Quaestiones Mathematicae 25(2002), 1-7.
© 2002 NISC Pty Ltd, www.nisc.co.za

REMARKS ON (q, p, Y)-SUMMING OPERATORS

Oscar Blasco*

Dept. Análisis Matemático, Facultad de Matemáticas, Universidad de Valencia, 46100

Burjassot, Valencia, Spain. E-Mail Oscar.Blasco@uv.es

Teresa Signes

Dept. Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100
Espinardo, Murcia, Spain.E-Mail tmsignes@um.es

Abstract. An operator $T \in \Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)$ if there exists a constant $C>0$ such that, for any finite sequence $u_{1}, u_{2}, \ldots, u_{N}$ in $X \otimes Y$, we have

$$
\left(\sum_{k=1}^{N}\left\|T\left(u_{k}\right)\right\|_{Z}^{q}\right)^{\frac{1}{q}} \leq C \sup _{x^{*} \in B_{X^{*}}}\left\{\left(\sum_{k=1}^{N}\left\|u_{k}\left(x^{*}\right)\right\|_{Y}^{p}\right)^{\frac{1}{p}}\right\}
$$

It is shown that if $T \in \Pi_{p}^{Y}(X \check{\otimes} Y, Z)$ and $S \in \Pi_{s, t}(Z, W)$ then the operator $S T \in$ $\Pi_{r, q}^{Y}(X \check{\otimes} Y, W)$ where $\frac{1}{r}=\frac{1}{p}+\frac{1}{s}$ and $\frac{1}{q}=\frac{1}{p}+\frac{1}{t}$.

Mathematics Subject Classification (2000): 47B10.
Key words: Please supply?

1. Introduction. Let X, Y and Z be Banach spaces and let $1 \leq p \leq q<$ ∞. An operator T from the injective tensor product $X \ddot{\otimes} Y$ into Z is said to be (q, p, Y)-summing if there exists a constant $C>0$ such that, for any finite sequence $u_{1}, u_{2}, \ldots, u_{N}$ in $X \otimes Y$, we have

$$
\left(\sum_{k=1}^{N}\left\|T\left(u_{k}\right)\right\|_{Z}^{q}\right)^{\frac{1}{q}} \leq C \sup _{x^{*} \in B_{X^{*}}}\left\{\left(\sum_{k=1}^{N}\left\|u_{k}\left(x^{*}\right)\right\|_{Y}^{p}\right)^{\frac{1}{p}}\right\}
$$

where $u_{k}\left(x^{*}\right)=\sum_{j=1}^{n_{k}}\left\langle x^{*}, x_{j, k}\right\rangle y_{j, k}$, for $u_{k}=\sum_{j=1}^{n_{k}} x_{j, k} \otimes y_{j, k}, y_{j, k} \in Y$ and $x_{j, k} \in$ X.

The least of such constants is the (q, p, Y)-norm of T, denoted by $\pi_{q, p}^{Y}(T)$, and the space $\Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)$ of all (q, p, Y)-summing operators is a Banach space endowed with such norm. In the case $q=p$ we simply write $\Pi_{p}^{Y}(X \check{\otimes} Y, Z)$ and $\pi_{p}^{Y}(T)$.

[^0]Of course for $Y=\mathbb{K}$ we have $\Pi_{q, p}^{\mathbb{K}}(X \ddot{\otimes} \mathbb{K}, Z)=\Pi_{q, p}(X, Z)$. The reader is referred to [1], [2], [6], [10], [11] or [15] for definitions and results about these classes and their applications in Banach space theory.

The notion of (q, p, Y)-summing operator was introduced and studied by Kislyakov in [5]. Among other things he proved that (p, Y)-summing operators verify the following analogue to Pietsch's domination theorem.

