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Abstract. An operator T 2 �Y
q;p(X �
Y; Z) if there exists a constant C > 0 such

that, for any �nite sequence u1; u2; :::; uN in X 
 Y , we have

� NX
k=1

kT (uk)k
q

Z

� 1

q

� C sup
x�2B

X�

n� NX
k=1

kuk(x
�
)kpY

� 1

p

o
:

It is shown that if T 2 �Y
p (X �
Y; Z) and S 2 �s;t(Z;W ) then the operator ST 2

�Y
r;q(X �
Y;W ) where 1

r
= 1

p
+ 1

s
and 1

q
= 1

p
+ 1

t
:
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1. Introduction. Let X; Y and Z be Banach spaces and let 1 � p � q <

1. An operator T from the injective tensor product X �
Y into Z is said to be

(q; p; Y )-summing if there exists a constant C > 0 such that, for any �nite sequence

u1; u2; :::; uN in X 
 Y , we have

� NX
k=1

kT (uk)k
q
Z

� 1

q

� C sup
x�2BX�

n� NX
k=1

kuk(x
�)k

p
Y

� 1

p

o

where uk(x
�) =

Pnk
j=1hx

�; xj;kiyj;k, for uk =
Pnk

j=1 xj;k 
 yj;k, yj;k 2 Y and xj;k 2

X .

The least of such constants is the (q; p; Y )-norm of T , denoted by �Yq;p(T ),

and the space �Y
q;p(X �
Y; Z) of all (q; p; Y )-summing operators is a Banach space

endowed with such norm. In the case q = p we simply write �Y
p (X �
Y; Z) and

�Yp (T ).
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Of course for Y = K we have �K

q;p(X �
K ; Z) = �q;p(X;Z). The reader is

referred to [1], [2], [6], [10], [11] or [15] for de�nitions and results about these

classes and their applications in Banach space theory.

The notion of (q; p; Y )-summing operator was introduced and studied by

Kislyakov in [5]. Among other things he proved that (p; Y )-summing operators

verify the following analogue to Pietsch's domination theorem.

Theorem 1.1. (See [5].) Let 1 � p < 1 and let X; Y and Z be Banach spaces.

An operator T : X �
Y ! Z is (p; Y )-summing if and only if there are a probability

measure � on (BX� ; w�) and a constant C > 0 such that for all u 2 X 
Y one has

kT (u)k
p
Z � Cp

Z
BX�

ku(x�)k
p
Y d�(x

�):

Moreover, �Yp (T ) is the least of the constants verifying the previous estimate.

Recall that an operator T : C(
; X) ! Y , where 
 is a compact Haussdorf

space, is called p-dominated operator (see [3], III.19.3) if there exist a constant

C > 0 and a probability measure � on 
 such that

kT (f)kp � C

Z



kf(t)kpd�(t)

for all f 2 C(
; X). For in�nite dimensional Banach spaces C. Swartz (see

[13]) showed that absolutely summing operators T : C(
; X) ! Y are always

1-dominated, but the space of 1-dominated operators from C(
; X) into Y coin-

cides with �1(C(
; X); Y ) if and only if X is �nite dimensional.

Since C(
)�
X = C(
; X), Theorem 1.1 implies that the class of p-dominated

operators actually coincides with �X
p (C(
)�
X;Y ).

Let us �rst point out that always we have �q;p(X �
Y; Z) � �Y
q;p(X �
Y; Z).

Indeed, since, for u1; u2; :::; uN 2 X �
Y , we have

k(uk)k`w
p
(X �
Y ) = sup

n� NX
k=1

jhx� 
 y�; ukij
p
� 1

p

: x� 2 BX� ; y� 2 BY �

o
;

and hu(x�); y�i =
P
hx�; xjihy

�; yji = hx� 
 y�; ui for any tensor u =
P

xj 
 yj in

X 
 Y . Hence, if u1; u2; :::; uN 2 X 
 Y we get

k(uk)k`w
p
(X �
Y ) � sup

x�2BX�

n� nX
j=1

kuj(x
�)k

p
Y

� 1

p

o
:

Consequently, we have the following inclusion

�q;p(X �
Y; Z) � �Y
q;p(X �
Y; Z):

Proposition 1.2. Let X; Y and Z be Banach spaces and let 1 � p � q <1.

