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1. Introduction

The reasons and motivations that lead to the consideration of alternatives to General Relativity
are manifold and have changed over the years. Some theories are motivated by theoretical
reasons while others are more phenomenological. One can thus find theories aimed at
unifying different interactions, such as Kaluza-Klein theory (5-dimensional spacetime as a
possible framework to unify gravitation and electromagnetism) or the very famous string
theory (which should provide a unified explanation for everything, i.e., from particles to
interactions); others appeared as spin-offs of string theory and are now seen as independent
frameworks for testing some of its phenomenology, such is the case of the string-inspired
“brane worlds” (which confine the standard model of elementary particles to a 4-dimensional
brane within a larger bulk accessible to gravitational interactions); we also find modifications
of GR needed to allow for its perturbative renormalization, or modifications aimed at avoiding
the big bang singularity, effective actions related with non-perturbative quantization schemes,
etcetera. All them are motivated by theoretical problems.
On the other hand, we find theories motivated by the need to find alternative explanations for
the current cosmological model and astrophysical observations, which depict a Universe filled
with some kind of aether or dark energy representing the main part of the energy budget of the
Universe, followed by huge amounts of unseen matter which seems necessary to explain the
anomalous rotation curves of galaxies, gravitational lensing, and the formation of structure
via gravitational instability.
One of the goals of this chapter is to provide the reader with elementary concepts and tools
that will allow him/her better understand different alternatives to GR recently considered
in the literature in relation with the cosmic speedup problem and the phenomenology of
quantum gravity during the very early universe. Since such theories are aimed at explaining
certain observational facts, they must be able to account for the new effects they have
been proposed for but also must be compatible with other observational and experimental
constraints coming from other scenarios. The process of building and testing these theories is,
in our opinion, a very productive theoretical exercise, since it allows us to give some freedom
to our imagination but at the same time forces us to keep our feet on the ground.
Though there are no limits to imagination, experiments and observations should be used
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as a guide to build and put limitations on sensible theories. In fact, a careful theoretical
interpretation of experiments can be an excellent guide to constrain the family of viable
theories. In this sense, we believe it is extremely important to clearly understand the
implications of the Einstein equivalence principle (EEP). We hope these notes manage to
convey the idea that theorists should have a deep knowledge and clear understanding of
the experiments related with gravitation.
We believe that f (R) theories of gravity are a nice toy model to study a possible gravitational
alternative to the dark energy problem. Their dynamics is relatively simple and they can
be put into correspondence with scalar-tensor theories of gravity, which appear in many
different contexts in gravitational physics, from extended inflation and extended quintessence
models to Kaluza-Klein and string theory. On the other hand, f (R) theories, in the Palatini
version, also seem to have some relation with non-perturbative approaches to quantum
gravity. Though such approaches have only been applied with certain confidence in highly
symmetric scenarios (isotropic and anisotropic, homogeneous cosmologies) they indicate
that the Big Bang singularity can be avoided quite generally without the need for extra
degrees of freedom. Palatini f (R) theories can also be designed to remove that singularity
and reproduce the dynamical equations derived from isotropic models of Loop Quantum
Cosmology. Extended Lagrangians of the form f (R, Q), being Q the squared Ricci tensor,
exhibit even richer phenomenology than Palatini f (R) models. These are very interesting and
promising aspects of these theories of gravity that are receiving increasing attention in the
recent literature and that will be treated in detail in these lectures.
We begin with Newton’s theory, the discovery of special relativity, and Nordström’s scalar
theories as a way to motivate the idea of gravitation as a curved space phenomenon. Once
the foundations of gravitation have been settled, we shift our attention to the predictions
of particular theories, paying special attention to f (R) theories and some extensions of that
family of theories. We show how the solar system dynamics can be used to reconstruct the
form of the gravity Lagrangian and how modified gravity can be useful in modeling certain
aspects of quantum gravity phenomenology.

2. From Newtonian physics to Einstein’s gravity.

In his Principia Mathematica (1687) Newton introduced the fundamental three laws of
classical mechanics:

• If no net force acts on a particle, then it is possible to select a set of reference frames (inertial
frames), observed from which the particle moves without any change in velocity. This is
the so called Principle of Relativity (PoR).

• From an inertial frame, the net force on a particle of mass m is �F = m�a.

• Whenever a particle A exerts a force on another particle B, B simultaneously exerts a force
on A with the same magnitude in the opposite direction.

Using Newton’s laws one could explain all kinds of motion. When a nonzero force acts on a
body, it accelerates at a rate that depends on its inertial mass mi. A given force will thus lead
to different accelerations depending on the inertial mass of the body. In his Principia, Newton
also found an explanation to Kepler’s empirical laws of planetary motion: between any two
bodies separated by a distance d, there exists a force called gravity given by Fg = G m1m2

d2 .
Here G is a constant, and m1, m2 represent the gravitational masses of those bodies. When one
studies experimentally Newton’s theory of gravity quickly realizes that there is a deep relation
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between the inertial and the gravitational mass of a body. It turns out that the acceleration a
experienced by any two bodies on the surface of the Earth looks the same irrespective of
the mass of those bodies. This suggests that inertial and gravitational mass have the same
numerical values, mi = mg (in general, they are proportional, being the proportionality
constant the same for all bodies). This observation is known as Newton’s equivalence principle
or weak equivalence principle.
From Newton’s laws it follows that Newtonian physics is based on the idea of absolute space,
a background structure with respect to which accelerations can be effectively measured.
However, the PoR implies that, unlike accelerations, absolute positions and velocities are not
directly observable. This conclusion was challenged by some results published in 1865 by J.C.
Maxwell. In Maxwell’s work, the equations of the electric and magnetic field were improved
by the addition of a new term (Maxwell’s displacement current). The new equations predicted
the existence of electromagnetic waves. The explicit appearance in those equations of a speed
c was interpreted as the existence of a privileged reference frame, that of the luminiferous
aether1. According to this, it could be possible to measure absolute velocities (at least with
respect to the aether2).
This idea motivated the experiment carried out by Michelson and Morley in 1887 to measure
the relative velocity of the Earth in its orbit around the sun with respect to the aether3. Despite
the experimental limitations of the epoch, their experiment had enough precision to confirm
that the speed of light is independent of the direction of the light ray and the position of the
Earth in its orbit.
Motivated by this intriguing phenomenon, in 1892 Lorentz proposed that moving bodies
contract in the direction of motion according to a specific set of transformations. In
1905 Einstein presented its celebrated theory of special relativity and derived the Lorentz
transformations using the PoR and the observed constancy of the speed of light without
assuming the presence of an aether. Therefore, though the principle of relative motion had
been put into question by electromagnetism, it was salvaged by Einstein’s reinterpretation4.
As of that moment, it was understood that any good physical theory should be adapted to
the new PoR. Fortunately, Minkowski (1907) realized that Lorentz transformations could
be nicely interpreted in a four dimensional space-time (he thus invented the notion of
spacetime as opposed to the well-known spatial geometry of the time). In this manner, a
Lorentz-invariant theory should be constructed using geometrical invariants such as scalars
and four-vectors, which represents a geometrical formulation of the PoR.

1 The aether was supposed to have very special properties, such as a very high elasticity, and to exhibit
no friction to the motion of bodies through it.

2 The aether was assumed to be at rest because otherwise the light from distant stars would suffer
distortions in their propagation due to local motions of this fluid.

3 Note that the speed of sound is relative to the wind. Analogously, it was thought that the speed of
light should be measured with respect to the aether. Due to the motion of the Earth, that speed should
depend on the position of the Earth and the direction of the light ray. The interferometer was built on
a rotating surface such that the full experiment could be rotated to observe periodic variations of the
interference pattern.

