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Abstract
Let X and Y be Banach spaces and 1 ≤ p < ∞, a sequence of operators (Tn) from X into
Y is called a p-summing multiplier if (Tn(xn)) belongs to �p(Y ) whenever (xn) satisfies
that (〈x∗, xn〉) belongs to �p for all x∗ ∈ X∗. We present several examples of p-summing
multipliers and extend known results for p-summing operators to this setting. We get,
using almost summing and Rademacher bounded operators, some sufficient conditions for
a sequence to be a p-summing multiplier between spaces with some geometric properties.
MCS 2000 Primary 47B10; Secondary 47D50, 42A45

1. Introduction.

Let X and Y be two real or complex Banach spaces and let E(X) and F (Y ) be two
Banach spaces whose elements are defined by sequences of vectors in X and Y (containing
any eventually null sequence in X or Y ). A sequence of operators (Tn) ∈ L(X, Y ) is called
a multiplier sequence from E(X) to F (Y ) if there exists a constant C > 0 such that

‖(Tjxj)
n
j=1‖F (Y ) ≤ C‖(xj)

n
j=1‖E(X)

for all finite families x1, . . . , xn in X. The set of all multiplier sequences is denoted by
(E(X), F (Y )).

Given a real or complex Banach space X and 1 ≤ p ≤ ∞, we denote by �p(X) and
�wp (X) the Banach spaces of sequences in X with norms ||(xn)||	p(X) = ||(||xn||)||	p and
‖(xn)‖	wp (X) = sup||x∗||=1 ‖(〈x∗, xn〉)‖	p respectively. Radp(X) stands for the space of se-

quences (xn) ∈ X such that sup
n

(
∫ 1

0
||

n∑
j=1

rj(t)xj||pdt)1/p < ∞, where (rj)j∈N are the

Rademacher functions on [0, 1] defined by rj(t) = sign(sin 2jπt).
It is easy to see that Rad∞(X) = �w1 (X). It follows from Kahane’s inequalities (see [11],

page 211) that Radp(X) = Radq(X) with equivalent norms for all 1 ≤ p, q < ∞. This
space will then be denoted Rad(X), and we shall use the L1-norm throughout the paper.
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The reader is referred to [4],[5],[6],[7] for the study of multiplier sequences in the case
E(X) = H1(T, X), corresponding to vector-valued Hardy spaces, and F (Y ) = �p(Y ) or
F (Y ) = BMOA(T, Y ), to [3] ,[8],[17] and [28] for E(X) = Rad(X) and F (Y ) = Rad(Y ),
to [2] for the particular cases p = q, X = Y and Tj = αjIdX and to [1] for the case
E(X) = �wp (X) and F (Y ) = �q(K).

In this article we shall consider the case of the classical sequence spaces E(X) = �wp (X)
and F (Y ) = �p(Y ). A sequence (Tj)j∈N of operators in L(X, Y ) is a p-summing multiplier
if there exists a constant C > 0 such that, for any finite collection of vectors x1, x2, . . . xn

in X, it holds that

( n∑
j=1

||Tjxj||p
)1/p ≤ C sup

||x∗||=1

( n∑
j=1

|〈x∗, xj〉|p
)1/p

.

Note that a constant sequence Tj = T for all j ∈ N belongs to (�wp (X), �p(Y )) if and
only if T is a p-summing operator, usually denoted T ∈ Πp(X, Y ). This fact suggests the
use of the notation �πp(X, Y ) instead of (�wp (X), �p(Y )).

In the paper [1] J.L. Arregui and the author introduced and considered the notion
of (p, q)-summing multipliers and concentrated on the case Y = K. It was shown that
some geometric properties on X can be described using �πp,q(X,K) and also that classical
theorems, like Grothendieck theorem and others, can be rephrased into this setting.

Let us now recall the basic notions on Banach space theory and absolutely summing
operators to be used later on.

An operator T ∈ L(X, Y ) is absolutely summing if for every unconditionally convergent
series

∑
xj in X it holds that

∑
Txj is absolutely convergent in Y .

For 1 ≤ p < ∞, an operator T :X → Y is p-summing (see [22]) if it maps sequences
(xj) ∈ �wp (X) into sequences (Txj) ∈ �p(Y ), equivalently, if there exists a constant C such
that

(
n∑

j=1

‖Txj‖p)1/p ≤ C sup
||x∗||=1

(
n∑

j=1

|〈x∗, xj〉|p)1/p

for any finite family x1, x2, . . . xn of vectors in X.
The least of such constants is the p-summing norm of u, denoted by πp(T ). The space

Πp(X, Y ) of all p-summing operators from X to Y then is a Banach space for 1 ≤ p < ∞.
It is well known that the space of absolutely summing operators coincides with the space
of 1-summing operators.

For 1 ≤ p ≤ 2 (respect. q ≥ 2), a Banach space X is said to have (Rademacher) type
p (resp. (Rademacher) cotype q) if there exists a constant C such that

∫ 1

0
||

n∑
j=1

xjrj(t)||dt ≤ C(
n∑

j=1

‖xj‖p)1/p

(resp.