If �Y
q;p(X �
Y; Z) = �q;p(X �
Y; Z) then L(Y; Z) = �q;p(Y; Z):

In particular, �Y
p (X �
Y; Y ) = �p(X �
Y; Y ) if and only if dim(Y ) <1.
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Proof. Assume �Y
q;p(X �
Y; Z) = �q;p(X �
Y; Z) and let take A 2 L(Y; Z). Fix

x�0 2 X� and consider Tx�
0
;A : X �
Y ! Z, given by Tx�

0
;A(u) = A(hu; x�0i).

Clearly it is (1; Y )-summing (in particular (q; p; Y )-summing). By assumption

Tx�
0
;A 2 �q;p(X �
Y; Z).

Let (yj)
1

j=1 2 `wp (Y ) and x0 2 BX with hx�0; x0i 6= 0, then

Tx�
0
;A((yj 
 x0)) = A(hx�0 ; x0iyj) = hx�0; x0iA(yj) 2 `q(Z):

This shows that A 2 �q;p(Y; Z). 2

Corollary 1.3. ([13]) Let X and Y be Banach spaces. Then �X
1 (C(
; X); Y )

= �1(C(
; X); Y ) if and only if X is �nite dimensional.

As in the case of (q; p)-summing operators the following inclusion

�Y
q1;p1

(X �
Y; Z) � �Y
q2;p2

(X �
Y; Z)

holds if 1 � p2 � p1 � q1 � q2 <1, or if p1 � p2, q1 � q2 and 1
p1
� 1

q1
� 1

p2
� 1

q2
.

The proof of this is analogous to the classical case.

Moreover, the classes coincides, at least for certain values of q1; p1; q2; p2,

under some assumptions on the Banach spaces. Kislyakov proves in [5], Theorem

1.2.3, that if Y has type 2 and Z has cotype 2, then

�Y
p (X �
Y; Z) = �Y

2 (X �
Y; Z)

for every 2 < p <1. He also prove in [5], Theorem 1.3.2, under the same assump-

tions, the following version of Grothendieck's theorem:

�Y
2 (C(
)�
Y; Z) = L(C(
)�
Y; Z):

Let us mention that p-summing operators acting on X �
Y have been considered

by several authors (see [9], [12]). The following map plays an important role: For

each bounded operator T : X �
Y ! Z, one can consider �(T ) = T# : Y ! L(X;Z)

de�ned by, T#(y)(x) = T (x
 y), for x 2 X and y 2 Y . This is clearly a bounded

operator. So

�(L(X �
Y; Z)) � L(Y;L(X;Z)):

A natural problem to study is the connection between the operator T and T#

for di�erent classes of operator ideals. In [9] it was shown that if T : X �
Y ! Z is

p-summing, then T# : Y ! �p(X;Z) is also p-summing, that is

�(�p(X �
Y; Z)) � �p(Y;�p(X;Z)):

When p = 1, the reverse implication holds also true for Y = C(K) (see [13] or

if Y is a L1-space see [9]), that is

�(�1(X �
Y; Z)) = �1(Y;�1(X;Z)) for L1-spaces Y:

Next we are going to investigate the relation between T and T# when T is

(q; p; Y )-summing.
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Proposition 1.4. Let X; Y and Z be Banach spaces and 1 � p � q <1.

(i) �(�Y
q;p(X �
Y; Z)) � L(Y;�q;p(X;Z)).

(ii) If �(�Y
q;p(X �
Y; Z)) � �q;p(Y;L(X;Z)) then L(Y; Z) = �q;p(Y; Z).