4 It is worth noting that Einstein’s results did not rule out the aether, but they implied that its presence
was irrelevant for the discussion of experiments.
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2.1 A relativistic theory of gravity: Nordström’s theory.
The acceptance of the new PoR led to the development of relativistic theories of gravity in
which the gravitational field was represented by different types of fields, such as scalars (in
analogy with Newtonian mechanics) or vectors (in analogy with Maxwell’s electrodynamics).
A natural proposal5 in this sense consists on replacing the Newtonian equations by the
following relativistic versions [Norton (1992)]

∇2φ = 4πGρ → �φ = 4πGρ (1)

d�v
dt

= −�∇φ → duμ

dτ
= −∂μφ (2)

This proposal, however, is unsatisfactory. From the assumed constancy of the speed of light,
ημνuμuν = −c2, one finds that uμ

duμ

dτ = 0, which implies the unnatural restriction uμ∂μφ =
dφ
dτ = 0, i.e., the gravitational field should be constant along any observer’s world line.
To overcome this drawback, Nordström proposed that the mass of a body in a gravitational
field could vary with the gravitational potential [Nordström (1912)] . Nordström proposed a
relativistic scalar theory of gravity in which the matter evolution equation (2) was modified
to make it compatible with the constancy of the speed of light

Fμ ≡ d(muμ)

dτ
= −m∂μφ ↔ m

duμ

dτ
+ uμ

dm
dτ

= −m∂μφ. (3)

This equation implies that in a gravitational field m changes as mdφ/dτ = c2dm/dτ, which
leads to m = m0eφ/c2

and avoids the undesired restriction dφ/dt = 0 of the theory presented
before6. The matter evolution equation can thus be written as

duμ

dτ
= −∂μφ − dφ

dτ
uμ . (4)

It is worth noting that this equation satisfies Newton’s equivalence principle in the sense that
the gravitational mass of a body is identified with its rest mass. Free fall, therefore, turns out
to be independent of the rest mass of the body. However, Einstein’s special theory of relativity
had shown a deep relation between mass and energy that should be carefully addressed in the
construction of any relativistic theory of gravity. The equation E = mc2, where m = γm0 and
γ = 1/

√
1 −�v2/c2, states that kinetic energy increases the effective mass of a body, its inertia.

Therefore, if inertial mass is the source of the gravitational field, a moving body could generate
a stronger gravitational field than the same body at rest. By extension of this reasoning, one
can conclude that bodies with different internal energies could fall differently in an external
gravitational field. Einstein found this point disturbing and used it to criticize Nordström’s
theory. In addition, in this theory the gravitational potential φ of point particles goes to −∞
at the location of the particle, thus implying that point particles are massless and, therefore,
cannot exist. One is thus led to consider extended (or continuous) objects, which possess
other types of inertia in the form of stresses that cannot be reduced to a mass. The source

5 Another very natural proposal would be a relativistic theory of gravity inspired by Maxwell’s
electrodynamics, being Fμ ≡ mduμ/dτ = kGμνuν with Gμν = −Gνμ. Such a proposal immediately
implies that Fμuμ = 0 and is compatible with the constancy of c2.

6 Varying speed of light theories may also avoid the restriction dφ/dτ = 0, but such theories break the
essence of special relativity by definition.
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of the gravitational field, the right hand side of (1), should thus take into account also such
stresses.
To overcome those problems and others concerning energy conservation pointed out by
Einstein, Nordström proposed a second theory [Nordström (1913)]

�φ = g(φ)ν (5)

Fμ = −g(φ)ν∂μφ . (6)

where F represents the force per unit volume and g(φ)ν is a density that represents the
source of the gravitational field. To determine the functional form of g(φ) and find a natural
correspondence between ν and the matter sources, Nordström proceeded as follows. Firstly,
he defined the gravitational mass of a system using the right hand side of (5) and (6) as

Mg =
∫

d3xg(φ)ν . (7)

Then he assumed that the inertial mass of the system should be a Lorentz scalar made out of
all the energy sources, which include the rest mass and stresses associated to the matter, the
gravitational field, and the electromagnetic field. He thus proposed the following expression

mi = − 1
c2

∫
d3x[Tm + Gφ + Fem] , (8)

where the trace of the stress-energy tensor of the matter is represented by Tm, the trace of
the electromagnetic field by Fem (which vanishes), and that of the gravitational field by Gm,
being Gμν = (2/κ2)[∂μφ∂νφ − (1/2)ημν(∂λφ∂λφ)] the stress-energy tensor of the (scalar)
gravitational field.
To force the equivalence between inertial and gravitational mass in a system of particles
immersed in an external gravitational field with potential φa, Nordström imposed that for
such a system the following relation should hold

Mg = g(φa)mi . (9)

Then he considered a stationary system on that gravitational field and showed that the
contribution of the local gravitational field to the total inertia of the system was given by

− 1
c2

∫
d3xGφ = − 1

c2

∫
d3x(φ − φa)g(φ)ν . (10)

Combining this expression with (9) and (8) one finds that

∫
d3x

[
Tm + g(φ)ν

(
φ − φa +

c2

g(φa)

)]
= 0 . (11)

Demanding proportionality between Tm and ν, one finds that g(φ) = C/(A + φ). A natural
gauge corresponds to g(φ) = −4πG/φ because it allows to recover the Newtonian result
E0 = mc2 = Mgφa that implies that the energy of a system with gravitational mass Mg in a
field with potential φa is exactly Mgφa. Therefore, from Nordström’s second theory it follows
that the inertial mass of a stationary system varies in proportion to the external potential
whereas Mg remains constant, i.e., m/φ = constant.
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With the above results one finds that (5) and (6) turn into (from now on κ2 ≡ 8πG)

φ�φ = − κ2

2
Tm (12)

duμ

dτ
= −∂μ ln φ − uμ

d
dτ

ln φ . (13)

Using these equations it is straightforward to verify that the total energy-momentum of

the system is conserved, i.e., ∂μ
(

Tφ
μν + Tm

μν

)
= 0, where one must take Tm

μν = ρφuμuν for
pressureless matter because, as shown above, the inertial rest mass density of a system grows
linearly with φ.
Nordström’s second theory, therefore, represents a satisfactory example of relativistic theory
of gravity in Minkowski space that satisfies the equivalence between inertial and gravitational
mass and in which energy and momentum are conserved. Unfortunately, it does not predict
any bending of light and also fails in other predictions that were important at the beginning
of the twentieth century such as the perihelion shift of Mercury. Nonetheless, it admits a
geometric interpretation that greatly simplifies its structure and puts forward the direction in
which Einstein’s work was progressing.
Considering a line element of the form ds2 = φ2(−dt2 + d�x2), Einstein and Fokker showed
that the matter evolution equation (13) could be obtained by extremizing the path followed
by a free particle in that geometry, i.e., by computing the variation δ

(−mc2 ∫ ds
)

= 0
[Einstein and Fokker (1914)] . This variation yields the geodesic equation7

dũμ

dτ̃
+ Γμ

αβũαũβ = 0 , (14)

where Γμ
αβ = ∂αφδ

μ
β + ∂βφδ

μ
α − ημρ∂ρφηαβ. The gravitational field equation also takes a very

interesting form
R = 3κ2 T̃m , (15)

where R = −(6/φ3)ηαβ∂α∂βφ and T̃m = Tm/φ4 due to the conformal transformation that
relates the background metric with the Minkowski metric. These last results represent
generally covariant equations that establish a non-trivial relation between gravitation and
geometry. Though this theory was eventually ruled out by observations, its potential impact
on the eventual formal and conceptual formulation of Einstein’s general theory of relativity
must have been important.

2.2 To general relativity via general covariance
The Principle of Relativity together with Newton’s ideas about the equivalence between
inertial and gravitational mass led Einstein to develop what has come to be called the Einstein
equivalence principle (EEP), which will be introduced later in detail. Einstein wanted to
extend the principle of relativity not only to inertial observers (special relativity) but to all
kinds of motion (hence the term general relativity). This motivated the search for generally

7 To obtain (13) from the geodesic equation one should note that dτ̃ = φdτ, ũμ = φuμ, and that the indices
in (13) are raised and lowered with ημν.
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covariant equations 8.
Though it is not difficult to realize that one can construct a fully covariant theory in Minkowski
space, the consideration of arbitrary accelerated frames leads to the appearance of inertial or
ficticious forces whose nature is difficult to interpret. This is due to the fact that Minkowski
spacetime, like Newtonian space, is an absolute space. The possibility of writing the laws of
physics in a coordinate (cartesian, polar,. . . ) and frame (inertial, accelerated,. . . ) invariant way,
helped Einstein to realize that a local, homogeneous gravitational field is indistinguishable
from a constant acceleration. This allowed him to introduce the concept of local inertial frame
(LIF) and find a correspondence between gravitation and geometry, which led to a deep
conceptual change: there exists no absolute space. This follows from the fact that, unlike
other well-known forces, the local effects of gravity can always be eliminated by a suitable
choice of coordinates (Einstein’s elevator).
The forces of Newtonian mechanics, which were thought to be measured with respect to
absolute space, were in fact being measured in an accelerated frame (static with respect to the
Earth), which led to the appearance of the observed gravitational acceleration. According to
Einstein, accelerations produced by interactions such as the electromagnetic field should be
measured in LIFs. This means that they should be measured not with respect to absolute
space but with respect to the local gravitational field (which defines LIFs). In other words,
Einstein identified the Newtonian absolute space with the local gravitational field. Physical
accelerations should, therefore, be measured in local inertial frames, where Minkowskian
physics should be recovered. Gravitation, according to Einstein, was intrinsically different
from the rest of interactions. It was a geometrical phenomenon.
The geometrical interpretation of gravitation implied that it should be described by a tensor
field, the metric gμν, which boils down to the Minkowski metric locally in appropriate
coordinate systems (LIFs) or globally when gravitation is absent. This view made it natural
to interpret the effects of a gravitational field on particles as geodesic motion. In the absence
of non-gravitational interactions, particles should follow geodesics of the background metric,
which are formally described by eq.(14) but with Γμ