Theorem 1.1. (See [5].) Let $1 \leq p<\infty$ and let X, Y and Z be Banach spaces. An operator $T: X \check{\otimes} Y \rightarrow Z$ is (p, Y)-summing if and only if there are a probability measure μ on $\left(B_{X^{*}}, w^{*}\right)$ and a constant $C>0$ such that for all $u \in X \otimes Y$ one has

$$
\|T(u)\|_{Z}^{p} \leq C^{p} \int_{B_{X^{*}}}\left\|u\left(x^{*}\right)\right\|_{Y}^{p} d \mu\left(x^{*}\right)
$$

Moreover, $\pi_{p}^{Y}(T)$ is the least of the constants verifying the previous estimate.
Recall that an operator $T: C(\Omega, X) \rightarrow Y$, where Ω is a compact Haussdorf space, is called p-dominated operator (see [3], III.19.3) if there exist a constant $C>0$ and a probability measure μ on Ω such that

$$
\|T(f)\|^{p} \leq C \int_{\Omega}\|f(t)\|^{p} d \mu(t)
$$

for all $f \in C(\Omega, X)$. For infinite dimensional Banach spaces C. Swartz (see [13]) showed that absolutely summing operators $T: C(\Omega, X) \rightarrow Y$ are always 1-dominated, but the space of 1-dominated operators from $C(\Omega, X)$ into Y coincides with $\Pi_{1}(C(\Omega, X), Y)$ if and only if X is finite dimensional.

Since $C(\Omega) \check{\otimes} X=C(\Omega, X)$, Theorem 1.1 implies that the class of p-dominated operators actually coincides with $\Pi_{p}^{X}(C(\Omega) \check{\otimes} X, Y)$.

Let us first point out that always we have $\Pi_{q, p}(X \check{\otimes} Y, Z) \subseteq \Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)$.
Indeed, since, for $u_{1}, u_{2}, \ldots, u_{N} \in X \ddot{\otimes} Y$, we have

$$
\left\|\left(u_{k}\right)\right\|_{\ell_{p}^{w}(X \check{\otimes} Y)}=\sup \left\{\left(\sum_{k=1}^{N}\left|\left\langle x^{*} \otimes y^{*}, u_{k}\right\rangle\right|^{p}\right)^{\frac{1}{p}}: x^{*} \in B_{X^{*}}, y^{*} \in B_{Y^{*}}\right\}
$$

and $\left\langle u\left(x^{*}\right), y^{*}\right\rangle=\sum\left\langle x^{*}, x_{j}\right\rangle\left\langle y^{*}, y_{j}\right\rangle=\left\langle x^{*} \otimes y^{*}, u\right\rangle$ for any tensor $u=\sum x_{j} \otimes y_{j}$ in $X \otimes Y$. Hence, if $u_{1}, u_{2}, \ldots, u_{N} \in X \otimes Y$ we get

$$
\left\|\left(u_{k}\right)\right\|_{\ell_{p}^{w}(X \check{\otimes} Y)} \leq \sup _{x^{*} \in B_{X^{*}}}\left\{\left(\sum_{j=1}^{n}\left\|u_{j}\left(x^{*}\right)\right\|_{Y}^{p}\right)^{\frac{1}{p}}\right\}
$$

Consequently, we have the following inclusion

$$
\Pi_{q, p}(X \check{\otimes} Y, Z) \subseteq \Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)
$$

Proposition 1.2. Let X, Y and Z be Banach spaces and let $1 \leq p \leq q<\infty$.
If $\Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)=\Pi_{q, p}(X \ddot{\otimes} Y, Z)$ then $\mathcal{L}(Y, Z)=\Pi_{q, p}(Y, Z)$.
In particular, $\Pi_{p}^{Y}(X \ddot{\otimes} Y, Y)=\Pi_{p}(X \check{\otimes} Y, Y)$ if and only if $\operatorname{dim}(Y)<\infty$.

Proof. Assume $\Pi_{q, p}^{Y}(X \check{\otimes} Y, Z)=\Pi_{q, p}(X \check{\otimes} Y, Z)$ and let take $A \in \mathcal{L}(Y, Z)$. Fix $x_{0}^{*} \in X^{*}$ and consider $T_{x_{0}^{*}, A}: X \check{\otimes} Y \rightarrow Z$, given by $T_{x_{0}^{*}, A}(u)=A\left(\left\langle u, x_{0}^{*}\right\rangle\right)$.

Clearly it is ($1, Y$)-summing (in particular (q, p, Y)-summing). By assumption $T_{x_{0}^{*}, A} \in \Pi_{q, p}(X \ddot{\otimes} Y, Z)$.