In particular, if �(�Y
p (X �
Y; Y )) � �p(Y;L(X;Y )) for some 1 � p < 1 then

dim(Y ) <1:

Proof. (i) Let T : X �
Y ! Z be a (q; p; Y )-summing operator. We only have to

show that T#(y) 2 �q;p(X;Z) for every y 2 Y . Let x1; : : : ; xn 2 X and y 2 Y ,

then

� nX
j=1

kT#(y)(xj)k
q
Z

� 1

q

=
� nX
j=1

kT (xj 
 y)k
q
Z

� 1

q

� �Yq;p(T ) � sup
x�2BX�

n nX
j=1

khx�; xjiyk
p
Y

o 1

p

= kykY � �
Y
q;p(T ) � sup

x�2BX�

n nX
j=1

jhx�; xjij
p
o 1

p

:

Hence T#(y) 2 �q;p(X;Z) with �q;p(T
#(y)) � kykY � �

Y
q;p(T ).

(ii) Let x0 2 X and x�0 2 X� such that kx0k = 1 and hx0; x
�

0i = kx�0k = 1.

For each A 2 L(Y; Z) we consider the operator Tx�
0
;A : X �
Y ! Y , Tx�

0
;A(u) =

A(hu; x�0i), which is (1; Y )-summing (and also (q; p; Y )-summing), then T
#
x�
0
;A 2

�q;p(Y;L(X;Y )). Therefore

�Yq;p(T
#
x�
0
;A) � sup

y�2BY �

� 1X
j=1

jhyj ; y
�ijp

� 1

p

�
� 1X
j=1

kT
#
x�
0
;A(yj)k

q
L(X;Y )

� 1

q

�
� 1X
j=1

kTx�
0
;A(x0 
 yj)k

q
Y

� 1

q

=
� 1X
j=1

kA(yj)k
q
Y

� 1

q

:

This gives the result. 2

2. Composition of (p; Y )-summing operators. The classical theorem of

Pietsch stated that if T is p-summing and S is q-summing then ST is r-summing,

with r = minf1; 1
p
+ 1

q
g (see [2], Theorem 2.22 or [4], Theorem 19.10.3). This result

was generalized by N. Tomczak (see [14]) who proved that if S is (s; t)-summing

then ST is (r; q)-summing, where 1
r
= 1

p
+ 1

s
� 1, 1

q
= 1

p
+ 1

t
� 1. In this section

we are going to generalize Tomczak's result for (p; Y )-summing operators.

Lemma 2.1. Let 1 � p < 1 and let T : X �
Y �! Z be a (p; Y )-summing

operator. There exist a probability measure � on (BX� ; w�) such that for any
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z� 2 Z� there exists a non-negative function fz� 2 Lp0(BX� ; �) verifying

jhz�; T (u)ij �

Z
BX�

khu; x�ikY fz�(x
�)d�(x�)

for all u 2 X �
Y and kfz�kL
p0
� �Yp (T )kz

�k.

Proof. Since T is (p; Y )-summing, from Theorem 1.1 we can �nd probability

measure � on (BX� ; w�), a closed subspace Xp(Y ) of Lp(�; Y ) and an opera-

tor ~T 2 L(Xp(Y ); Z), such that ~TjpiX �
Y = T and k ~Tk = �Yp (T ), where the

operator iX �
Y : X �
Y ! C(BX�) �
Y is the isometric embedding de�ned by

iX �
Y (
P

xj 
 yj) =
P

ix(xj)
 yj , iX is the natural embedding of X into C(BX�),

and jp is the restriction to iX �
Y (X �
Y ) of the inclusion jp : C(BX� ; Y )! Lp(�; Y ).

Moreover, for all u 2 X �
Y ,

jh ~T �(z�); jpiX �
Y (u)ij = jhz�; ~TjpiX �
Y (u)ij

� kz�kZ�k ~TkkjpiX �
Y (u)kLp(�;Y )

= �Yp (T )kz
�kZ�kjpiX �
Y (u)kLp(�;Y ):

That is, ~T �(z�) 2 (Xp(Y ))
� with k ~T �(z�)k � �Yq (T )kz

�kZ� . Then, by Hahn-

Banach extension theorem and the duality (Lp(�; Y ))
� = V p0(�; Y �) (see for in-

stance [3]), we can �nd a vector valued measure Fz� : B ! Y � with p0-bounded

variation such that jFz� jp0 � �Yp (T )kz
�kZ� and Fz� j(Xp(Y ))� = ~T �(z�). Then, for

all u 2 X �
Y , we have

hz�; T (u)i = h ~T �(z�); jpiX �
Y (u)i = hFz� ; jpiX �
Y (u)i =

Z
BX�

hu; x�i dFz�(x
�)

and then

jhz�; T (u)ij �

Z
BX�

khu; x�ikY djFz� j(x
�):