αβ, the so-called Levi-Civita connection,
defined in terms of a symmetric metric tensor gμν as

Γμ
αβ =

gμρ

2

[
∂αgρβ + ∂β gρα − ∂ρgαβ

]
. (16)

To determine the dynamics of the metric tensor one needs at least ten independent equations,
as many as independent components there are in gμν. Since the source of the gravitational
field must be related with the stress-energy tensor of matter and the dynamics of classical
mechanics is generally governed by second-order equations, Einstein proposed the following
set of tensorial equations

Rμν − 1
2

gμνR = κ2Tμν , (17)

where Rμν ≡ Rρ
μρν is the so-called Ricci tensor, R = gμνRμν is the Ricci scalar, and Rα

βμν =

∂μΓα
νβ − ∂νΓα

μβ + Γα
μλΓλ

νβ − Γα
νλΓλ

μβ represents the components of the Riemann tensor, the field
strength of the connection Γα

μβ, which here is defined as in (16).

8 The idea of general covariance is nowadays naturally seen as a basic mathematical requirement in any
theory based on the use of differential manifolds. In this sense, though general covariance forces the
use of tensor calculus, it should be noted that it does not necessarily imply curved space-time. Note
also that it is the connection, not the metric, the most important object in the construction of tensors.
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Eq. (17) represents a system of non-linear, second-order partial differential equations for the
ten independent components of the metric tensor. The conservation of energy and momentum
is guaranteed independently for the left and the right hand sides of (17). The contraction9

∇μ(Rμν − 1
2 gμνR) = 0 follows from a geometrical identity, whereas ∇μTμν = 0 follows if the

Minkowski equations of motion for the matter fields are satisfied locally. The non-linearity
of the equations manifests the fact that the energy stored in the gravitational field can source
the gravitational field itself in a non-trivial way. Unlike Nordström’s second theory, this set
of tensorial equations imply that the gravitational field is sourced by the full stress-energy
tensor, not just by its trace. This implies that electromagnetic fields, like any other matter
sources, generate a non-zero Ricci tensor and, therefore, gravitate.
Einstein’s theory was rapidly accepted despite its poor experimental verification. In fact,
we had to wait until the 1960’s to have the perihelion shift of Mercury and the deflection
of light by the sun measured to within an accuracy of ∼ 1% and ∼ 50%, respectively. In
1959 Pound and Rebka were able to measure the gravitational redshift for the first time.
Additionally, though Hubble’s discoveries on the recession of distant galaxies had boosted
Einstein’s popularity, those observations were a mere qualitative verification of the effect and
only recently has it been possible to contrast theory and observations with some confidence
in the cosmological setting. It is therefore not surprising that between 1905 and 1960, there
appeared at least 25 alternative relativistic theories of gravitation, where spacetime was flat
and gravitation was a Lorentz-invariant field on that background. Though many researchers
defended Einstein’s idea of curved spacetime, others like Birkhoff did not [Birkhoff (1944)]:

The initial attempts to incorporate gravitational phenomena in flat space-time were not satisfactory.
Einstein turned to the curved spacetime suggested by his principle of equivalence, and so constructed
his general theory of relativity. The initial predictions, based on this celebrated theory of gravitation,
were brilliantly confirmed. However, the theory has not led to any further applications and, because of
its complicated mathematical character, seems to be essentially unworkable. Thus curved spacetime has
come to be regarded by many as an auxiliary construct (Larmor) rather than as a physical reality.

Such strong claims suggest that it was necessary a careful analysis of the foundations of
Einstein’s theory: is spacetime really curved or is gravitation a tensor-like interaction in a
flat background? The next section is devoted to clarify these points and others that will help
establish the foundations of gravitation theory.

2.3 The Einstein equivalence principle
The experimental facts that support the foundations of gravitation should never be
underestimated since they provide a valuable guide in the construction of viable theories and
in constraining the realm of speculation. In this sense, the experimental efforts carried out by
Robert Dicke in the 1960’s [Dicke (1964)] resulted in what has come to be called the Einstein
equivalence principle (EEP) and constitute a fundamental pillar for gravitation theory. We
will briefly review next the experimental evidence supporting it, and the way it enters in the
construction of gravitation theories [Will (1993)]. The EEP states that [Will (2005)]

• Inertial and gravitational masses coincide (weak equivalence principle).

• The outcome of any non-gravitational experiment is independent of the velocity of the
freely-falling reference frame in which it is performed (Local Lorentz Invariance).

9 The differential operator ∇μ represents a covariant derivative, which is the natural extension of the
usual flat space derivative ∂μ to spaces with non-trivial parallel transport.
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• The outcome of any local non-gravitational experiment is independent of where and when
in the universe it is performed (Local Position Invariance).

Let us briefly discuss the experimental evidence supporting the EEP.

2.3.1 Weak equivalence principle
A direct test of WEP is the comparison of the acceleration of two laboratory-sized bodies of
different composition in an external gravitational field. If the principle were violated, then
the accelerations of different bodies would differ. In Dicke’s torsion balance experiment, for
instance, the gravitational acceleration toward the sun of small gold and aluminum weights
were compared and found to be equal with an accuracy of about a part in 1011. One should
note that gold and aluminum atoms have very different properties, which is important for
testing how gravitation couples to different particles and interactions. For instance, the
electrons in aluminum are non-relativistic whereas the k-shell electrons of gold have a 15%
increase in their mass as a result of their relativistic velocities. The electromagnetic negative
contribution to the binding energy of the nucleus varies as Z2 and represents 0.5% of the
total mass of a gold atom, whereas it is negligible in Al. Additionally, the virtual pair field,
pion field, etcetera, around the gold nucleus would be expected to represent a far bigger
contribution to the total energy than in aluminum. This makes it clear that a gold sphere
possesses additional inertial contributions due to the electromagnetic, weak, and strong
interactions that are not present (or are negligible) in the aluminum sphere. If any of those
sources of inertia did not contribute by the same amount to the gravitational mass of the
system, then gold and aluminum would fall with different accelerations.
The precision of Dicke’s experiment was such that from it one can conclude, for instance, that
positrons and other antiparticles fall down, not up [Dicke (1964)]. This is so because if the
positrons in the pair field of the gold atom were to tend to fall up, not down, there would be
an anomalous weight of the atom substantially greater for large atomic number than small.

2.3.2 Tests of local Lorentz invariance
The existence of a preferred reference frame breaking the local isotropy of space would imply
a dependence of the speed of light on the direction of propagation. This would cause shifts in
the energy levels of atoms and nuclei that depend on the orientation of the quantization axis
of the state relative to our universal velocity vector, and on the quantum numbers of the state.
This idea was tested by Hughes (1960) and Drever (1961), who examined the J = 3/2 ground
state of the 7Li nucleus in an external magnetic field. If the Michelson-Morley experiment had
found δ ≡ c−2 − 1 ≈ 10−3, the Hughes-Drever experiment set the limit to δ ≈ 10−15. More
recent experiments using laser-cooled trapped atoms and ions have reached δ ≈ 10−17.
Currently, new ideas coming from quantum gravity (with a minimal length scale), braneworld
scenarios, and models of string theory have motivated new ways to test Lorentz invariance
by considering Lorentz-violating parameters in extensions of the standard model and also
some astrophysical tests. So far, however, no compelling evidence for a violation of Lorentz
invariance has been found.

