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Abstract. In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian)
perturbations are both characterized by a zero mean and a non-zero variance. In position
space, the corresponding variance of those fields diverges in the ultraviolet. The requirement
of a finite variance in position space forces its regularization via quantum field renormalization
in an expanding universe. This has an important impact on the predicted scalar and tensorial
power spectra for wavelengths that today are at observable scales. In particular, we find a
non-trivial change in the consistency condition that relates the tensor-to-scalar ratio r to the
spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n; = 0, is now
compatible with a non-zero ratio r ~ 0.12 £ 0.06, which is forbidden by the standard prediction
(r = —8ny). Forthcoming observations of the influence of relic gravitational waves on the CMB
will offer a non-trivial test of the new predictions.

1. Introduction

Inflation has become a fundamental piece of the standard cosmological model [1]. Not only
it addresses and solves the classical problems of the big bang model but it also provides an
elegant quantum mechanical mechanism for the origin of primordial perturbations, essential
for explaining the structures that we see today [2]. In the simplest models of inflation, a
scalar field slowly rolling down its potential causes an exponentially large expansion. In this
background, quantum vacuum fluctuations of the inflaton field itself and of purely tensorial
modes (gravitational waves) acquire classical properties due to their interaction with the
expanding geometry. As a result, a classical field of scalar (and tensorial) inhomogeneities arises.
Cosmological perturbation theory tells us that these primordial perturbations are responsible
for the existence and richness of the structure that we observe in the temperature anisotropies
of the cosmic microwave background (CMB) and in the large scale distribution of galaxies.

A disturbing aspect of the spectra of scalar and tensorial perturbations generated during inflation
is that they have a divergent variance. In the case of classical perturbations, divergences of the
variance are usually removed by means of window functions that filter out the wavelengths
that cause the problem. However, the primordial spectra have a quantum origin and their
divergences should be removed, on grounds of theoretical consistency, by means of the well-
established methods of renormalization in curved spaces[3]. In this work we show that the
regularization of the variance of scalar and tensorial perturbations during inflation has a non-
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trivial impact on the primordial power spectra of those fields [4, 5]. Though the resulting spectra
are almost scale free within the slow-roll approximation, the relation between spectral indices
and the slow-roll parameters is significantly changed as compared to the standard derivation.
The ratio of tensor to scalar amplitudes is also modified and gives rise to a number of possibilities
which are explicitly forbidden according to the standard predictions. In particular, the tensorial
spectral index is allowed to take a zero value without implying a zero tensor to scalar ratio, or
may even take positive values.

2. Spectrum of fluctuations from inflation

Let us first focus on the production of relic gravitational waves by considering fluctuating
tensorial modes h;;(Z,t) in a spatially flat FRW universe ds* = —dt? + a?(t)(0;j + hij)daz'da’.
The wave equation obeyed by these modes is given by

*a2hij — 3aahz] + v2hi]’ =0. (1)

The fluctuating fields h;; can be decomposed in two independent polarization modes

hp)(z, t)eg’), where the index p represents the two polarizations + and x, and el@) are two
independent constant matrices that obey the conditions e;; = ej;, >, €; = 0, and >, kje;; = 0.

Expanding the fields h®) (Z,t) in modes and omitting the polarization label p, eq. (1) yields

. . k2
hk+3Hhk+7hk:0, (2)
a

with k& = |k|. This equation indicates that the relevant part of the tensorial modes is
represented by two independent massless scalar fields h(+’x)(f, t). The solutions that satisfy
the asymptotic adiabatic condition [6, 3] for very high & in a slow-roll inflationary background
are hy(t) = (—167rG7'7r/4(27r)3a2)1/2Hl(,1)(—k:T), where 7 = [ dt/a(t) is the conformal time, the

2 N 2
index of the Bessel function is v = 3/2+¢, and € = % (%) is one of the slow-roll parameters.

With these solutions it is easy to evaluate the variance of the gravitational wave fields h(+>)

(h2) :/Ooo dek/dQ|hk|2 :/OOO %A%(k,t) , (3)

where we have defined the power spectrum of the field h as A? (k, t) = 47k3|hy|?. As we advanced
in the introduction, the large k£ behavior of the modes makes this integral divergent

<h2>:/0<>o dk 167w Gk3 [a (2+3e)] } ‘

k47243 E[1+ 2k272 )

Since the power spectrum is expressed in momentum space, the natural renormalization scheme
to apply is the so-called adiabatic subtraction [4], as it renormalizes the theory in momentum
space. Adiabatic renormalization [3, 7] removes the divergences present in the formal expression
(3) by subtracting counterterms mode by mode in the integrand of (3)

> dk ~ > dk 167Gk3
2 _ 2 _ 3112 ~1 —1,(2)
ren — A s U) — 4 L ’
(h%) /0 A n(k,t) /0 2 [ mk”|h| PR (wy "+ (W) )] (5)
with wy, = k/a(t). The subtraction of the first term (167Gk?/4r2a3wy,) cancels the typical flat
space vacuum fluctuations, which are responsible for the quadratic divergence in the integral (4).