(
n∑

j=1

‖xj‖q)1/q ≤ C
∫ 1

0
||

n∑
j=1

xjrj(t)||dt),

for any finite family x1, x2, . . . xn of vectors in X .
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A Banach space X is said to have the Orlicz property there exists a constant C such
that

(
n∑

j=1

‖xj‖2)1/2 ≤ C sup
||x∗||=1

n∑
j=1

|〈xj, x
∗〉|

for any finite family x1, x2, . . . xn of vectors in X.
Let us recall that Grothendieck’s theorem establishes, in this setting, that, for any

compact set K, any measure space (Ω,Σ, µ) and any Hilbert space H,

L(L1(µ), H) = Π1(L1(µ), H). (1)

or

L(C(K), L1(µ)) = Π2(C(K), L1(µ)). (2)

Because of that a Banach space X is called a GT - space, i.e. X satisfies the Grothendieck
theorem if (see [24], page 71 )

L(X, �2) = Π1(X, �2). (3)

The basic theory of p-summing operators, type and cotype can be found, for example,
in the books [11], [9], [16], [26], [23], [24] or [28] .

In this paper we restrict ourselves to the case p = q for simplicity, although some of the
results presented here can be easily stated in the general case. The paper is divided into
three sections. In the first one we shall give several examples of p-summing multipliers.
In the second one we show some general results extending known facts in the study of
p-summing operators to p-summing multipliers. In the last section we relate this new
notion to the class of almost summing operators or Rademacher bounded sequences and
find some sufficient conditions for a sequence to belong to �πp(X, Y ), at least for certain
spaces X and Y .

Throughout the paper (ej) denotes the canonical basis of the sequence spaces �p and c0,
〈x∗, x〉 the duality pairing between X∗ and X, p′ the conjugate exponent of p, K stands
for R or C and, as usual, C denotes a constant that may vary from line to line.

2. Definition and examples.

It is not difficult to show (see [1] Proposition 2.1) that (�p(X), �p(Y )) = �∞(L(X, Y ))
for any couple of Banach spaces X and Y and 1 ≤ p ≤ ∞. Let us give a name to the
multipliers corresponding to (�wp (X), �p(Y )).

Definition 2.1 (see [1]) Let X and Y be Banach spaces, and let 1 ≤ p, q < ∞. A
sequence (Tj)j∈N of operators in L(X, Y ) is a (p, q)-summing multiplier if there exists a
constant C > 0 such that, for any finite collection of vectors x1, x2, . . . xn in X, it holds
that ( n∑

j=1

||Tjxj||p
)1/p ≤ C sup

||x∗||=1

( n∑
j=1

|〈x∗, xj〉|q
)1/q

.
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We use �πp,q(X, Y ) to denote the set of (p, q)-summing multipliers, and πp,q[Tj] is the
least constant C for which (Tj) verifies the inequality in the definition. In order to avoid
ambiguities, sometimes we shall use πp,q[Tj;X, Y ].

We shall only deal with the case p = q. The space �πp,p(X, Y ) will be denoted �πp(X, Y ),
its norm πp and its elements will be called p-summing multipliers. It is not difficult to
show (see [1]) that if X and Y are Banach spaces and 1 ≤ p < ∞ then (�πp(X, Y ), πp) is
a Banach space.

Remark 2.1 A sequence (Tj) ∈ �π1(X, Y ) if and only if it holds that for any uncondi-
tionally convergent series

∑
xj in X we have (Tj(xj))j ∈ �1(Y ) (see [1]).

Remark 2.2 Let 1 ≤ p < ∞. A sequence (Tj) ∈ �π1(X, Y ) if and only if the map
(y∗j ) → (T ∗

j (y∗j )) is bounded from �p′(Y
∗) into �π1,p(X,K).

Moreover πp[Tn;X, Y ] = sup
||yn||�p′ (Y

∗)=1
π1,p[T

∗
n(yn);X,K].

Let us now mention some basic examples of p-summing multipliers in different contexts.

Example 2.1 Let 1 ≤ p < ∞ and µ be a probality measure on a compact set K. Let (φn)
be a sequence of continuous functions and define Tn : C(K) → Lp(µ) by Tn(ψ) = φnψ.

If (
∑∞

n=1 |φn|p′)1/p′ ∈ Lp(µ) then Tn ∈ �πp(C(K), Lp(µ)).

Proof. Assume p > 1 (the case p=1 is left to the reader). Let n ∈ N and ψ1, ψ2, ..., ψn in
C(K). Recalling that

||(ψn)||	wp (C(K)) = ||(
n∑

k=1

|ψk|p)1/p||∞ (4)

then

n∑
k=1

||Tk(ψk)||pLp(µ) =
∫
K

n∑
k=1

|φkψk|pdµ

≤
∫
K

(
n∑

k=1

|φk|p
′
)p/p

′
(

n∑
k=1

|ψk|p)dµ

≤ ||(
n∑

k=1

|ψk|p)1/p||p∞
∫
K

(
n∑

k=1

|φk|p
′
)p/p

′
dµ.