2.3.3 Tests of local position invariance
Local position invariance can be tested by gravitational redshift experiments, which test
the existence of spatial dependence on the outcome of local non-gravitational experiments,
and by measurements of the fundamental non-gravitational constants that test for temporal
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dependence. Gravitational redshift experiments usually measure the frequency shift Z =
Δν/ν = −Δλ/λ between two identical frequency standards (clocks) placed at rest at different
heights in a static gravitational field. If the frequency of a given type of atomic clock is the
same when measured in a local, momentarily comoving freely falling frame (Lorentz frame),
independent of the location or velocity of that frame, then the comparison of frequencies of
two clocks at rest at different locations boils down to a comparison of the velocities of two local
Lorentz frames, one at rest with respect to one clock at the moment of emission of its signal,
the other at rest with respect to the other clock at the moment of reception of the signal. The
frequency shift is then a consequence of the first-order Doppler shift between the frames. The
result is a shift Z = ΔU

c2 , where U is the difference in the Newtonian gravitational potential
between the receiver and the emitter. If the frequency of the clocks had some dependence on
their position, the shift could be written as Z = (1 + α) ΔU

c2 . Comparison of a hydrogen-maser
clock flown on a rocket to an altitude of about 10.000 km with a similar clock on the ground
yielded a limit α < 2 × 10−4.
Another important aspect of local position invariance is that if it is satisfied then the
fundamental constants of non-gravitational physics should be constants in time. Though
these tests are subject to many uncertainties and experimental limitations, there is no strong
evidence for a possible spatial or temporal dependence of the fundamental constants.

2.4 Metric theories of gravity
The EEP is not just a verification that gravitation can be associated with a metric tensor which
locally can be turned into the Minkowskian metric by a suitable choice of coordinates. If
it is valid, then gravitation must be a curved space-time phenomenon, i.e., the effects of
gravity must be equivalent to the effects of living in a curved space-time. For this reason, the
only theories of gravity that have a hope of being viable are those that satisfy the following
postulates (see [Will (1993)] and [Will (2005)]):

1. Spacetime is endowed with a symmetric metric.

2. The trajectories of freely-falling bodies are geodesics of that metric.

3. In local freely-falling reference frames, the non-gravitational laws of physics are those
written in the language of special relativity.

Theories satisfying these postulates are known as metric theories of gravity, and their action can
be written generically as

SMT = SG[gμν, φ, Aμ, Bμν, . . .] + Sm[gμν, ψm] , (18)

where Sm[gμν, ψm] represents the matter action, ψm denotes the matter and non-gravitational
fields, and SG is the gravitational action, which besides the metric gμν may depend on other
gravitational fields (scalars, vectors, and tensors of different ranks). This form of the action
guarantees that the non-gravitational fields of the standard model of elementary particles
couple to gravitation only through the metric, which should allow to recover locally the
non-gravitational physics of Minkowski space. The construction of Sm[gμν, ψm] can thus be
carried out by just taking its Minkowski space form and going over to curved space-time
using the methods of differential geometry. It should be noted that the EEP does neither
point towards GR as the preferred theory of gravity nor provides any constraint or hint on
the functional form of the gravitational part of the action. The functional SG must provide
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dynamical equations for the metric (and the other gravitational fields, if there are any) but its
form must be obtained by theoretical reasoning and/or by experimental exploration.
It is worth noting that if SG contains other long-range fields besides the metric, then
gravitational experiments in a local, freely falling frame may depend on the location and
velocity of the frame relative to the external environment. This is so because, unlike the
metric, the boundary conditions induced by those fields cannot be trivialized by a suitable
choice of coordinates. Of course, local non-gravitational experiments are unaffected since the
gravitational fields they generate are assumed to be negligible, and since those experiments
couple only to the metric, whose form can always be made locally Minkowskian at a given
spacetime event.
Before concluding this section, it should be noted that string theories predict the existence of
new kinds of fields with couplings to fermions and the interactions of the standard model in
a way that breaks the simplicity of metric theories of gravity, i.e., they do not allow for a clean
splitting of the action into a matter sector plus a gravitational sector. Such theories, therefore,
must be regarded as non-metric. Improved tests of the EEP could be used to test the presence
and/or intensity of such couplings, which are expected to represent short range interactions.
These tests can be seen as a branch of high-energy physics not based on particle accelerators.

2.4.1 Two examples of metric theories: General relativity and Brans-Dicke theory.
The field equations of Einstein’s theory of general relativity (GR) can be derived from the
following action

S[gμν, ψm] =
1

16πG

∫
d4x

√−gR(g) + Sm[gμν, ψm] (19)

where R is the Ricci scalar defined below eq.(17). Variation of this action with respect to the
metric leads to Einstein’s field equations10

Rμν − 1
2

gμνR = 8πGTμν (20)

In Einstein’s theory, gravity is mediated by a rank-2 tensor field, the metric, and curvature
is generated by the matter sources. Brans-Dicke theory introduces, besides the metric, a new
gravitational field, which is a scalar. This scalar field is coupled to the curvature as follows

S[gμν, φ, ψm] =
1

16π

∫
d4x

√−g
[

φR(g)− ω

φ
(∂μφ∂μφ)− V(φ)

]
+ Sm[gμν, ψm] (21)

In the original Brans-Dicke theory, the potential was set to zero, V(φ) = 0, so the theory had
only one free parameter, the constant ω in front of the kinetic energy term, which had to be
determined experimentally. Note that the Brans-Dicke scalar has the same dimensions as the
inverse of Newton’s constant and, therefore, can be seen as related to it. In Brans-Dicke theory,
one can thus say that Newton’s constant is no longer constant but is, in fact, a dynamical field.
The field equations for the metric are

Rμν(g)− 1
2

gμνR(g) =
8π

φ
Tμν − 1

2φ
gμνV(φ)+

1
φ

[∇μ∇νφ − gμν�φ
]
+

ω

φ2

[
∂μφ∂νφ − 1

2
gμν(∂φ)2

]
(22)

10 Recall that δ
√−g = − 1

2
√−ggμνδgμν and that δRμν = −∇μδΓλ

λν +∇λδΓλ
μν.
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The equation that governs the scalar field is

(3 + 2ω)�φ + 2V(φ)− φ
dV
dφ

= κ2T (23)

In this theory we observe that both the matter and the scalar field act as sources for the metric,
which means that both the matter and the scalar field generate the spacetime curvature. In
fact, even in vacuum the scalar field curves the spacetime. According to the way we wrote the
metric field equations, it is tempting to identify the Brans-Dicke field with a new matter field.
However, since the Brans-Dicke scalar is sourced by the energy-momentum tensor (via its
trace, which is a scalar magnitude constructed out of the sources of energy and momentum),
we say that it is a gravitational field. Note, in this sense, that standard matter fields, such as
a Dirac field coupled to electromagnetism (iγμ∂μ − m)ψ = eγμ Aμψ, do not couple to energy
and momentum.

3. Experimental determination of the gravity Lagrangian

Einstein’s theory of general relativity (GR) represents one of the most impressive exercises of
human intellect. As we have seen in previous sections, it implied a huge conceptual jump
with respect to Newtonian gravity and, unlike the currently established standard model of
elementary particles, no experiments were carried out to probe the structure of the theory.
In spite of that, to date the theory has successfully passed all precision experimental tests.
Its predictions are in agreement with experiments in scales that range from millimeters to
astronomical units, scales in which weak and strong field phenomena can be observed [Will
(2005)]. The theory is so successful in those regimes and scales that it is generally accepted
that it should also work at larger and shorter scales, and at weaker and stronger regimes.
This extrapolation is, however, forcing us today to draw a picture of the universe that is not
yet supported by other independent observations. For instance, to explain the rotation curves
of spiral galaxies, we must accept the existence of vast amounts of unseen matter surrounding
those galaxies. Additionally, to explain the luminosity-distance relation of distant type Ia
supernovae and some properties of the distribution of matter and radiation at large scales,
we must accept the existence of yet another source of energy with repulsive gravitational
properties (see [Copeland et al. (2006)], [Padmanabhan (2003)], [Peebles and Ratra (2003)] for
recent reviews on dark energy). Together those unseen (or dark) sources of matter and
energy are found to make up to 96% of the total energy of the observable universe! This
huge discrepancy between the gravitationally estimated amounts of matter and energy and
the direct measurements via electromagnetic radiation motivates the search for alternative
theories of gravity which can account for the large scale dynamics and structure without the
need for dark matter and/or dark energy.
In this sense, there has been an enormous international effort in the last years to determine
whether the gravity Lagrangian could depart from Einstein’s one at cosmic scales in a way
compatible with the cosmological observations that support the cosmic speedup. In particular,
many authors have investigated the consequences of promoting the Hilbert-Einstein
Lagrangian to an arbitrary function f (R) of the scalar curvature (see [Olmo (2011)],
[De Felice and Tsujikawa (2010)], [Sotiriou and Faraoni (2010)], [Capozziello and Francaviglia
(2008)] for recent reviews). In this section we will show that the dynamics of the solar system
can be used to set important constraints on the form of the function f (R).
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3.1 Field equations of f (R) theories.
The action that defines f (R) theories has the generic form

S =
1

2κ2

∫
d4x

√−g f (R) + Sm[gμν, ψm] , (24)

where κ2 = 8πG, and we use the same notation introduced in previous sections. Variation of
(24) leads to the following field equations for the metric

fRRμν − 1
2

f gμν −∇μ∇ν fR + gμν� fR = κ2Tμν (25)

where fR ≡ d f /dR. According to (25), we see that, in general, the metric satisfies a system of
fourth-order partial differential equations. The trace of (25) takes the form

3� fR + R fR − 2 f = κ2T (26)

If we take f (R) = R − 2Λ, (25) boils down to

Rμν − 1
2

gμνR = κ2Tμν − Λgμν , (27)

which represents GR with a cosmological constant. This is the only case in which an f (R)
Lagrangian yields second-order equations for the metric11.