Let $\left(y_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(Y)$ and $x_{0} \in B_{X}$ with $\left\langle x_{0}^{*}, x_{0}\right\rangle \neq 0$, then

$$
T_{x_{0}^{*}, A}\left(\left(y_{j} \otimes x_{0}\right)\right)=A\left(\left\langle x_{0}^{*}, x_{0}\right\rangle y_{j}\right)=\left\langle x_{0}^{*}, x_{0}\right\rangle A\left(y_{j}\right) \in \ell_{q}(Z) .
$$

This shows that $A \in \Pi_{q, p}(Y, Z)$.
Corollary 1.3. ([13]) Let X and Y be Banach spaces. Then $\Pi_{1}^{X}(C(\Omega, X), Y)$ $=\Pi_{1}(C(\Omega, X), Y)$ if and only if X is finite dimensional.

As in the case of (q, p)-summing operators the following inclusion

$$
\Pi_{q_{1}, p_{1}}^{Y}(X \check{\otimes} Y, Z) \subseteq \Pi_{q_{2}, p_{2}}^{Y}(X \check{\otimes} Y, Z)
$$

holds if $1 \leq p_{2} \leq p_{1} \leq q_{1} \leq q_{2}<\infty$, or if $p_{1} \leq p_{2}, q_{1} \leq q_{2}$ and $\frac{1}{p_{1}}-\frac{1}{q_{1}} \leq \frac{1}{p_{2}}-\frac{1}{q_{2}}$. The proof of this is analogous to the classical case.

Moreover, the classes coincides, at least for certain values of $q_{1}, p_{1}, q_{2}, p_{2}$, under some assumptions on the Banach spaces. Kislyakov proves in [5], Theorem 1.2.3, that if Y has type 2 and Z has cotype 2, then

$$
\Pi_{p}^{Y}(X \check{\otimes} Y, Z)=\Pi_{2}^{Y}(X \check{\otimes} Y, Z)
$$

for every $2<p<\infty$. He also prove in [5], Theorem 1.3.2, under the same assumptions, the following version of Grothendieck's theorem:

$$
\Pi_{2}^{Y}(C(\Omega) \check{\otimes} Y, Z)=\mathcal{L}(C(\Omega) \check{\otimes} Y, Z)
$$

Let us mention that p-summing operators acting on $X \check{\otimes} Y$ have been considered by several authors (see [9], [12]). The following map plays an important role: For each bounded operator $T: X \check{\otimes} Y \rightarrow Z$, one can consider $\Phi(T)=T^{\#}: Y \rightarrow \mathcal{L}(X, Z)$ defined by, $T^{\#}(y)(x)=T(x \otimes y)$, for $x \in X$ and $y \in Y$. This is clearly a bounded operator. So

$$
\Phi(\mathcal{L}(X \check{\otimes} Y, Z)) \subseteq \mathcal{L}(Y, \mathcal{L}(X, Z))
$$

A natural problem to study is the connection between the operator T and $T^{\#}$ for different classes of operator ideals. In [9] it was shown that if $T: X \check{\otimes} Y \rightarrow Z$ is p-summing, then $T^{\#}: Y \rightarrow \Pi_{p}(X, Z)$ is also p-summing, that is

$$
\Phi\left(\Pi_{p}(X \check{\otimes} Y, Z)\right) \subset \Pi_{p}\left(Y, \Pi_{p}(X, Z)\right)
$$

When $p=1$, the reverse implication holds also true for $Y=C(K)$ (see [13] or if Y is a \mathcal{L}_{∞}-space see [9]), that is

$$
\Phi\left(\Pi_{1}(X \check{\otimes} Y, Z)\right)=\Pi_{1}\left(Y, \Pi_{1}(X, Z)\right) \text { for } \mathcal{L}_{\infty} \text {-spaces } Y
$$

Next we are going to investigate the relation between T and $T^{\#}$ when T is (q, p, Y)-summing.

Proposition 1.4. Let X, Y and Z be Banach spaces and $1 \leq p \leq q<\infty$.
(i) $\Phi\left(\Pi_{q, p}^{Y}(X \ddot{\otimes} Y, Z)\right) \subseteq \mathcal{L}\left(Y, \Pi_{q, p}(X, Z)\right)$.
(ii) If $\Phi\left(\Pi_{q, p}^{Y}(X \ddot{\otimes} Y, Z)\right) \subseteq \Pi_{q, p}(Y, \mathcal{L}(X, Z))$ then $\mathcal{L}(Y, Z)=\Pi_{q, p}(Y, Z)$.