This shows that πp[Tj] ≤ (
∫
K(

∑n
k=1 |φk|p′)p/p′dµ)1/p. �

Example 2.2 Let 1 ≤ p < ∞, (Ω,Σ, µ) and (Ω′,Σ′, µ′) be finite measure spaces. Let
(fn) ⊂ Lp(µ, L1(µ′)) and consider the operators Tn : L∞(µ′) → Lp(µ) given by Tn(φ) =
〈φ, fn〉 =

∫
Ω′ φ(w′)fn(., w

′)dµ(w′).
If sup

n
|fn(w,w′)| ∈ Lp(µ, L1(µ′)) then Tn ∈ �πp(L

∞(µ′), Lp(µ)).
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Proof. Given n ∈ N and φ1, φ2, ..., φn in L∞(µ′) then

n∑
k=1

||Tk(φk)||pLp(µ) =
n∑

k=1

∫
Ω
|〈φk, fk(w)〉|pdµ(w)

=
∫
Ω

n∑
k=1

|
∫
Ω′

φk(w
′)fk(w,w′)dµ(w′)|pdµ(w)

≤
∫
Ω

( ∫
Ω′

(
n∑

k=1

|φk(w
′)|p|fk(w,w′)|p)1/pdµ(w′)

)p
dµ(w)

≤
∫
Ω

( ∫
Ω′

sup
k

|fk(w,w′)|(
n∑

k=1

|φk(w
′)|p)1/pdµ(w′)

)p
dµ(w)

≤ ||(
n∑

k=1

|φk(w
′)|p)1/p||pL∞(µ′)

∫
Ω

( ∫
Ω′

sup
k

|fk(w,w′)|dµ(w′)
)p

dµ(w).

This shows, using (4), that πp[Tj] ≤ ||supn|fn(w,w′)|||Lp(µ,L1(µ′)). �

Example 2.3 Let 1 ≤ p < ∞ and (An) be a sequence of matrices such that Tn((λk)) =
(
∑∞

k=1 An(k, j)λk)j defines bounded operators from c0 to �p. If

∞∑
k=1

sup
n

(
∞∑
j=1

|An(k, j)|p)1/p < ∞

then (Tn) ∈ �π1(c0, �p).

Proof. Note that Tn =
∑∞

k=1 e
∗
k ⊗ yn,k where (yn,k) ∈ �p is given by yn,k = (An(k, j))j.

Hence, if xn = (λn,k)k then

∞∑
n=1

||Tn(xn)|| ≤
∞∑
n=1

∞∑
k=1

|〈e∗k, xn〉|||yn,k||

=
∞∑
k=1

∞∑
n=1

|λn,k|(
∞∑
j=1

|An(k, j)|p)1/p

≤
∞∑
k=1

sup
n

(
∞∑
j=1

|An(k, j)|p)1/p
∞∑
n=1

|λn,k|

≤ (sup
k

∞∑
n=1

|λn,k|)
∞∑
k=1

sup
n

(
∞∑
j=1

|An(k, j)|p)1/p

= ||(xn)||	w1 (c0)

∞∑
k=1

sup
n

(
∞∑
j=1

|An(k, j)|p)1/p.

�

Example 2.4 Let f ∈ L1([0, 1] × [0, 1]) and measurable sets En ⊂ [0, 1] for n ∈ N.
Let Tn : L∞([0, 1]) → L1([0, 1]) be defined by Tn(φ)(t) = (

∫ 1
0 f(t, s)φ(s)ds)χEn(t). Then

(Tn) ∈ �π2(L
∞([0, 1]), L1([0, 1])).
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Proof. First observe that f can be regarded as a function in L1([0, 1], L1([0, 1])) and then
φ → ∫ 1

0 f(., s)φ(s)ds defines a bounded operator from L∞([0, 1]) to L1([0, 1]) with norm
≤ 1.

Given n ∈ N and φ1, φ2, ..., φn in L∞([0, 1]) we have, using 2

n∑
k=1

||Tk(φk)||2L1 =
n∑

k=1

||(
∫ 1

0
f(., s)φk(s)ds)χEk

||2L1

≤
n∑

k=1

||(
∫ 1

0
f(., s)φk(s)ds)||2L1

≤ K2
G||f ||2L1 ||(

n∑
k=1

|φk|2)1/2||2∞.

This shows that π2[Tj] ≤ KG||f ||L1 . �

Example 2.5 Let u ∈ h2(D), i.e. a harmonic function on the unit disc D such that
sup0<r<1

∫ π
−π |ur(e

it)|2 dt
2π

< ∞ where ur(e
it) = u(reit). Let us fix an increasing sequence

rn converging to 1 and define Tn : L1(T) → L2(T) by Tn(ψ) = ψ ∗ urn. Then (Tn) ∈
�π1(L

1(T), L2(T)).