Let us now rewrite (25) in the form

Rμν − 1
2

gμνR =
κ2

fR
Tμν − 1

2 fR
gμν[R fR − f ] +

1
fR

[∇μ∇ν fR − gμν� fR
]

(28)

The right hand side of this equation can now be seen as the source terms for the metric. This
equation, therefore, tells us that the metric is generated by the matter and by terms related to
the scalar curvature. If we now wonder about what generates the scalar curvature, the answer
is in (26). That expression says that the scalar curvature satisfies a second-order differential
equation with the trace T of the energy-momentum tensor of the matter and other curvature
terms acting as sources. We have thus clarified the role of the higher-order derivative terms
present in (25). The scalar curvature is now a dynamical entity which helps generate the
space-time metric and whose dynamics is determined by (26).
At this point one should have noted the essential difference between a generic f (R) theory
and GR. In GR the only dynamical field is the metric and its form is fully characterized by
the matter distribution through the equations Gμν = κ2Tμν, where Gμν ≡ Rμν − 1

2 gμνR. The
scalar curvature is also determined by the local matter distribution but through an algebraic
equation, namely, R = −κ2T. In the f (R) case both gμν and R are dynamical fields, i.e.,
they are governed by differential equations. Furthermore, the scalar curvature R, which can
obviously be expressed in terms of the metric and its derivatives, now plays a non-trivial role
in the determination of the metric itself.

11 This is so only if the connection is assumed to be the Levi-Civita connection of the metric (metric
formalism). If the connection is regarded as independent of the metric, Palatini formalism, then f (R)
theories lead to second-order equations. This point will be explained in detail later on.
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The physical interpretation given above puts forward the central and active role played by
the scalar curvature in the field equations of f (R) theories. However, (26) suggests that the
actual dynamical entity is fR rather than R itself. This is so because, besides the metric, fR is
the only object acted on by differential operators in the field equations. Motivated by this, we
can introduce the following alternative notation

φ ≡ fR (29)

V(φ) ≡ R(φ) fR − f (R(φ)) (30)

and rewrite eqs. (28) and (26) in the same form as (22) and (23) with the choice w = 0.
This slight change of notation helps us identify the f (R) theory in metric formalism with a
scalar-tensor Brans-Dicke theory with parameter ω = 0 and non-trivial potential V(φ), whose
action was given in (21). In terms of this scalar-tensor representation our interpretation of
the field equations of f (R) theories is obvious, since both the matter and the scalar field help
generate the metric. The scalar field is a dynamical object influenced by the matter and by
self-interactions according to (23).

3.2 Spherically symmetric systems
A complete description of a physical system must take into account not only the system but
also its interaction with the environment. In this sense, any physical system is surrounded by
the rest of the universe. The relation of the local system with the rest of the universe manifests
itself in a set of boundary conditions. In our case, according to (26) and (28), the metric and
the function fR (or, equivalently, R or φ) are subject to boundary conditions, since they are
dynamical fields (they are governed by differential equations). The boundary conditions for
the metric can be trivialized by a suitable choice of coordinates. In other words, we can
make the metric Minkowskian in the asymptotic region and fix its first derivatives to zero
(see chapter 4 of [Will (1993)] for details). The function fR, on the other hand, should tend
to the cosmic value fRc as we move away from the local system. The precise value of fRc

is obtained by solving the equations of motion for the corresponding cosmology. According
to this, the local system will interact with the asymptotic (or background) cosmology via the
boundary value fRc and its cosmic-time derivative. Since the cosmic time-scale is much larger
than the typical time-scale of local systems (billions of years versus years), we can assume an
adiabatic interaction between the local system and the background cosmology. We can thus
neglect terms such as ḟRc , where dot denotes derivative with respect to the cosmic time.
The problem of finding solutions for the local system, therefore, reduces to solving (28)
expanding about the Minkowski metric in the asymptotic region12, and (26) tending to

3�c fRc + Rc fRc − 2 f (Rc) = κ2Tc (31)

where the subscript c denotes cosmic value, far away from the system. In particular, if we
consider a weakly gravitating local system, we can take fR = fRc + ϕ(x) and gμν = ημν + hμν,
with |ϕ| 	 | fRc | and |hμν| 	 1 satisfying ϕ → 0 and hμν → 0 in the asymptotic region. Note
that should the local system represent a strongly gravitating system such as a neutron star or a
black hole, the perturbative expansion would not be sufficient everywhere. In such cases, the

12 Note that the expansion about the Minkowski metric does not imply the existence of global
Minkowskian solutions. As we will see, the general solutions to our problem turn out to be
asymptotically de Sitter spacetimes.
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perturbative approach would only be valid in the far region. Nonetheless, the decomposition
fR = fRc + ϕ(x) is still very useful because the equation for the local deviation ϕ(x) can be
written as

3�ϕ + W( fRc + ϕ)− W( fRc) = κ2T, (32)

where T represents the trace of the local sources, we have defined W( fR) ≡ R( fR) fR −
2 f (R[ fR]), and W( fRc) is a slowly changing constant within the adiabatic approximation. In
this case, ϕ needs not be small compared to fRc everywhere, only in the asymptotic regions.

3.2.1 Spherically symmetric solutions
Let us define the line element13 [Olmo (2007)]

ds2 = −A(r)e2ψ(r)dt2 +
1

A(r)

(
dr2 + r2dΩ2

)
, (33)

which, assuming a perfect fluid for the sources, leads to the following field equations

Arr + Ar

[
2
r
− 5

4
Ar

A

]
=

κ2ρ

fR
+

R fR − f (R)
2 fR

+
A
fR

[
fRrr + fRr

(
2
r
− Ar

2A

)]
(34)

Aψr

[
2
r
+

fRr
fR

− Ar

A

]
− A2

r
4A

=
κ2P
fR

− R fR − f (R)
2 fR

− A
fRr
fR

[
2
r
− Ar

2A

]
(35)

where fR = fRc + ϕ, and the subscripts r in ψr, fRr, fRrr, Mr denote derivation with respect to
the radial coordinate. Note also that fRr = ϕr and fRrr = ϕrr. The equation for ϕ is, according
to (32) and (33),

Aϕrr = −A
(

2
r
+ ψr

)
ϕr − W( fRc + ϕ)− W( fRc)

3
+

κ2

3
(3P − ρ) (36)

Equations (34), (35), and (36) can be used to work out the metric of any spherically symmetric
system subject to the asymptotic boundary conditions discussed above. For weak sources,
such as non-relativistic stars like the sun, it is convenient to expand them assuming |ϕ| 	 fRc
and A = 1 − 2M(r)/r, with 2M(r)/r 	 1. The result is

− 2
r

Mrr(r) =
κ2ρ

fRc
+ Vc +

1
fRc

[
ϕrr +

2
r

ϕr

]
(37)

2
r

[
ψr +

ϕr

fRc

]
=

κ2

fRc
P − Vc (38)

ϕrr +
2
r

ϕr − m2
c ϕ =

κ2

3
(3P − ρ) (39)

where we have defined

Vc ≡ R fR − f
2 fR

∣∣∣∣
Rc

and m2
c ≡ fR − R fRR

3 fRR

∣∣∣∣
Rc

. (40)

13 As pointed out in [Olmo (2007)], solar system tests are conventionally described in isotropic coordinates
rather than on Schwarzschild-like coordinates. This justifies our coordinate choice in (33).
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This expression for m2
c was first found in [Olmo (2005a;b)] within the scalar-tensor approach.