In particular, if $\Phi\left(\Pi_{p}^{Y}(X \check{\otimes} Y, Y)\right) \subseteq \Pi_{p}(Y, \mathcal{L}(X, Y))$ for some $1 \leq p<\infty$ then $\operatorname{dim}(Y)<\infty$.

Proof. (i) Let $T: X \check{\otimes} Y \rightarrow Z$ be a (q, p, Y)-summing operator. We only have to show that $T^{\#}(y) \in \Pi_{q, p}(X, Z)$ for every $y \in Y$. Let $x_{1}, \ldots, x_{n} \in X$ and $y \in Y$, then

$$
\begin{aligned}
\left(\sum_{j=1}^{n}\left\|T^{\#}(y)\left(x_{j}\right)\right\|_{Z}^{q}\right)^{\frac{1}{q}} & =\left(\sum_{j=1}^{n}\left\|T\left(x_{j} \otimes y\right)\right\|_{Z}^{q}\right)^{\frac{1}{q}} \\
& \leq \pi_{q, p}^{Y}(T) \cdot \sup _{x^{*} \in B_{X^{*}}}\left\{\sum_{j=1}^{n}\left\|\left\langle x^{*}, x_{j}\right\rangle y\right\|_{Y}^{p}\right\}^{\frac{1}{p}} \\
& =\|y\|_{Y} \cdot \pi_{q, p}^{Y}(T) \cdot \sup _{x^{*} \in B_{X^{*}}}\left\{\sum_{j=1}^{n}\left|\left\langle x^{*}, x_{j}\right\rangle\right|^{p}\right\}^{\frac{1}{p}}
\end{aligned}
$$

Hence $T^{\#}(y) \in \Pi_{q, p}(X, Z)$ with $\pi_{q, p}\left(T^{\#}(y)\right) \leq\|y\|_{Y} \cdot \pi_{q, p}^{Y}(T)$.
(ii) Let $x_{0} \in X$ and $x_{0}^{*} \in X^{*}$ such that $\left\|x_{0}\right\|=1$ and $\left\langle x_{0}, x_{0}^{*}\right\rangle=\left\|x_{0}^{*}\right\|=1$. For each $A \in \mathcal{L}(Y, Z)$ we consider the operator $T_{x_{0}^{*}, A}: X \ddot{\otimes} Y \rightarrow Y, T_{x_{0}^{*}, A}(u)=$ $A\left(\left\langle u, x_{0}^{*}\right\rangle\right)$, which is ($1, Y$)-summing (and also (q, p, Y)-summing), then $T_{x_{0}^{*}, A}^{\#} \in$ $\Pi_{q, p}(Y, \mathcal{L}(X, Y))$. Therefore

$$
\begin{aligned}
\pi_{q, p}^{Y}\left(T_{x_{0}^{*}, A}^{\#}\right) \cdot \sup _{y^{*} \in B_{Y^{*}}}\left(\sum_{j=1}^{\infty}\left|\left\langle y_{j}, y^{*}\right\rangle\right|^{p}\right)^{\frac{1}{p}} & \geq\left(\sum_{j=1}^{\infty}\left\|T_{x_{0}^{*}, A}^{\#}\left(y_{j}\right)\right\|_{\mathcal{L}(X, Y)}^{q}\right)^{\frac{1}{q}} \\
& \geq\left(\sum_{j=1}^{\infty}\left\|T_{x_{0}^{*}, A}\left(x_{0} \otimes y_{j}\right)\right\|_{Y}^{q}\right)^{\frac{1}{q}} \\
& =\left(\sum_{j=1}^{\infty}\left\|A\left(y_{j}\right)\right\|_{Y}^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

This gives the result.
2. Composition of (p, Y)-summing operators. The classical theorem of Pietsch stated that if T is p-summing and S is q-summing then $S T$ is r-summing, with $r=\min \left\{1, \frac{1}{p}+\frac{1}{q}\right\}$ (see [2], Theorem 2.22 or [4], Theorem 19.10.3). This result was generalized by N . Tomczak (see [14]) who proved that if S is (s, t)-summing then $S T$ is (r, q)-summing, where $\frac{1}{r}=\frac{1}{p}+\frac{1}{s} \leq 1, \frac{1}{q}=\frac{1}{p}+\frac{1}{t} \leq 1$. In this section we are going to generalize Tomczak's result for (p, Y)-summing operators.