Proof. It is well known (see [13]) that ur = Pr ∗ φ for some φ ∈ L2(T) where Pr stands
for the Poisson kernel. Therefore Tn(ψ) = ψ ∗ φ ∗ Prn .

Given n ∈ N and ψ1, ψ2, ..., ψn we have, using now (1) for the operator T : L1(T) →
L2(T) given by T (ψ) = ψ ∗ φ,

n∑
k=1

||Tk(ψk)||L2 =
n∑

k=1

||ψk ∗ φ ∗ Prn||L2

≤
n∑

k=1

||ψk ∗ φ||L2

≤ KG||(ψk)||	w1 (L1)||φ||L2 .

Therefore one gets π2[Tj] ≤ KG||φ||L2 = KG||u||h2 . �

3. General facts on p-summing multipliers.

Let us start with some simple observations to get examples of p-summing multipliers.
Examples 2.4 and 2.5 fall under the following general principle whose proof is left to the
reader.

Proposition 3.1 Let X, Y and Z be Banach spaces and 1 ≤ p < ∞. If T ∈ Πp(X, Y )
and (Sn) ∈ �∞(L(Y, Z)) then (SnT ) ∈ �πp(X,Z).

Moreover πp[SnT ] ≤ πp[T ] supn ||Sn||.

Example 2.3 is also a particular case of the following:
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Proposition 3.2 Let X, Y be Banach spaces and 1 ≤ p < ∞.
Given (yn,k) ⊂ �∞(N × N, Y ) and (x∗

k) ∈ �w1 (X∗) let us consider Tn =
∑∞

k=1 x
∗
k ⊗ yn,k.

If
∞∑
k=1

||x∗
k||(sup

n
||yn,k||) < ∞ then Tn ∈ �π1(X, Y ).

Proof. Notice that

∞∑
n=1

||Tn(xn)|| ≤
∞∑
n=1

∞∑
k=1

|〈x∗
k, xn〉|||yn,k||

=
∞∑
k=1

∞∑
n=1

|〈 x∗
k

||x∗
k||

, xn〉|||x∗
k||||yn,k||

≤ ( sup
||x∗||=1

∞∑
n=1

|〈x∗, xn〉|)
∞∑
k=1

||x∗
k||(sup

n
||yn,k||).

�

Lemma 3.3 Let X be a Banach space, n ∈ N, x1, x2, ..., xn ∈ X and x∗
1, x

∗
2, ..., x

∗
n ∈ X∗.

Then
n∑

k=1

|〈x∗
k, xk〉| ≤ ( sup

||x∗||=1

n∑
k=1

|〈xk, x
∗〉|)

∫ 1

0
||

n∑
k=1

x∗
krk(t)||dt.

Proof.

n∑
k=1

|〈x∗
k, xk〉| = sup

|αk|=1
|

n∑
k=1

〈x∗
k, xkαk〉|

= sup
|αk|=1

|
∫ 1

0
〈

n∑
k=1

xkαkrk(t),
n∑

k=1

x∗
krk(t)〉dt|

≤ sup
|αk|=1

sup
t∈[0,1]

||
n∑

k=1

xkαkrk(t)||
∫ 1

0
||

n∑
k=1

x∗
krk(t)||dt

≤ ( sup
||x∗||=1

n∑
k=1

|〈xk, x
∗〉|)

∫ 1

0
||

n∑
k=1

x∗
krk(t)||dt.

�

Proposition 3.4 Let X and Y be Banach spaces. If (Tn) ⊂ L(X, Y )) is such that

sup
||x||=1

∞∑
k=1

||Tk(x)|| < ∞

then Tn ∈ �π1(X, Y ). Moreover π1[Tn] ≤ sup
||x||=1

∞∑
k=1

||Tk(x)||.

Proof. Given n ∈ N and x1, x2, ..., xn ∈ X we have, using Lemma 3.3,
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n∑
k=1

||Tk(xk)|| = sup
||y∗

k
||=1

n∑
k=1

|〈Tk(xk), y
∗
k〉|

= sup
||y∗

k
||=1

n∑
k=1

|〈xk, T
∗
k (y∗k)〉|

≤ ||(xn)||	w1 (X) sup
||y∗

k
||=1

∫ 1

0
||

n∑
k=1

T ∗
k (y∗k)rk(t)||dt

≤ ||(xn)||	w1 (X) sup
||y∗

k
||=1

sup
t∈[0,1]

||
n∑

k=1

T ∗
k (y∗k)rk(t)||

≤ ||(xn)||	w1 (X) sup
||y∗

k
||=1,||x||=1

n∑
k=1

|〈T ∗
k (y∗k), x〉|

≤ ||(xn)||	w1 (X) sup
||x||=1

n∑
k=1

||Tk(x)||.