The additional term, proportional to (Wk_l)@) = —# Bw;ﬂ%w;l/g — %w,;l (%Zé + %%)}
k
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and which involves @2 and @, is necessary to properly perform the renormalization in an
expanding universe, since it cancels the logarithmic divergence in (4).
According to expression (3), the unrenormalized power spectrum of tensor perturbations
evaluated a few e-folds after the Hubble horizon exit time ¢ (defined by k/a(ty) = H(ty))
is given by

8

2
Py(k) = 483 (k) = 167k®|hy,|* = i (H;;k)) -

The k dependence of H?(ty), dIn H(ty)/dInk = —e, leads to Py(k, tx) = Py(ko) (&) * where
ko is a pivot scale. The tensorial spectral index n; is defined as the exponent in that expression.
So ny = —2¢(ty). Using the renormalized variance (5) to define the renormalized power spectrum
and taking into account the time dependence of the counterterms, we find

2
PIen(k,n) = 4A3(k, n) ~ ]\i% (Hz(ff)) (t)(2n - 3/2) | (7)

where n represents the number of e-folds after the Hubble exit at which the spectrum is evaluated
(we assume n > 1 but ne < 1). We note that if one evaluates the power spectra at the end of the
slow-roll era (where ne ~ 1) the contribution of the counterterms is still significant. However, we
find it more natural to evaluate the spectra soon after t;, when the modes have already acquired
classical properties. The corresponding tensorial spectral index is (here € and n = MA(V"/V)
are evaluated at t)

dlIn P/
ren — t
=——=2(e—1n) . 8

Ty dlnk (6 /’7) ( )
The discussion just presented regarding the tensorial modes can be parallelled to the case of
scalar perturbations. In this case one deals with the gauge invariant scalar R = ¥+ ﬁégﬁ, where
¥ is the curvature perturbation (R®) = 4V2W/a?) of the spatial metric g;; = a?[(1 — 2¥)s;; +
20 E]. In momentum space, R obeys the equation [1]

dQRk 2dz Cle 2
——+ ————+ kR =0 9
dr? + zdr dr + K ’ )

where z = ado/H. In the slow roll approximation z 'dz/dr = aH(1 + 2 — 1), and the
solutions obeying the adiabatic condition (and the de Sitter symmetry for H constant) are

Ri(t) = (—WT/4(27T)322)1/2H,51)(—Tk), where 1 = 3/2 4+ 3¢ — 1. The resulting unrenormalized

a1
and renormalized scalar power spectra and spectral indices are (Pr (k) = Pr(ko) (%)n )

1 [H(t)\?
Pr(k) = 2M1%e( 2(7T’“>> . ns—1=—6e+2n (10)

H ()
2

(12€% — 8en + §)
3e—n

P]]%en(k’n) ~ (36 — 77) <

2
2M3e > (2n—3/2) , n™" —1=—6e+2n+

(11)

where ¢ is another slow roll parameter, £ = M#(V'V"/V?), which can be re-expressed in terms
of €, and the running of the renormalized tensorial index n} = dn;/dInk as n, = 8¢(e —n) + 2¢.

3. Conclusions

The expressions derived above for the power spectra and spectral indices show that
renormalization has a significant impact on the predictions of slow-roll inflation. Unlike in the
standard derivation, we see that the renormalized tensorial power spectrum is no longer directly
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related to the Hubble scale during inflation. The amplitude of this spectrum is now modulated
by the slow-roll parameter €, which is zero in exact de Sitter inflation. On the other hand, the
appearance of the combination 3¢ — 1 in the numerator of the renormalized scalar spectrum

1 (H(ty)
2MZ \ 2w

that H(t;,) ~ 10'GeV. For the exponential potential [1], we find that H ~ 1.5 x 10*°/y/4n — 3
GeV, roughly up to an order of magnitude larger than the unrenormalized prediction.

The most dramatic difference between the standard predictions and the predictions after
renormalization presented here affects the so-called consistency condition. The tensor to scalar
ratio in the standard approach gives r = P,/ Pr = 16e = —8n,. This implies that if a background
of gravitational waves is observed, then its spectral index must be constrained by the ratio of the
tensor to scalar amplitudes. If this constraint is not satisfied, then single field slow-roll inflation
would be ruled out. However, the consistency condition after renormalization becomes

TEeN

suggests that P (k,n) ~

2
) (up to the numerical factor 2n — 3/2), which indicates

/
dny

= 4(1 - ny — s 2
r (1 —ng nt)+n?—2n2

(1 — g — /20 + (1 —ny)? - ng) , (12)

where we have omitted the indices “ren”. This expression is much more involved than the

standard one and its implications are far reaching. It allows for a zero n; while having a non-
zero ratio r. Also, the values of n; are not constrained to be negative. In addition, according to
the standard derivation, the running of n; is fully determined by the values of ngs and n;, since
then one finds nj = —n(1 — ns + n¢). On the contrary, the manipulations that lead to (12)
indicate that n} is now an independent quantity that needs to be measured in order to check
the new consistency relation (12). This aspect could make more challenging the experimental
verification of the consistency condition of (single-field) slow roll inflation.

To conclude, if single field slow-roll inflation is correct, then observations will (hopefully) tell us
if nature have chosen the renormalized spectra as the seeds of perturbations or not. Quantum
field theory in curved spacetimes will thus face a crucial experimental test.
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