Lemma 2.1. Let $1 \leq p<\infty$ and let $T: X \ddot{\otimes} Y \longrightarrow Z$ be a (p, Y)-summing operator. There exist a probability measure μ on $\left(B_{X^{*}}, w^{*}\right)$ such that for any
$z^{*} \in Z^{*}$ there exists a non-negative function $f_{z^{*}} \in L_{p^{\prime}}\left(B_{X^{*}}, \mu\right)$ verifying

$$
\left|\left\langle z^{*}, T(u)\right\rangle\right| \leq \int_{B_{X^{*}}}\left\|\left\langle u, x^{*}\right\rangle\right\|_{Y} f_{z^{*}}\left(x^{*}\right) d \mu\left(x^{*}\right)
$$

for all $u \in X \check{\otimes} Y$ and $\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}} \leq \pi_{p}^{Y}(T)\left\|z^{*}\right\|$.
Proof. Since T is (p, Y)-summing, from Theorem 1.1 we can find probability measure μ on $\left(B_{X^{*}}, w^{*}\right)$, a closed subspace $X_{p}(Y)$ of $L_{p}(\mu, Y)$ and an operator $\tilde{T} \in \mathcal{L}\left(X_{p}(Y), Z\right)$, such that $\tilde{T} j_{p} i_{X}{ }_{\otimes} Y=T$ and $\|\tilde{T}\|=\pi_{p}^{Y}(T)$, where the operator $i_{X \check{\otimes} Y}: X \ddot{\otimes} Y \rightarrow C\left(B_{X^{*}}\right) \ddot{\otimes} Y$ is the isometric embedding defined by $i_{X \check{\otimes} Y}\left(\sum x_{j} \otimes y_{j}\right)=\sum i_{x}\left(x_{j}\right) \otimes y_{j}, i_{X}$ is the natural embedding of X into $C\left(B_{X^{*}}\right)$, and j_{p} is the restriction to $i_{X \check{\otimes} Y}(X \check{\otimes} Y)$ of the inclusion $j_{p}: C\left(B_{X^{*}}, Y\right) \rightarrow L_{p}(\mu, Y)$.

Moreover, for all $u \in X \check{\otimes} Y$,

$$
\begin{aligned}
\left|\left\langle\tilde{T}^{*}\left(z^{*}\right), j_{p} i_{X \check{\otimes} Y}(u)\right\rangle\right| & =\left|\left\langle z^{*}, \tilde{T} j_{p} i_{X \check{\otimes} Y}(u)\right\rangle\right| \\
& \leq\left\|z^{*}\right\| Z^{*}\|\tilde{T}\|\left\|j_{p} i_{X \check{\otimes} Y}(u)\right\|_{L_{p}(\mu, Y)} \\
& =\pi_{p}^{Y}(T)\left\|z^{*}\right\|_{Z^{*}}\left\|j_{p} i_{X \check{\otimes} Y}(u)\right\|_{L_{p}(u, Y)} .
\end{aligned}
$$

That is, $\tilde{T}^{*}\left(z^{*}\right) \in\left(X_{p}(Y)\right)^{*}$ with $\left\|\tilde{T}^{*}\left(z^{*}\right)\right\| \leq \pi_{q}^{Y}(T)\left\|z^{*}\right\|_{Z^{*}}$. Then, by HahnBanach extension theorem and the duality $\left(L_{p}(\mu, Y)\right)^{*}=V^{p^{\prime}}\left(\mu, Y^{*}\right)$ (see for instance [3]), we can find a vector valued measure $F_{z^{*}}: \mathfrak{B} \rightarrow Y^{*}$ with p^{\prime}-bounded variation such that $\left|F_{z^{*}}\right|_{p^{\prime}} \leq \pi_{p}^{Y}(T)\left\|z^{*}\right\|_{Z^{*}}$ and $\left.F_{z^{*}}\right|_{\left(X_{p}(Y)\right)^{*}}=\tilde{T}^{*}\left(z^{*}\right)$. Then, for all $u \in X \ddot{\otimes} Y$, we have