On the other hand, it is known that there exists a non-negative function fz� 2

Lp0(BX� ; �) with

jFz� j(E) =

Z
E

fz�d�

for all E 2 B and kfz�kL
p0
= jFz� jp0 � �Yp (T )kz

�kZ� . Therefore

jhz�; T (u)ij �

Z
BX�

khu; x�ikY fz�(x
�)d�(x�):

This �nishes the proof. 2

Theorem 2.2. Let X; Y; Z and W be Banach spaces, T 2 �Y
p (X �
Y; Z) and

S 2 �s;t(Z;W ). Then the operator ST : X �
Y �!W is (r; q; Y )-summing where

1

r
=

1

p
+

1

s
� 1;

1

q
=

1

p
+

1

t
� 1

and �Yr;q(ST ) � �s;t(S) � �
Y
p (T ).
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Proof. Let d�(x�) be associated to T as in Lemma 2.1. Let (ui)
n
i=1 be a �-

nite sequence of elements in the space X �
Y and set ui = �ivi where �i =

(
R
BX�

khui; x
�ik

q
Y d�(x

�))1=p. Then, by H�older's inequality, we have

� nX
i=1

kST (ui)k
r
W

� 1

r

�
� nX
i=1

j�ij
p
� 1

p

� nX
i=1

kST (vi)k
s
W

� 1

s

� �s;t(S)k(�i)
n
i=1k`np sup

z�2BZ�

� nX
i=1

jhz�; T (vi)ij
t
� 1

t

(2.1)

We have to estimate the latter expression. Observe that

k(�i)k`n
p
=
�Z

BX�

nX
i=1

khui; x
�ik

q
Y d�(x

�)
� 1

p

� sup
x�2BX�

� nX
i=1

khui; x
�ik

q
Y

� 1

p

:

On the other hand, since T is (p; Y )-summing, by Lemma 2.1 we have

jhz�; T (vi)ij �

Z
BX�

khvi; x
�ikY fz�(x

�)d�(x�):

Hence we observe that

jhz�; T (vi)ij � ��1i

Z
BX�

khui; x
�ik

q=p
Y khui; x

�ik
q=t
Y jfz�(x

�)jp
0=tjfz�(x

�)jp
0=q0d�(x�)

and using H�older's inequality twice

� ��1i �i

�Z
BX�

(khui; x
�ik

q
Y jfz�(x

�)jp
0

)p
0=t(jfz�(x

�)jp
0

)p
0=q0d�(x�)

� 1

p0

�
�Z

BX�

khui; x
�ik

q
Y jfz�(x

�)jp
0

d�(x�)
� 1

t

kfz�k
p
0

q0

L
p0
:

Then

jhz�; T (vi)ij � kfz�k
p
0

q0

L
p0

�Z
BX�

khui; x
�ik

q
Y jfz�(x

�)jp
0

d�(x�)
� 1

t

:

Summing up over i = 1; : : : ; n, we get

� nX
i=1

jhz�; T (vi)ij
t
� 1

t

� kfz�k
p
0

q0

L
p0

�Z
BX�

nX
i=1

khui; x
�ik

q
Y jfz�(x

�)jp
0

d�(x�)
� 1

t

� kfz�k
p
0

q0

L
p0
kfz�k

p
0

t

L
p0

sup
x�2BX�

� nX
i=1

khui; x
�ikq

� 1

t

� kfz�kL
p0

sup
x�2BX�

� nX
i=1

khui; x
�ikq

� 1

t

� �Yp (T )kz
�kZ� sup

x�2BX�

� nX
i=1

khui; x
�ikq

� 1

t

:
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Applying this inequality to the right hand side of (2.1), we get

� nX
i=1

kST (ui)k
r
W

� 1

r

� �s;t(S)�
Y
p (S) sup

x�2BX�

� nX
i=1

khui; x
�ikq

� 1

q

:

2
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