It was found there that m2
c > 0 is needed to have a well-behaved (non-oscillating) Newtonian

limit. This expression and the conclusion m2
c > 0 were also reached in [Faraoni and Nadeau

(2005)] by studying the stability of de Sitter space. The same expression has been rediscovered
later several times.
Outside of the sources, the solutions of (37), (38) and (39) lead to

ϕ(r) =
C1
r

e−mcr (41)

A(r) = 1 − C2

r

(
1 − C1

C2 fRc
e−mcr

)
+

Vc

6
r2 (42)

A(r)e2ψ = 1 − C2

r

(
1 +

C1
C2 fRc

e−mcr
)
− Vc

3
r2 (43)

where an integration constant ψ0 has been absorbed in a redefinition of the time coordinate.
The above solutions coincide, as expected, with those found in [Olmo (2005a;b)] for the
Newtonian and post-Newtonian limits using the scalar-tensor representation and standard
gauge choices in Cartesian coordinates. Comparing our solutions with those, we identify

C2 ≡ κ2

4π fRc
M
 and

C1
fRcC2

≡ 1
3

(44)

where M
 =
∫

d3xρ(x). The line element (33) can thus be written as

ds2 = −
(

1 − 2GM

r

− Vc

3
r2
)

dt2 +

(
1 +

2GγM

r

− Vc

6
r2
)
(dr2 + r2dΩ2) (45)

where we have defined the effective Newton’s constant and post-Newtonian parameter γ as

G =
κ2

8π fRc

(
1 +

e−mcr

3

)
and γ =

3 − e−mcr

3 + e−mcr
(46)

respectively. This completes the lowest-order solution in isotropic coordinates.

3.2.2 The gravity Lagrangian according to solar system experiments
From the definitions of Eq.(46) we see that the parameters G and γ that characterize the
linearized metric depend on the effective mass mc (or inverse length scale λmc ≡ m−1

c ).
Newton’s constant, in addition, also depends on fRc. Since the value of the background
cosmic curvature Rc changes with the cosmic expansion, it follows that fRc and mc must
also change. The variation in time of fRc induces a time variation in the effective Newton’s
constant which is just the well-known time dependence that exists in Brans-Dicke theories.
The length scale λmc , characteristic of f (R) theories, does not appear in the original
Brans-Dicke theories because in the latter the scalar potential was assumed to vanish, V(φ) ≡
0, in contrast with (30), which implies an infinite interaction range (mc = 0 → λmc = ∞).
In order to have agreement with the observed properties of the solar system, the Lagrangian
f (R) must satisfy certain basic constraints. These constraints will be very useful to determine
the viability of some families of models proposed to explain the cosmic speedup. A very
representative family of such models, which do exhibit self-accelerating late-time cosmic
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solutions, is given by f (R) = R − Rn+1
0 /Rn, where R0 is a very low curvature scale that

sets the scale at which the model departs from GR, and n is assumed positive. At curvatures
higher than R0, the theory is expected to behave like GR while at late times, when the cosmic
density decays due to the expansion and approaches the scale R0, the modified dynamics
becomes important and could explain the observed speedup.
In viable theories, the effective cosmological constant Vc must be negligible. Most importantly,
the interaction range λmc must be shorter than a few millimeters because such Yukawa-type
corrections to the Newtonian potential have not been observed, and observations indicate that
the parameter γ is very close to unity. This last constraint can be expressed as (L2

S/λ2
mc
) � 1,

where LS represents a (relatively short) length scale that can range from meters to planetary
scales, depending on the particular test used to verify the theory. In terms of the Lagrangian,
this constraint takes the form

fR − R fRR

3 fRR

∣∣∣∣
Rc

L2
S � 1 . (47)

A qualitative analysis of this constraint can be used to argue that, in general, f (R) theories
with terms that become dominant at low cosmic curvatures, such as the models f (R) =
R − Rn+1

0 /Rn, are not viable theories in solar system scales and, therefore, cannot represent
an acceptable mechanism for the cosmic expansion.
Roughly speaking, eq.(47) says that the smaller the term fRR(Rc), with fRR(Rc) > 0 to
guarantee m2

ϕ > 0, the heavier the scalar field. In other words, the smaller fRR(Rc), the shorter
the interaction range of the field. In the limit fRR(Rc) → 0, corresponding to GR, the scalar
interaction is completely suppressed. Thus, if the nonlinearity of the gravity Lagrangian had
become dominant in the last few billions of years (at low cosmic curvatures), the scalar field
interaction range λmc would have increased accordingly. In consequence, gravitating systems
such as the solar system, globular clusters, galaxies,. . . would have experienced (or will
experience) observable changes in their gravitational dynamics. Since there is no experimental
evidence supporting such a change14 and all currently available solar system gravitational
experiments are compatible with GR, it seems unlikely that the nonlinear corrections may be
dominant at the current epoch.
Let us now analyze in detail the constraint given in eq.(47). That equation can be rewritten as
follows

Rc

[
fR

R fRR

∣∣∣∣
Rc

− 1

]
L2

S � 1 (48)

We are interested in the form of the Lagrangian at intermediate and low cosmic curvatures,
i.e., from the matter dominated to the vacuum dominated eras. We shall now demand that the
interaction range of the scalar field remains as short as today or decreases with time so as to
avoid dramatic modifications of the gravitational dynamics in post-Newtonian systems with
the cosmic expansion. This can be implemented imposing[

fR

R fRR
− 1

]
≥ 1

l2R
(49)

14 As an example, note that the fifth-force effects of the Yukawa-type correction introduced by the scalar
degree of freedom would have an effect on stellar structures and their evolution, which would lead to
incompatibilities with current observations.
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as R → 0, where l2 	 L2
S represents a bound to the current interaction range of the scalar field.

Thus, eq.(49) means that the interaction range of the field must decrease or remain short, ∼ l2,
with the expansion of the universe. Manipulating this expression, we obtain

d log[ fR]

dR
≤ l2

1 + l2R
(50)

which can be integrated twice to give the following inequality

f (R) ≤ A + B
(

R +
l2R2

2

)
(51)

where B is a positive constant, which can be set to unity without loss of generality. Since
fR and fRR are positive, the Lagrangian is also bounded from below, i.e., f (R) ≥ A. In
addition, according to the cosmological data, A ≡ −2Λ must be of order a cosmological
constant 2Λ ∼ 10−53 m2. We thus conclude that the gravity Lagrangian at intermediate and
low scalar curvatures is bounded by

− 2Λ ≤ f (R) ≤ R − 2Λ +
l2R2

2
(52)

This result shows that a Lagrangian with nonlinear terms that grow with the cosmic expansion
is not compatible with the current solar system gravitational tests, such as we argued above.
Therefore, those theories cannot represent a valid mechanism to justify the observed cosmic
speed-up. Additionally, our analysis has provided an empirical procedure to determine the
form of the gravitational Lagrangian. The function f (R) found here nicely recovers Einstein’s
gravity at low curvatures but allows for some quadratic corrections at higher curvatures,
which is of interest in studies of the very early Universe.

4. Quantum gravity phenomenology and the early universe

The extrapolation of the dynamics of GR to the very strong field regime indicates that the
Universe began at a singularity and that the death of a sufficiently massive star unavoidably
leads to the formation of a black hole or a naked singularity. The existence of space-time
singularities is one of the most impressive predictions of GR. This prediction, however, also
represents the end of the theory, because the absence of a well-defined geometry implies the
absence of physical laws and lack of predictability [Hawking (1975); Novello and Bergliaffa
(2008)]. For this reason, it is generally accepted that the dynamics of GR must be changed
at some point to avoid these problems. A widespread belief is that at sufficiently high
energies the gravitational field must exhibit quantum properties that alter the dynamics and
prevent the formation of singularities. However, a completely satisfactory quantum theory of
gravity is not yet available. To make some progress in the qualitative understanding of how
quantum gravity may affect the dynamics of the Universe near the big bang, in this section we
show how certain modifications of GR may be able to capture some aspects of the expected
phenomenology of quantum gravity.
We begin by noting that Newton’s and Planck’s constants may be combined with the speed
of light to generate a length lP =

√
h̄G/c3, which is known as the Planck length. The Planck

length is usually interpreted as the scale at which quantum gravitational phenomena should
play a non-negligible role. However, since lengths are not relativistic invariants, the existence
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of the Planck length raises doubts about the nature of the reference frame in which it should be
measured and about the limits of validity of special relativity itself. This poses the following
question: can we combine in the same framework the speed of light and the Planck length in
such a way that both quantities appear as universal invariants to all observers? The solution
to this problem will give us the key to consider quantum gravitational phenomena from a
modified gravity perspective.