$$
\left\langle z^{*}, T(u)\right\rangle=\left\langle\tilde{T}^{*}\left(z^{*}\right), j_{p} i_{X \check{\otimes} Y}(u)\right\rangle=\left\langle F_{z^{*}}, j_{p} i_{X \check{\otimes} Y}(u)\right\rangle=\int_{B_{X^{*}}}\left\langle u, x^{*}\right\rangle d F_{z^{*}}\left(x^{*}\right)
$$

and then

$$
\left|\left\langle z^{*}, T(u)\right\rangle\right| \leq \int_{B_{X^{*}}}\left\|\left\langle u, x^{*}\right\rangle\right\|_{Y} d\left|F_{z^{*}}\right|\left(x^{*}\right)
$$

On the other hand, it is known that there exists a non-negative function $f_{z^{*}} \in$ $L_{p^{\prime}}\left(B_{X^{*}}, \mu\right)$ with

$$
\left|F_{z^{*}}\right|(E)=\int_{E} f_{z^{*}} d \mu
$$

for all $E \in \mathfrak{B}$ and $\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}=\left|F_{z^{*}}\right|_{p^{\prime}} \leq \pi_{p}^{Y}(T)\left\|z^{*}\right\|_{Z^{*}}$. Therefore

$$
\left|\left\langle z^{*}, T(u)\right\rangle\right| \leq \int_{B_{X^{*}}}\left\|\left\langle u, x^{*}\right\rangle\right\|_{Y} f_{z^{*}}\left(x^{*}\right) d \mu\left(x^{*}\right) .
$$

This finishes the proof.
Theorem 2.2. Let X, Y, Z and W be Banach spaces, $T \in \Pi_{p}^{Y}(X \ddot{\otimes} Y, Z)$ and $S \in \Pi_{s, t}(Z, W)$. Then the operator $S T: X \ddot{\otimes} Y \longrightarrow W$ is (r, q, Y)-summing where

$$
\frac{1}{r}=\frac{1}{p}+\frac{1}{s} \leq 1, \quad \frac{1}{q}=\frac{1}{p}+\frac{1}{t} \leq 1
$$

and $\pi_{r, q}^{Y}(S T) \leq \pi_{s, t}(S) \cdot \pi_{p}^{Y}(T)$.

Proof. Let $d \mu\left(x^{*}\right)$ be associated to T as in Lemma 2.1. Let $\left(u_{i}\right)_{i=1}^{n}$ be a finite sequence of elements in the space $X \check{\otimes} Y$ and set $u_{i}=\sigma_{i} v_{i}$ where $\sigma_{i}=$ $\left(\int_{B_{X^{*}}}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q} d \mu\left(x^{*}\right)\right)^{1 / p}$. Then, by Hölder's inequality, we have

$$
\begin{align*}
\left(\sum_{i=1}^{n}\left\|S T\left(u_{i}\right)\right\|_{W}^{r}\right)^{\frac{1}{r}} & \leq\left(\sum_{i=1}^{n}\left|\sigma_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left\|S T\left(v_{i}\right)\right\|_{W}^{s}\right)^{\frac{1}{s}} \\
& \leq \pi_{s, t}(S)\left\|\left(\sigma_{i}\right)_{i=1}^{n}\right\|_{\ell_{p}^{n}} \sup _{z^{*} \in B_{Z^{*}}}\left(\sum_{i=1}^{n}\left|\left\langle z^{*}, T\left(v_{i}\right)\right\rangle\right|^{t}\right)^{\frac{1}{t}} \tag{2.1}
\end{align*}
$$

We have to estimate the latter expression. Observe that

$$
\left\|\left(\sigma_{i}\right)\right\|_{\ell_{p}^{n}}=\left(\int_{B_{X^{*}}} \sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q} d \mu\left(x^{*}\right)\right)^{\frac{1}{p}} \leq \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q}\right)^{\frac{1}{p}} .
$$

On the other hand, since T is (p, Y)-summing, by Lemma 2.1 we have

$$
\left|\left\langle z^{*}, T\left(v_{i}\right)\right\rangle\right| \leq \int_{B_{X^{*}}}\left\|\left\langle v_{i}, x^{*}\right\rangle\right\|_{Y} f_{z^{*}}\left(x^{*}\right) d \mu\left(x^{*}\right)
$$

