,

showing that Rad(X) ↪→ 
2(X) is a norm ≤ 1 embedding.
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(iii) Refer to Remarks 3.4 and 3.6 below, where a more general case
is discussed.

In the following few remarks, we analyse the relationship of 
∞(L(X, Y ))
to the other families of multiplier sequences.

Remark 3.4. (see for instance [12]) Let X be a Banach space of cotype
q , Y be a Banach space of type p for some 1 ≤ p ≤ q ≤ ∞ and r such
that 1/r = 1/p− 1/q. Then


r(L(X, Y )) ⊂ R(X, Y ) ⊂ 
∞(L(X, Y )).

In particular, if X has cotype 2 and Y has type 2 then R(X, Y ) =

∞(L(X, Y )).

Remark 3.5. If X and Y ∗ have the Orlicz property then 
∞(L(X, Y )) =
UR(X, Y ).

Proof. By Proposition 3.5 we only need to show that 
∞(L(X, Y )) ⊆
UR(X, Y ). Notice that the continuous inclusions 
w1 (X) ⊆ 
2(X) and

w1 (Y ∗) ⊆ 
2(Y

∗)correspond to the Orlicz properties of X and Y ∗, re-
spectively. Then, for (un) ∈ 
∞(L(X, Y )), we have

n∑
k=1

|〈ukxk, y∗k〉| ≤
n∑
k=1

‖uk‖‖xk‖‖y∗k‖

≤ (sup
k

‖uk‖)(
n∑
k=1

‖xk‖2)1/2(
n∑
k=1

‖y∗k‖2)1/2

≤ C(sup
k

‖uk‖) max
εk=±1

‖
n∑
k=1

εkxk‖ max
εk=±1

‖
n∑
k=1

εky
∗
k‖,

where in the last step of the proof the existence of C > 0 such that the
inequality holds, is a direct consequence of the inclusions mentioned in
the first line of the proof.

Remark 3.6. Let Y be a Banach space of type p for some 1 ≤ p ≤ 2
and let r ≥ 1 satisfy 1/r = 1/p− 1/2. Then


r(L(X, Y )) ⊂ SR(X, Y ) ⊂ 
∞(L(X, Y )).

In particular if Y has type 2, then SR(X, Y ) = 
∞(L(X, Y )).
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Proof. We prove the inclusion 
r(L(X, Y )) ⊂ SR(X, Y ). There exists
C > 0 such that

(

∫ 1

0

‖
n∑
j=1

uj(x)rj(t)aj‖2 dt)1/2 ≤ C(
n∑
j=1

‖uj(ajx)‖p)1/p

≤ C‖x‖‖(uj)‖r(
n∑
j=1

|aj|2)1/2.

The other inclusion is immediate.

Remark 3.7. Neither SR(X, Y ) ⊂ WR(X, Y ) nor WR(X, Y ) ⊂ SR(X, Y )
is generally true. For instance, if Y has type 2, then SR(X, Y ) =

∞(L(X, Y )) and WR(X, Y ) = R(X, Y ) . So, WR(X, Y ) ⊂ SR(X, Y )
for all X in this case. On the other hand, if we consider a GT space X
space having cotype 2, then SR(X, Y ) = R(X, Y ) for all Y (cf Propo-
sition 3.17). So, in this case, SR(X, Y ) ⊂ WR(X, Y ) for all Y .
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