�

Theorem 3.5 Let X, Y and Z be Banach spaces and 1 ≤ p < ∞.

i) If (Tn) ∈ �πp(X, Y ) and (Sn) ∈ �∞(L(Y, Z)) then (SnTn) ∈ �πp(X,Z).
Moreover πp[SnTn] ≤ πp[Tn] supn ||Sn||.

ii) If (Sn) ∈ �w1 (L(X, Y )) and (Tn) ∈ �πp(Y, Z) then (TnSn) ∈ �πp(X,Z).
Moreover πp[TnSn] ≤ πp[Tn]||(Sn)||	w1 (L(X,Y )).

iii) If T ∈ L(X, Y ) and (Tn) ∈ �πp(Y, Z) then TnT ∈ �πp(X,Z).
Moreover πp[TnT ] ≤ πp[Tn]||T ||.

iv) If T ∈ Π2(X, Y ) and (Tn) ∈ �π2(Y, Z) then TnT ∈ �π1(X,Z).
Moreover π1[TnT ] ≤ π2[Tn]π2[T ].

Proof. (i) Take n ∈ N and x1, x2, ..., xn ∈ X. Then

n∑
k=1

||SkTk(xk)||p ≤
n∑

k=1

||Sk||p||Tk(xk)||p

≤ sup
n

||Sn||pπp
p[Tn]||(xn)||p	wp (X).

(ii) Take n ∈ N and x1, x2, ..., xn ∈ X. Then

(
n∑

k=1

||TkSk(xk)||p)1/p ≤ πp[Tn] sup
||y∗||=1

(
n∑

k=1

|〈Sk(xk), y
∗〉|p)1/p

= πp[Tn] sup
||y∗||=1

(
n∑

k=1

|〈xk, S
∗
k(y

∗)〉|p)1/p
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= πp[Tn] sup
||y∗||=1

sup
||(αn)||�p′ =1

|
n∑

k=1

〈xkαk, S
∗
k(y

∗)〉|

= πp[Tn] sup
||y∗||=1

sup
||(αn)||�p′ =1

|
∫ 1

0
〈

n∑
k=1

xkαkrk(t),
n∑

k=1

S∗
k(y

∗)rk(t)〉dt|

≤ πp[Tn]( sup
||(α′

n)||�p′ =1
||

n∑
k=1

xkα
′
k||)( sup

||y∗||=1
sup
t∈[0,1]

||
n∑

k=1

S∗
k(y

∗)rk(t)||)

= πp[Tn]||(xk)||	wp (X) sup
||y∗||=1,||x||=1

n∑
k=1

|〈S∗
k(y

∗), x〉|

= πp[Tn]||(xk)||	wp (X) sup
||y∗||=1,||x||=1

n∑
k=1

|〈y∗, Sk(x)〉|

= πp[Tn]||(xk)||	wp (X)||(Sn)||	w1 (L(X,Y )).

(iii) Take n ∈ N and x1, x2, ..., xn ∈ X. Then

n∑
k=1

||TkT (xk)||p ≤ πp
p[Tn] sup

||z∗||=1

n∑
k=1

|〈T (xk), z
∗〉|p

= πp
p[Tn] sup

||z∗||=1

n∑
k=1

|〈xk, T
∗(z∗)〉|p

≤ πp
p[Tn] sup

||x∗||=1

n∑
k=1

|〈xk, x
∗〉|p.

(iv) Given (xn) ∈ �w1 (X) and T ∈ Π2(X, Y ) then T (xn) = αnx
′
n where αn ∈ �2 and

x′
n ∈ �w2 (X) and ||(x′

n)||	w2 (X) ≤ ||(xn)||1/2	w1 (X)π2[T ] and ||(αn)||	2 ≤ ||(xn)||1/2	w1 (X) (see [11]

page 53). Hence, for each n ∈ N

n∑
k=1

||Tk(Txk)|| =
n∑

k=1

||Tk(x
′
k)|||αk)|

≤ π2[Tn]||(x′
n)||	w2 (X)||(αn)||	2

≤ π2[Tn]π2[T ]||(xn)||	w1 (X).

�

Let us now prove the natural generalization of the fact that T ∈ Πp(X, Y ) if and only
if T ∗∗ ∈ Πp(X

∗∗, Y ∗∗). We need the following lemma.

Lemma 3.6 (see [1], Proposition 2.9) Let X be a Banach space, 1 ≤ p < ∞ and let (x∗
j)

be a sequence in X∗. Then (x∗
j) ∈ �π1,p(X,K) if and only if there exists C > 0 such that

n∑
j=1

|〈x∗∗
j , x∗

j〉| ≤ C sup
||x∗||=1

( n∑
j=1

|〈x∗∗
j , x∗〉|p

)1/p

for every x∗∗
1 , . . . , x∗∗

n in X∗∗.
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Theorem 3.7 Let X and Y be Banach spaces, 1 ≤ p < ∞ and let (Tn) ∈ L(X, Y ). Then
(Tn) ∈ �πp(X, Y ) if and only if (T ∗∗

n ) ∈ �πp(X
∗∗, Y ∗∗).