Hence we observe that

$$
\left|\left\langle z^{*}, T\left(v_{i}\right)\right\rangle\right| \leq \sigma_{i}^{-1} \int_{B_{X^{*}}}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q / p}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q / t}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime} / t}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime} / q^{\prime}} d \mu\left(x^{*}\right)
$$

and using Hölder's inequality twice

$$
\begin{aligned}
& \leq \sigma_{i}^{-1} \sigma_{i}\left(\int_{B_{X^{*}}}\left(\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime}}\right)^{p^{\prime} / t}\left(\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime}}\right)^{p^{\prime} / q^{\prime}} d \mu\left(x^{*}\right)\right)^{\frac{1}{p^{\prime}}} \\
& \leq\left(\int_{B_{X^{*}}}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime}} d \mu\left(x^{*}\right)\right)^{\frac{1}{t}}\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}^{\frac{p^{\prime}}{q^{\prime}}} .
\end{aligned}
$$

Then

$$
\left|\left\langle z^{*}, T\left(v_{i}\right)\right\rangle\right| \leq\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}^{\frac{p^{\prime}}{q^{\prime}}}\left(\int_{B_{X^{*}}}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime}} d \mu\left(x^{*}\right)\right)^{\frac{1}{t}} .
$$

Summing up over $i=1, \ldots, n$, we get

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left|\left\langle z^{*}, T\left(v_{i}\right)\right\rangle\right|^{t}\right)^{\frac{1}{t}} & \leq\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}^{\frac{p^{\prime}}{T}}\left(\int_{B_{X^{*}}} \sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|_{Y}^{q}\left|f_{z^{*}}\left(x^{*}\right)\right|^{p^{\prime}} d \mu\left(x^{*}\right)\right)^{\frac{1}{t}} \\
& \leq\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}^{\frac{p^{\prime}}{T^{\prime}}}\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}}^{\frac{p^{\prime}}{t}} \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|^{q}\right)^{\frac{1}{t}} \\
& \leq\left\|f_{z^{*}}\right\|_{L_{p^{\prime}}} \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|^{q}\right)^{\frac{1}{t}} \\
& \leq \pi_{p}^{Y}(T)\left\|z^{*}\right\|_{Z^{*}} \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|^{q}\right)^{\frac{1}{t}}
\end{aligned}
$$

Applying this inequality to the right hand side of (2.1), we get

$$
\left(\sum_{i=1}^{n}\left\|S T\left(u_{i}\right)\right\|_{W}^{r}\right)^{\frac{1}{r}} \leq \pi_{s, t}(S) \pi_{p}^{Y}(S) \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left\|\left\langle u_{i}, x^{*}\right\rangle\right\|^{q}\right)^{\frac{1}{q}}
$$

References

1. A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland, Amsterdam, 1993.
2. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995.
3. N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
4. H. Jarchow, Locally convex spaces, Teuber, Stuttgart, 1981.
5. S.V. Kislyakov, Absolutely summing operators on the disk algebra, St. Petersburg Math. J. 3(4) (1992), 705-774.
6. J. Lindenstrauss and A. Pelczyński, Absolutely summing operators in L_{p}-spaces and their applications, Studia Math. 29 (1968), 275-326.
7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, 1973.
8. \qquad , Classical Banach Spaces II, Springer-Verlag, New York, 1979.
9. S. Montgomery-Smith and P. Saab, p-Summing operators on injective tensor products of spaces, Proc. Roy. Soc. Edinburgh 120A (1992), 283-296.
10. A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
11. G. Pisier, "Factorization of linear operators and geometry of Banach spaces". Amer. Math. Soc. Vol. 60, Providence, R.I., 1986.
12. D. Popa, 2-Absolutely summing operators on the space $C(T, X)$, J. Math. Anal. Appl. 239 (1999), 1-6.
13. C. Swartz, Absolutely summing and dominated operators on spaces of vector-valued continuos functions, Trans. Amer. Math. Soc. 179 (1973), 123-131.
14. N. Tomczak, A remark on (s, t)-absolutely summing operators in L_{p}-spaces, Studia Math. 35 (1970), 97-100.
15. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, Cambridge, 1991.

[^0]: *The authors have been partially supported by Proyecto PB98-0146 and Proyecto DGI (BFM 2001-1421) respectively.