4.1 Palatini approach to modified gravity
To combine in the same framework the speed of light and the Planck length in a way that
preserves the invariant and universal nature of both quantities, we first note that though
c2 has dimensions of squared velocity it represents a 4-dimensional Lorentz scalar rather
than the squared of a privileged 3-velocity. Similarly, we may see l2

P as a 4-d invariant with
dimensions of length squared that needs not be related with any privileged 3-length. Because
of dimensional compatibility with a curvature, the invariant l2

P could be introduced in the
theory via the gravitational sector by considering departures from GR at the Planck scale
motivated by quantum effects. However, the situation is not as simple as it may seem at first.
In fact, an action like the one we obtained in the last section15,

S[gμν, ψ] =
h̄

16πl2
P

∫
d4x

√−g
[

R + l2
PR2

]
+ Sm[gμν, ψ] , (53)

where Sm[gμν, ψ] represents the matter sector, contains the scale l2
P but not in the invariant

form that we wished. The reason is that the field equations that follow from (53) are equivalent
to those of the following scalar-tensor theory

S[gμν, ϕ, ψ] =
h̄

16πl2
P

∫
d4x

√−g

[
(1 + ϕ)R − 1

4l2
P

ϕ2

]
+ Sm[gμν, ψ] , (54)

which given the identification φ = 1 + ϕ coincides with the case w = 0 of Brans-Dicke theory
with a non-zero potential V(φ) = 1

4l2
P
(φ − 1)2. As is well-known and was explicitly shown in

Section 3, in Brans-Dicke theory the observed Newton’s constant is promoted to the status of
field, Ge f f ∼ G/φ. The scalar field allows the effective Newton’s constant Ge f f to dynamically
change in time and in space. As a result the corresponding effective Planck length, l̃2

P = l2
P/φ,

would also vary in space and time. This is quite different from the assumed constancy and
universality of the speed of light in special relativity, which is implicit in our construction of
the total action. In fact, our action has been constructed assuming the Einstein equivalence
principle (EEP), whose validity guarantees that the observed speed of light is a true constant
and universal invariant, not a field16 like in varying speed of light theories [Magueijo (2003)]
(recall also that Nordström’s first scalar theory was motivated by the constancy of the speed
of light). The situation does not improve if we introduce higher curvature invariants in
(54). We thus see that the introduction of the Planck length in the gravitational sector in the
form of a universal constant like the speed of light is not a trivial issue. The introduction of

15 Restoring missing factors of c in (24), we find that 1
16πG = h̄

16πl2
P

and, therefore, κ2 = 8πl2
P/h̄.

16 If the Einstein equivalence principle is true, then all the coupling constants of the standard model are
constants, not fields [Will (2005)].
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curvature invariants suppressed by powers of RP = 1/l2
P unavoidably generates new degrees

of freedom which turn Newton’s constant into a dynamical field.
Is it then possible to modify the gravity Lagrangian adding Planck-scale corrected terms
without turning Newton’s constant into a dynamical field? The answer to this question
is in the affirmative. One must first note that metricity and affinity are a priori logically
independent concepts [Zanelli (2005)]. If we construct the theory à la Palatini, that is in terms of
a connection not a priori constrained to be given by the Christoffel symbols, then the resulting
equations do not necessarily contain new dynamical degrees of freedom (as compared to GR),
and the Planck length may remain space-time independent in much the same way as the
speed of light and the coupling constants of the standard model, as required by the EEP. A
natural alternative, therefore, seems to be to consider (53) in the Palatini formulation. The
field equations that follow from (53) when metric and connection are varied independently
are [Olmo (2011)]

fRRμν(Γ)− 1
2

f gμν = κ2Tμν (55)

∇α

(√−g fRgβγ
)
= 0 , (56)

where f = R + R2/RP, fR ≡ ∂R f = 1+ 2R/RP, RP = 1/l2
P, and κ2 = 8πl2

P/h̄. The connection
equation (56) can be easily solved after noticing that the trace of (55) with gμν,

R fR − 2 f = κ2T , (57)

represents an algebraic relation between R ≡ gμνRμν(Γ) and T, which generically implies that
R = R(T) and hence fR = fR(R(T)) [from now on we denote fR(T) ≡ fR(R(T))]. For the
particular Lagrangian (53), we find that R = −κ2T, like in GR. This relation implies that (56)
is just a first order equation for the connection that involves the matter, via the trace T, and
the metric. The connection turns out to be the Levi-Civita connection of an auxiliary metric,

Γα
μν =

hαβ

2

(
∂μhβν + ∂νhβμ − ∂βhμν

)
, (58)

which is conformally related with the physical metric, hμν = fR(T)gμν. Now that the
connection has been expressed in terms of hμν, we can rewrite (55) as follows

Gμν(h) =
κ2

fR(T)
Tμν − Λ(T)hμν (59)

where Λ(T) ≡ (R fR − f )/(2 f 2
R) = (κ2T)2/RP, and looks like Einstein’s theory for the metric

hμν with a slightly modified source. This set of equations can also be written in terms of the
physical metric gμν as follows

Rμν(g)− 1
2

gμνR(g) =
κ2

fR
Tμν − R fR − f

2 fR
gμν − 3

2( fR)2

[
∂μ fR∂ν fR − 1

2
gμν(∂ fR)

2
]
+

1
fR

[∇μ∇ν fR − gμν� fR
]

. (60)
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In this last representation, one can use the notation introduced in (29) and (30) to show that
these field equations coincide with those of a Brans-Dicke theory with parameter w = −3/2
(see eq.(22)). Note that all the functions f (R), R, and fR that appear on the right hand side of
(60) are functions of the trace T. This means that the modified dynamics of (60) is due to the
new matter terms induced by the trace T of the matter, not to the presence of new dynamical
degrees of freedom. This also guarantees that, unlike for the w �= −3/2 Brans-Dicke theories,
for the w = −3/2 theory Newton’s constant is indeed a constant.
From the structure of the field equations (59) and (60), and the relation gμν = (1/ fR)hμν, it
follows that gμν is affected by the matter-energy in two different ways. The first contribution
corresponds to the cumulative effects of matter, and the second contribution is due to the
dependence on the local density distributions of energy and momentum. This can be seen
by noticing that the structure of the equations (59) that determine hμν is similar to that
of GR, which implies that hμν is determined by integrating over all the sources (gravity
as a cumulative effect). Besides that, gμν is also affected by the local sources through the
factor fR(T). To illustrate this point, consider a region of the spacetime containing a total
mass M and filled with sources of low energy-density as compared to the Planck scale
(|κ2T/RP | 	 1). For the quadratic model f (R) = R + R2/RP, in this region (59) boils
down to Gμν(h) = κ2Tμν + O(κ2T/RP), and hμν ≈ (1 + O(κ2T/RP))gμν, which implies
that the GR solution is a very good approximation. This confirms that hμν is determined
by an integration over the sources, like in GR. Now, if this region is traversed by a particle of
mass m 	 M but with a non-negligible ratio κ2T/RP, then the contribution of this particle to
hμν can be neglected, but its effect on gμν via de factor fR = 1 − κ2T/RP on the region that
supports the particle (its classical trajectory) is important. This phenomenon is analogous to
that described in the so-called Rainbow Gravity [Magueijo and Smolin (2004)], an approach to
the phenomenology of quantum gravity based on a non-linear implementation of the Lorentz
group to allow for the coexistence of a constant speed of light and a maximum energy scale
(the flat space version of that theory is known as Doubly Special Relativity [Amelino-Camelia
(2002); Amelino-Camelia and Smolin (2009); Magueijo and Smolin (2002; 2003)]). In Rainbow
Gravity, particles of different energies (energy-densities in our case) perceive different metrics.

4.2 The early-time cosmology of Palatini f (R) models.
The quadratic Palatini model introduced above turns out to be virtually indistinguishable
from GR at energy densities well below the Planck scale. It is thus natural to ask if this
theory presents any particularly interesting feature at Planck scale densities. A natural context
where this question can be explored is found in the very early universe, when the matter
energy-density tends to infinity as we approach the big bang.
In a spatially flat, homogeneous, and isotropic universe, with line element ds2 = −dt2 +
a2(t)d�x2, filled with a perfect fluid with constant equation of state P = wρ and density ρ, the
Hubble function that follows from (60) (or (59)) takes the form

H2 =
1

6 fR

[
f + (1 + 3w)κ2ρ

]
[
1 + 3

2 Δ
]2 , (61)

where H = ȧ/a, and Δ = −(1 + w)ρ∂ρ fR/ fR = (1 + w)(1 − 3w)κ2ρ fRR/( fR(R fRR − fR)). In
GR, (61) boils down to H2 = κ2ρ/3. Since the matter conservation equation for constant w

leads to ρ = ρ0/a3(1+w), in GR we find that a(t) = a0t
2

3(1+w) , where ρ0 and a0 are constants.
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This result indicates that if the universe is dominated by a matter source with w > −1, then
at t = 0 the universe has zero physical volume, the density is infinite, and all curvature
scalars blow up, which indicates the existence of a big bang singularity. The quadratic Palatini
model introduced above, however, can avoid this situation. For that model, (61) becomes
[Barragan et al. (2009a;b); Olmo (2010)]

