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Abstract. An important question in the derivation of the acceleration radiation,
which also arises in Hawking’s derivation of black hole radiance, is the need to
invoke trans-Planckian physics in describing the creation of quanta. We point
out that this issue can be further clarified by reconsidering the analysis in terms
of particle detectors, transition probabilities and local two-point functions. By
writing down separate expressions for the spontaneous- and induced-transition
probabilities of a uniformly accelerated detector, we show that the bulk of
the effect comes from the natural (non-trans-Planckian) scale of the problem,
which largely diminishes the importance of the trans-Planckian sector. This
is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant
way. This analysis also suggests how one can define and estimate the role of
trans-Planckian physics in the Hawking effect itself.
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1. Introduction

After formulating general relativity, Einstein returned to the microscopic world. He introduced
the concept of transition probabilities between stationary states in the context of the interaction
of atoms with radiation. He established a link between black-body radiation and the theory of
atomic spectra. In short, Einstein considered transitions between two states, an upper excited
state 2 and a lower state 1, with energies E2 > E1. The probability per atom and per unit time
of a jump from state 1 to state 2 induced by the environment radiation is

Ṗ1→2 = Buw, (1.1)

where uw is the energy density of radiation at frequency w = (E2 − E1)/h̄ and B is one of the
so-called Einstein coefficients. In addition, the probability per atom and per unit time of the
decay of state 2 to state 1 is assumed to be

Ṗ2→1 = Buw + A, (1.2)

where A represents the probability of spontaneous emission and Buw gives also the probability
of induced emission. Thermal equilibrium is achieved if

N1 Ṗ1→2 = N2 Ṗ2→1, (1.3)

when the state population quotient N2/N1 obeys the Boltzmann distribution for probabilities
N2/N1 = e−1E/kBT at the equilibrium temperature T (kB is the Boltzmann constant and 1E ≡

E2 − E1). Einstein realized that thermal equilibrium implies that uw turns out to be the Planck
law for the energy density, provided that the quotient A/B is just A/B = 2h̄w3/πc3. This
analysis can be used to infer the thermal character of the environment radiation by analyzing
only the transition probabilities of the atomic system; the environment radiation is thermal
provided that the transition probabilities between the energy levels of the atomic system satisfy,
at equilibrium, the so-called detailed balance relation Ṗ1→2/Ṗ2→1 = e−1E/kBT .

Many years later, physicists working in the theory of quantum fields in curved space
realized that an atomic system following a uniformly accelerated worldline in Minkowski
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spacetime, with acceleration a, feels itself immersed in a thermal bath at the temperature
T = h̄a/2πckB, when the quantum state of the field is the ordinary Minkowski vacuum. The
acceleration radiation effect can be analyzed from two different points of view. It can be
derived by computing the expectation value of the number operator in the Minkowski vacuum
state by using the formalism of Bogolubov transformations [1] in Rindler space [2, 3]. The
Bogolubov coefficient approach is also the basis of Hawking’s original derivation of black hole
radiance [4] (see also [5]). On the other hand, the acceleration radiation effect can also be
derived by studying the transition rate probabilities of uniformly accelerated particle detectors in
Minkowski spacetime [6] (see also the review [7]). In this approach, the transition probabilities
are often written in terms of the two-point function of the Minkowski vacuum state. In this
form, the derivation is somewhat closer to the derivation of black hole radiance carried out by
Fredenhagen and Haag [8].

When dealing with the acceleration radiation or the Hawking effect, an important question
arises. To what extent are these thermal effects sensitive to trans-Planckian physics? In
Hawking’s original derivation, this issue emerges naturally because emitted quanta reaching
future null infinity at sufficiently late times suffer an arbitrarily large blueshift when propagated
backwards in time to past null infinity. In fact, the precursors of the Hawking quanta can have
trans-Planckian frequencies in the vicinity of the horizon (see for instance [9]–[11])5. The
same question arises in the derivation of the acceleration radiation. This is because, in any
given inertial frame, the uniformly accelerated detector acquires an arbitrarily large velocity
after sufficient proper time τ and, correspondingly, the thermal quanta it is observing at such
times correspond to modes with arbitrarily large frequencies w′

∼ weaτ relative to the given
inertial frame [13]. This fact is manifest in the derivation in terms of Bogolubov coefficients,
which requires an unbounded integral in frequencies in the intermediate steps of the derivation.
However, these modes are not detected by an inertial observer and their physical relevance is
not clear. On the other hand, in the derivation of the acceleration radiation in terms of two-
point functions, trans-Planckian physics seems to appear because ultrashort lapses of proper
time are apparently important in obtaining the final result. However, this inference depends on
the distributional character of the two-point function.