Proof. The only thing to show is that if (Tn) ∈ �πp(X, Y ) then (T ∗∗
n ) ∈ �πp(X

∗∗, Y ∗∗).
We have to show that there exists C > 0 for which

( n∑
j=1

||T ∗∗
j (x∗∗

j )||p
)1/p ≤ C

for any x∗∗
1 , . . . , x∗∗

n in X∗∗ such that sup||x∗||=1

( ∑n
j=1 | < x∗∗

j , x∗ > |p
)1/p

= 1.

Given (y∗j ) ∈ �p′(Y
∗), Remark 2.2 shows that (T ∗

j (y∗j )) ∈ �π1,p(X,K). Now Lemma 3.6
gives

n∑
j=1

|〈x∗∗
j , T ∗

j (y∗j )〉| =
n∑

j=1

|〈T ∗∗
j (x∗∗

j ), y∗j 〉| ≤ C.

Therefore the result is achieved from the duality (�p′(Y
∗))∗ = �p(Y

∗∗). �

4. Connections with other classes of operators and geometry of Banach spaces.

Regarding embeddings between the spaces, let us mention that for 1 ≤ p ≤ q < ∞ one
has �πp(X, Y ) ⊂ �πq(X, Y ). The reader is referred to [1] for general embedding theorems.
The next result generalizes the well known fact of the coincidence of the classes Π1(X, Y ) =
Π2(X, Y ) under the assumption of cotype 2 of X (see [11], Corollary 11.16). The following
is essentially contained in Corollaries 3.12 and 3.13 in [1], but we include a proof here for
completeness.

Theorem 4.1

i) If X has cotype 2 then �π1(X, Y ) = �π2(X, Y ).

ii) If X has cotype q > 2 then �π1(X, Y ) = �πp(X, Y ) for any p < q′.

Proof. (i) Let us take (Tn) ∈ �π2(X, Y ) and let (xn) ∈ �w1 (X). According to the
identification with L(c0, X) we have that the sequence xn = u(en) for some u ∈ L(c0, X).
Using now the cotype 2 assumption we have L(c0, X) = Π2(c0, X) (see [11],Theorem
11.14). Now, since (en) ∈ �w1 (c0) and u ∈ Π2(c0, X) then (see [11], Lemma 2.23) u(en) =
αnx

′
n where αn ∈ �2 and x′

n ∈ �w2 (X) and ||(x′
n)||	w2 (X) ≤ π2[u] and ||(αn)||	2 ≤ 1 Hence,

for each n ∈ N

n∑
k=1

||Tk(xk)|| =
n∑

k=1

||Tk(x
′
k)|||αk)|

≤ π2[Tn]||(x′
n)||	w2 (X)||(αn)||	2

≤ π2[Tn]π2[u]

≤ KGπ2[Tn]||(xn)||	w1 (X).

(ii) follows the same lines (using Theorem 11.14 and Lemma 2.23 in [11]) for q > 2. �
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Definition 4.2 (see [11], page 234) Let X and Y be Banach spaces. A linear operator
T : X → Y is said to be almost summing, to be denoted T ∈ Πas(X, Y ), if there exists
C > 0 such that

∫ 1

0
||

n∑
j=1

T (xj)rj(t)||dt ≤ C sup
||x∗||=1

(
n∑

j=1

|〈x∗, xj〉|2)1/2

for any finite family x1, x2, . . . xn of vectors in X.

The least of such constants is the as-summing norm of u, denoted by πas(u).
Let us now relate these operators with p-summing multipliers.

Theorem 4.3 Let X and H be a Banach and a Hilbert space, respectively. If (Tn) ⊂
L(X,H) are such that T ∗

n ∈ Πas(H,X∗) for all n ∈ N and

sup
n

∫ 1

0
πas[

n∑
k=1

T ∗
k rk(s)]ds < ∞

then Tn ∈ �π1(X,H).

Moreover π1[Tn] ≤ sup
n

∫ 1

0
πas[

n∑
k=1

T ∗
k rk(s)]ds.

Proof. Let (xn) ∈ �w1 (X). Then

n∑
k=1

||Tk(xk)|| =
n∑

k=1

(
∞∑
j=1

|〈Tk(xk), ej〉|2)1/2

≤ C
n∑

k=1

∫ 1

0
|

∞∑
j=1

〈Tk(xk), ej〉rj(t)|dt

≤ C
∫ 1

0

n∑
k=1

|〈xk,
∞∑
j=1

T ∗
k (ej)rj(t)〉|dt.

First note that, since (en) ∈ �w2 (H), then S ∈ Πas(H,X∗) implies

∫ 1

0
||

∞∑
j=1

S(ej)rj(t)||dt ≤ πas(S).