H2 =
κ3ρ

3

(
1 + 2R

RP

) (
1 + 1−3w

2
R

RP

)
[
1 − (1 + 3w) R

RP

]2 . (62)

This expression recovers the linear dependence on ρ of GR in the limit |R/RP| 	 1. However,
if R reaches the value Rb = −RP/2, then H2 vanishes and the expansion factor a(t) reaches a
minimum. This occurs for w > 1/3 if RP > 0 and for w < 1/3 if RP < 0. The existence of a
non-zero minimum for the expansion factor implies that the big bang singularity is avoided.
The avoidance of the big bang singularity indicates that the time coordinate can be extended
backwards in time beyond the instant t = 0. This means that in the past the universe was in
a contracting phase which reached a minimum and bounced off to the expanding phase that
we find in GR.
We mentioned at the beginning of this section that the avoidance of the big bang singularity
is a basic requirement for any acceptable quantum theory of gravity. Our procedure to
construct a quantum-corrected theory of gravity in which the Planck length were a universal
invariant similar to the speed of light has led us to a cosmological model which replaces
the big bang by a cosmic bounce. To obtain this result, it has been necessary to resort to
the Palatini formulation of the theory. In this sense, it is important to note that the metric
formulation of the quadratic curvature model discussed here, besides turning the Planck
length into a dynamical field, is unable to avoid the big bang singularity. In fact, in metric
formalism, all quadratic models of the form R + (aR2 + bRμνRμν)/RP that at late times tend
to a standard Friedmann-Robertson-Walker cosmology begin with a big bang singularity.
Palatini theories, therefore, appear as a potentially interesting framework to discuss quantum
gravity phenomenology.

4.3 A Palatini action for loop quantum cosmoloy
Growing interest in the dynamics of the early-universe in Palatini theories has arisen,
in part, from the observation that the effective equations of loop quantum cosmology
(LQC) [Ashtekar et al. (2006a;b;c); Ashtekar (2007); Bojowald (2005); Szulc et al. (2007)], a
Hamiltonian approach to quantum gravity based on the non-perturbative quantization
techniques of loop quantum gravity [Rovelli (2004); Thiemann (2007)], could be exactly
reproduced by a Palatini f (R) Lagrangian [Olmo and Singh (2009)]. In LQC, non-perturbative
quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce
without introducing any new degrees of freedom. Though fundamentally discrete, the theory
admits a continuum description in terms of an effective Hamiltonian that in the case of a
homogeneous and isotropic universe filled with a massless scalar field leads to the following
modified Friedmann equation

3H2 = 8πGρ

(
1 − ρ

ρcrit

)
, (63)
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where ρcrit ≈ 0.41ρPlanck. At low densities, ρ/ρcrit 	 1, the background dynamics is the same
as in GR, whereas at densities of order ρcrit the non-linear new matter contribution forces the
vanishing of H2 and hence a cosmic bounce. This singularity avoidance seems to be a generic
feature of loop-quantized universes [Singh (2009)].
Palatini f (R) theories share with LQC an interesting property: the modified dynamics that
they generate is not the result of the existence of new dynamical degrees of freedom but rather
it manifests itself by means of non-linear contributions produced by the matter sources, which
contrasts with other approaches to quantum gravity and to modified gravity. This similarity
makes it tempting to put into correspondence Eq.(63) with the corresponding f (R) equation
(60). Taking into account the trace equation (57), which for a massless scalar becomes R fR −
2 f = 2κ2ρ and implies that ρ = ρ(R), one finds that a Palatini f (R) theory able to reproduce
the LQC dynamics (63) must satisfy the differential equation

fRR = − fR

(
A fR − B

2(R fR − 3 f )A + RB

)
(64)

where A =
√

2(R fR − 2 f )(2Rc − [R fR − 2 f ]), B = 2
√

Rc fR(2R fR − 3 f ), and Rc ≡ κ2ρc. If
one imposes the boundary condition limR→0 fR → 1 at low curvatures, and äLQC = äPal
(where ä represents the acceleration of the expansion factor) at ρ = ρc, the solution to this
equation is unique. The solution was found numerically [Olmo and Singh (2009)], though the
following function can be regarded as a very accurate approximation to the LQC dynamics
from the GR regime to the non-perturbative bouncing region (see Fig.1)

d f
dR

= − tanh

(
5

103
ln

[(
R

12Rc

)2
])

(65)
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Fig. 1. Vertical axis: d f /dR ; Horizontal axis: R/Rc. Comparison of the numerical solution
with the interpolating function (65). The dashed line represents the numerical curve.

This result is particularly important because it establishes a direct link between the Palatini
approach to modified gravity and a cosmological model derived from non-perturbative
quantization techniques.
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4.4 Beyond Palatini f (R) theories.
Nordström’s second theory was a very interesting theoretical exercise that successfully
allowed to implement the Einstein equivalence principle in a relativistic scalar theory.
However, among other limitations, that theory did not predict any new gravitational effect for
the electromagnetic field. In a sense, Palatini f (R) theories suffer from this same limitation.
Since their modified dynamics is due to new matter contributions that depend on the trace
of the stress-energy tensor, for traceless fields such as a radiation fluid or the electromagnetic
field, the theory does not predict any new effect. This drawback can be avoided if one adds to
the Palatini Lagrangian a new piece dependent on the squared Ricci tensor, RμνRμν, where we
assume Rμν = Rνμ [Barragan and Olmo (2010); Olmo et al. (2009)]. In particular, the following
action

S[gμν, Γμ
αβ, ψ] =

1
2κ2

∫
d4x

√−g
[

R + a
R2

RP
+

RμνRμν

RP

]
+ Sm[gμν, ψ] , (66)

implies that R = R(T) but Q ≡ RμνRμν = Q(Tμν), i.e., the scalar Q has a more complicated
dependence on the stress-energy tensor of matter than the trace. For instance, for a perfect
fluid, one finds

Q
2RP

= −
(

κ2P +
f̃
2
+

RP

8
f̃ 2
R

)
+

RP

32

⎡
⎣3

(
R

RP
+ f̃R

)
−

√(
R

RP
+ f̃R

)2
− 4κ2(ρ + P)

RP

⎤
⎦

2

,

(67)
where f̃ = R + aR2/RP and R is a solution of R f̃R − 2 f̃ = κ2T. From this it follows that even
if one deals with a radiation fluid (P = ρ/3) or with a traceless field, the Palatini action (66)
generates modified gravity without introducing new degrees of freedom.
For this model, it has been shown that completely regular bouncing solutions exist for both
isotropic and anisotropic homogeneous cosmologies filled with a perfect fluid. In particular,
one finds that for a < 0 the interval 0 ≤ w ≤ 1/3 is always included in the family of
bouncing solutions, which contains the dust and radiation cases. For a ≥ 0, the fluids
yielding a non-singular evolution are restricted to w > a

2+3a , which implies that the radiation
case w = 1/3 is always nonsingular. For a detailed discussion and classification of the
non-singular solutions depending on the value of the parameter a and the equation of state w,
see [Barragan and Olmo (2010)].
As an illustration, consider a universe filled with radiation, for which R = 0. In this case, the
function Q boils down to [Barragan and Olmo (2010)]

Q =
3R2

P
8

⎡
⎣1 − 8κ2ρ

3RP
−

√
1 − 16κ2ρ

3RP

⎤
⎦ . (68)

This expression recovers the GR value at low curvatures, Q ≈ 4(κ2ρ)2/3+ 32(κ2ρ)3/9RP + . . .
but reaches a maximum Qmax = 3R2

P/16 at κ2ρmax = 3RP/16, where the squared root of (68)
vanishes. It can be shown that at ρmax the shear also takes its maximum, namely, σ2

max =√
3/16R3/2

P (C2
12 + C2

23 + C2
31), which is always finite, and the expansion vanishes producing a

cosmic bounce regardless of the amount of anisotropy (see Fig.2). The model (66), therefore,
avoids the well-known problems of anisotropic universes in GR, where anisotropies grow
faster than the energy density during the contraction phase leading to a singularity that can
only be avoided by sources with w > 1.
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Fig. 2. Evolution of the expansion as a function of κ2ρ/RP in radiation universes with low
anisotropy, which is controlled by the combination C2 = C2

12 + C2
23 + C2

31. The case with
C2 = 0 corresponds to the isotropic flat case, θ2 = 9H2.
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