In this paper, we reanalyze this problem by studying the transition probabilities
of uniformly accelerated particle detectors. We parallel Einstein’s analysis by computing
separately the induced and spontaneous transition probabilities of the detector and we obtain
the thermal character of the radiation by means of the detailed balance relation. The splitting of
the different contributions has the advantage of providing suitable mathematical expressions that
allow us to define and evaluate the contribution of trans-Planckian physics in a Lorentz-invariant
way. We find that the thermal outcome arises from scales of the same order as the acceleration
a itself, which strongly suggests that the effect is indeed a low-energy phenomenon.

In section 2, we review the standard analysis of the acceleration radiation in Rindler
spacetime in terms of Bogolubov coefficients. In section 3, we compute the spontaneous and
induced transition probability rates of a uniformly accelerated particle detector in Minkowski
spacetime, and we use the results to show that the radiation felt by the detector is thermal. In
section 4, we repeat this analysis using the two-point function of the quantum field. Finally, in
section 5, we use the results presented in sections 3 and 4 to analyze the role of trans-Planckian

5 This issue has been traditionally addressed by explicit modification of the standard relativistic dispersion
relations [12]. Here, we follow a different approach that preserves the relativistic invariance.
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physics in the computation of the acceleration radiation. There, we also make some comments
regarding the same topic in Hawking radiation. In section 6, we give our conclusions6.

2. Acceleration radiation and Bogolubov transformations

The acceleration radiation was first derived in the context of the formalism of Bogolubov
transformations relating inertial and accelerated modes. In this section, we will quickly review
this derivation.

A uniformly accelerated (Rindler) observer has a natural coordinate system (τ, ξ, y, z)
related to the inertial coordinates (t, x, y, z) by

t =
eaξ

a
sinh aτ , x =

eaξ

a
cosh aτ , y = y, z = z. (2.1)

The curve ξ = 0 represents a uniformly accelerated trajectory with proper acceleration a. The
wave equation for a massless scalar field �φ(x)= 0 in the coordinates of the accelerated
observer becomes

(e−2aξ (−∂2
τ + ∂2

ξ )+ ∂2
y + ∂2

z )φ(τ, ξ, y, z)= 0. (2.2)

The y, z dependence can be trivially integrated using plane waves φ(t, ξ, y, z)=

φ(t, ξ)eik y y eikz z. Introducing this ansatz in the equation, we find

[(−∂2
τ + ∂2

ξ )− e2aξ (k2
y + k2

z )]φ(τ, ξ)= 0. (2.3)

This equation indicates that the free scalar field observed by the Minkowski observer appears
to the uniformly accelerated observer like a scalar field in a repulsive potential V (ξ)∝

e2aξ Ek2
⊥

, where Ek2
⊥

= k2
y + k2

z . The exact form of the normalized modes, with natural support
on the accessible region for the accelerated observer (right-hand Rindler wedge), can be
expressed as

u R
w,Ek⊥

=
e−iwτ

2π 2
√

a
sinh1/2

(πw
a

)
K iw/a

(
|Ek⊥|

a
eaξ

)
eiEk⊥·Ex⊥, (2.4)

where Ek⊥ · Ex⊥ = ky y + kzz. The important point is that the above positive frequency modes
cannot be expanded in terms of the standard purely positive frequency modes of the inertial
observer,

uM
kx ,Ek⊥

=
1√

2(2π)3k0

e−ik0t+i(kx x+Ek⊥·Ex⊥), (2.5)

where k0 =

√
k2

x + Ek2
⊥
. The detailed analysis requires one to compute the corresponding

Bogolubov coefficients. They are found to be [2, 7]