Now using Lemma 3.3 we get

n∑
k=1

||Tk(xk)|| ≤ C||(xn)||	w1 (X)

∫ 1

0
(
∫ 1

0
||

n∑
k=1

(
∞∑
j=1

T ∗
k (ej)rj(t))rk(s)||ds)dt

≤ C||(xn)||	w1 (X)

∫ 1

0
(
∫ 1

0
||(

n∑
k=1

T ∗
k rk(s))(

∞∑
j=1

ejrj(t))||dt)ds

= C||(xn)||	w1 (X)

∫ 1

0
(
∫ 1

0
||

∞∑
j=1

(
n∑

k=1

T ∗
k rk(s))(ej)rj(t)||dt)ds

≤ C||(xn)||	w1 (X)

∫ 1

0
πas[

n∑
k=1

T ∗
k rk(s)]ds.

�
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Theorem 4.4 Let 2 ≤ q < ∞, H be a Hilbert space and X be a Banach space with
the Orlicz property (for q = 2) or cotype q > 2. If (Tn) ⊂ L(X,H) are such that
T ∗
n ∈ Πas(H,X∗) for all n ∈ N and

sup
n

∫ 1

0
(

n∑
k=1

||T ∗
k (

∞∑
j=1

ejrj(t))||q
′
)1/q′dt < ∞

then (Tn) ∈ �π1(X,H).

Proof. Let (xn) ∈ �w1 (X). Then for each n ∈ N, the argument in Theorem 4.3 gives

n∑
k=1

||Tk(xk)|| ≤ C
∫ 1

0

n∑
k=1

|〈xk,
∞∑
j=1

T ∗
k (ej)rj(t)〉dt|.

Now the assumption on X allows us to write

n∑
k=1

||Tk(xk)|| ≤ C
∫ 1

0

n∑
k=1

|〈xk,
∞∑
j=1

T ∗
k (ej)rj(t)〉dt|

≤ C
∫ 1

0
(

n∑
k=1

||xk||q)1/q(
n∑

k=1

||
∞∑
j=1

T ∗
k (ej)rj(t)||q

′
)1/q′dt

≤ C||(xk)||	w1 (X)

∫ 1

0
(

n∑
k=1

||
∞∑
j=1

T ∗
k (ej)rj(t)||q

′
)1/q′dt.

�

Definition 4.5 (see [3], [8]) Let X and Y be Banach spaces. A sequence (Tj)j∈N of
operators in L(X, Y ) is called Rademacher bounded if there exists a constant C > 0 such
that ∫ 1

0
||

n∑
k=1

Tk(xk)rk(t)||dt ≤ C
∫ 1

0
||

n∑
k=1

xkrk(t)||dt

for any finite collection of vectors x1, x2, . . . xn in X.

We use Rad(X, Y ) to denote the set of Rademacher bounded sequences, and rad[Tj] is
the least constant C for which (Tj) verifies the inequality in the definition.

Remark 4.1

i) If Tn = T for all n ∈ N then (Tn) ∈ Rad(X, Y ).

ii) If (Tn) ∈ Rad(X, Y ) and (xn) ∈ �w1 (X) then (Tn(xn)) ∈ �w2 (X).

Let us mention the following simple observations whose proofs follow easily from the
definitions.

Proposition 4.6 Let X, Y be Banach spaces.

i) If X has the Orlicz property (resp. cotype q > 1 ) then �2(L(X, Y )) ⊂ �π1(X, Y ) (resp.
�q′(L(X, Y )) ⊂ �π1(X, Y ) ).
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ii) If Y has type 2 then �π2(X, Y ) ⊂ Rad(X, Y ).

iii) If X has cotype q, Y has type p and 1/r = (1/p) − (1/q) then �r(L(X, Y )) ⊂
Rad(X, Y ). In particular, if X has cotype 2 and Y has type 2 then �∞(L(X, Y )) =
Rad(X, Y ).

iv) If Z has cotype 2, T ∈ Πas(X, Y ) and (Tn) ∈ Rad(Y, Z) then (TnT ) ∈ �π2(X,Z).

Proof. (i) Let n ∈ N and x1, x2, ..., xn in X. Then we have

n∑
k=1

||Tk(xk)|| ≤ (
n∑

k=1

||Tk||2)1/2(
n∑

k=1

||xk||2)1/2

≤ C(
n∑

k=1

||Tk||2)1/2||(xk)||	w1 (X).

Obvious modifications give the case q > 2.
(ii) Let n ∈ N and x1, x2, ..., xn in X. Then we have

∫ 1

0
||

n∑
k=1

Tk(xk)rk(t)||dt ≤ C(
n∑

k=1

||Tk(xk)||2)1/2

≤ Cπ2[Tn]||(xk)||	w2 (X)

≤ Cπ2[Tn]
∫ 1

0
||

n∑
k=1

xkrk(t)||dt.