βwEk⊥,k′
x
Ek′

⊥

= −
[
2πak ′

0(e
2πw/a

− 1)
]−1/2

(
k ′

0 + k ′

x

k ′

0 − k ′
x

)−iw/2a

δ(Ek⊥ − Ek ′

⊥
). (2.6)

With this result one can compute the important physical result that follows. The mean number
nw of Rindler particles in the Minkowski vacuum is directly tied to the integral

nw =

∫ +∞

−∞

dEk ′βw1Ek⊥,Ek′β
∗

w2Ek⊥,Ek′
. (2.7)

6 In the rest of the paper, we use units such that h̄ = c = 1 and kB = 1.
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The integration in Ek⊥ is trivial and the integration in k ′

x reduces to∫ +∞

−∞

dk ′

x(2πak ′

0)
−1

(
k ′

0 + k ′

x

k ′

0 − k ′
x

)−i(w1−w2)/2a

, (2.8)

which, changing the integration variable to the rapidity y = tanh−1(k ′

x/k ′

0), leads to∫ +∞

−∞

dy

2πa
e−i(w1−w2)y/a = δ(w1 −w2). (2.9)

Taking into account the remaining terms, one easily gets∫ +∞

−∞

dEk ′βw1Ek⊥1,Ek′β
∗

w2Ek⊥2,Ek′
=

1

e2πw1/a − 1
δ(w1 −w2)δ(Ek⊥1 − Ek⊥2). (2.10)

The final outcome then becomes extremely simple and important, and parallels the Hawking
effect on black hole radiance. The Minkowski vacuum can be described, in the spacetime
region accessible for a uniformly accelerated observer (the Rindler wedge), as a thermal bath of
Rindler quanta at temperature T = a/2π . This result [2, 3] was strongly reinforced by Unruh’s
interpretation in terms of particle detectors [6]. A uniformly accelerated particle detector is
excited by the absorption of a Rindler quantum from the thermal bath. An inertial observer
describes this process in a different way, as the emission of a Minkowski particle as the result of
the interaction of the detector with the quantum field [14], as explicitly worked out in the next
section.

3. Transition probabilities of an accelerated particle detector

In this section, we review the particle detector approach to the acceleration radiation effect.
We compute separately the spontaneous and induced emission and absorption processes. The
thermal character of the Minkowskian vacuum with respect to an accelerated observer is derived
via the detailed balance relation.

3.1. Spontaneous emission of a uniformly accelerated detector

Let us consider a quantum mechanical system coupled to a free massless scalar quantum field
8(x) in Minkowski spacetime. For simplicity, the field is assumed to be massless. The quantum
mechanical system modeling our particle detector [6, 15] will have some internal energy states
|E〉, which are eigenstates of the corresponding free Hamiltonian Hq . We will consider here
two of those states, |E2〉 and |E1〉, with energies E2 > E1. The detector can interact with the
quantum field by absorbing or emitting quanta. The interaction can be modeled in a simple way
by coupling the field 8(x) along the detector’s trajectory x = x(τ ) (τ is the detector’s proper
time) to a monopole moment operator m(τ ) acting on the internal detector eigenstates through
the Lagrangian

L I = gm(τ )8(x(τ )), (3.1)

where g is the strength of the coupling. In the interaction picture, the detector’s operator m(τ )
has the standard unitary time evolution m(τ )= eiHqτm(0)e−iHqτ .

Before analyzing the accelerated detector, it is useful to consider the simple example of an
inertial detector. The spontaneous emission of an inertial detector can be studied by considering
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the transition amplitude for the process |E2〉|0M〉 → |E1〉|ψ〉, where |0M〉 is the usual Minkowski
vacuum state and |ψ〉 is the final state of the field. The field8(x) can be quantized by expanding
it in standard plane-wave modes,

8(x)=

∫
d3k

(
uM

Ek
aEk + uM∗

Ek
a†

Ek

)
, (3.2)

with

uM
Ek

=
1√

2(2π)3w
e−i(wt−EkEx), (3.3)

where t and x are inertial coordinates andw = |Ek|. The amplitude of the process is given, to first
order in time-dependent perturbation theory, by

ig〈E1|m(0)|E2〉

∫
dτ ei(E1−E2)τ 〈ψ |8(x(τ ))|0M〉. (3.4)