(iii) Let n ∈ N and x1, x2, ..., xn in X. Then we have

∫ 1

0
||

n∑
k=1

Tk(xk)rk(t)||dt ≤ C(
n∑

k=1

||Tk(xk)||p)1/p

≤ C(
n∑

k=1

||Tk||r)1/r(
n∑

k=1

||xk||q)1/q

≤ C(
n∑

k=1

||Tk||r)1/r
∫ 1

0
||

n∑
k=1

xkrk(t)||dt.

(iv) Let n ∈ N and x1, x2, ..., xn in X. Then we have

(
n∑

k=1

||TkT (xk)||2)1/2 ≤ C
∫ 1

0
||

n∑
k=1

TkT (xk)rk(t)||dt

≤ Crad[Tn]
∫ 1

0
||

n∑
k=1

T (xk)rk(t)||dt

≤ Crad[Tn]πas[T ] sup
||x∗||=1

(
n∑

k=1

|〈xk, x
∗〉|2)1/2.

�

We are now going to get the main results of this section. We need the following lemma.
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Lemma 4.7 (see [24], Theorem 6.6 and Corollary 6.7) If X is a GT -space of cotype 2
then there exists a constant C > 0 such that

n∑
k=1

|〈xk, x
∗
k〉| ≤ C(

∫ 1

0
||

n∑
k=1

xkrk(t)||dt) sup
||x||=1

(
n∑

k=1

|〈x∗
k, x〉|2)1/2. (5)

If X∗ is a GT -space of cotype 2 then there exists a constant C > 0 such that

n∑
k=1

|〈x∗
k, xk〉| ≤ C(

∫ 1

0
||

n∑
k=1

x∗
krk(t)||dt) sup

||x∗||=1
(

n∑
k=1

|〈xk, x
∗〉|2)1/2. (6)

Theorem 4.8 Let (Ω,Σ, µ) be measure space and X a Banach space. If Tn ⊂ L(L1(µ), X)
are such that

sup
||φ||=1

∞∑
n=1

||Tn(φ)||2 < ∞

then (Tn) ∈ �π1(L
1(µ), X).

Proof. Let (φn) ⊂ L1(µ). Since L1(µ) is a GT -space of cotype 2, Lemma 4.7 gives

n∑
k=1

||Tk(φk)|| = sup
||x∗

n||=1

n∑
k=1

|〈Tk(φk), x
∗
k〉|

= sup
||x∗

n||=1

n∑
k=1

|〈φk, T
∗
k (x∗

k)〉|

≤ C(
∫ 1

0
||

n∑
k=1

φkrk(t)||dt) sup
||x∗

n||=1
sup
||x||=1

(
n∑

k=1

|〈T ∗
k (x∗

k), x〉|2)1/2

≤ C(
∫ 1

0
||

n∑
k=1

φkrk(t)||dt) sup
||x||=1,||x∗

n||=1
(

n∑
k=1

|〈x∗
k, Tk(x)〉|2)1/2

≤ C( sup
t∈[0,1]

||
n∑

k=1

φkrk(t)||) sup
||x||=1

(
n∑

k=1

||Tk(x)||2)1/2

≤ C||(φn)||	w1 (L1) sup
||x||=1

(
n∑

k=1

||Tk(x)||2)1/2.

�

Theorem 4.9 Let X∗ be a GT -space of cotype 2 and let Y ∗ have type 2. If Tn ∈ L(X, Y )
and (T ∗

n) ∈ Rad(Y ∗, X∗) then (Tn) ∈ �π2(X, Y ).
In particular if Tn : c0 → �q for q ≥ 2 and (T ∗

n) ∈ Rad(�q′ , �1) then Tn ∈ �π2(c0, �q).

Proof. Let (xn) ∈ �w2 (X). Using Lemma 4.7 for X∗, one gets

(
n∑

k=1

||Tk(xk)||2)1/2 = sup
||(y∗n)||�2(Y ∗)=1

n∑
k=1

|〈Tk(xk), y
∗
k〉|
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= sup
||(y∗n)||�2(Y ∗)=1

n∑
k=1

|〈xk, T
∗
k (y∗k)〉|

≤ C sup
||(y∗n)||�2(Y ∗)=1

(
∫ 1

0
||

n∑
k=1

T ∗
k (y∗k)rk(t)||dt) sup

||x∗||=1
(

n∑
k=1

|〈xk, x
∗〉|2)1/2

≤ C||(xn)||	w2 (X)rad[T
∗
n ] sup

||(y∗n)||�2(Y ∗)=1
(
∫ 1

0
||

n∑
k=1

y∗krk(t)||dt)

≤ C||(xn)||	w2 (X)rad[T
∗
n ],

where the last inequality follows from the type 2 condition on Y ∗. �
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15. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques,

Bol. Soc. Mat. São Paulo 8 (1953/1956 ) 1–79.
16. G.J.O. Jameson, Summing and Nuclear Norms in Banach Space Theory, Cambridge

University Press (1987).
17. N. Kalton and L. Weis, The H∞ calculus and sums of closed operators , to appear.
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(1933) 33–37.

22. A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math.
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