Because of the monopolar interaction, this transition can only take place to one-particle
(Minkowski) states. Taking |ψ〉 = |Ek〉, the corresponding amplitude is then7

ig〈E1|m(0)|E2〉

∫
dτ ei(E1−E2)τ

1√
2(2π)3w

ei(wt (τ )−EkEx(τ )), (3.5)

where (t (τ ), Ex(τ )) is the trajectory of the detector. For the inertial detector, we have t = τ,

Ex = 0. The transition probability of the final state |E1〉|Ek〉 is then given by squaring the above
expression,

P2→1,Ek = g2
|〈E1|m(0)|E2〉|

2 1

2(2π)3w

∫
dτ1 dτ2 ei(E1−E2+w)(τ1−τ2), (3.6)

where w = |Ek|. Therefore, the corresponding transition probability per unit time is then given
by (1τ ≡ τ1 − τ2),

Ṗ2→1,Ek = g2
|〈E1|m(0)|E2〉|

2 1

2(2π)3w

∫
d1τ e−i(1E−w)1τ

= g2
|〈E1|m(0)|E2〉|

2 1

2(2π)2w
δ(1E −w), (3.7)

where the delta function reflects the energy conservation of the process, with 1E ≡ E2

− E1 > 0. The transition E2 → E1 is accompanied by the emission of a quantum of the field
with energy w =1E . Finally, the total transition probability rate for the detector is obtained by
summing over all possible one-particle final states8,

Ṗ2→1 (spontaneous)= g2
|〈E1|m(0)|E2〉|

2

∫
d�Ekw

2 dw
1

2(2π)2w
δ(1E −w)

= g2
|〈E1|m(0)|E2〉|

21E

2π
. (3.8)

7 Note that one could choose instead of |ψ〉 = |Ek〉 a superposition of one-particle states. However, since at the end
we sum over all possible final states, the outcome will be independent of the particular basis chosen. Our choice is
thus made on the grounds of technical and notational simplicity.
8 Had we chosen a non-static inertial observer with Ex = Evt , the delta function would take the form δ(1E − γ (w−

Ek · Ev)), but the final result is the same as for Ev = 0.
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The spontaneous emission rate is an intrinsic property of the detector and its interaction
with the quantum field. Therefore, it is insensitive to the trajectory of the detector and is
given by the previous expression. We can check this by computing explicitly the spontaneous
emission rate of a detector following a uniformly accelerated trajectory (see appendix for
explicit derivation of the same result for a freely falling detector in de Sitter spacetime).

Let us then consider that the detector follows a uniformly accelerated trajectory with proper
acceleration a,

t =
1

a
sinh aτ , x =

1

a
cosh aτ , y = 0, z = 0. (3.9)

One can easily repeat the above calculation for the process |E2〉|0R〉 → |E1〉|ψ〉, where now the
initial state of the quantum field, |0R〉, is taken as vacuum associated to the uniformly accelerated
observer (usually called the Rindler vacuum) and |ψ〉 stands for the associated one-particle
(Rindler) state. Using the coordinates (τ, ξ, y, z) associated with the accelerated observer, the
modes defining the quantization are those given in (2.4). On the accelerated trajectory, we have
ξ = 0 and, for simplicity, we take Ex⊥ = (0, 0). Then

uR
w,Ek⊥

(τ )=
e−iwτ

2π 2
√

a
sinh1/2

(πw
a

)
K(iw/a)

(
|Ek⊥|

a

)
. (3.10)

Using the same arguments as for the inertial detector, we can express the transition probability
rate for all possible one-particle (Rindler) final states as

Ṗ2→1 (spontaneous)= g2
|〈E1|m(0)|E2〉|

2

×

∫ +∞

0
|Ek⊥|d|Ek⊥|dw

∣∣∣∣∣K(iw/a)

(
|Ek⊥|

a

)∣∣∣∣∣
2

(2π)2

(2π 2
√

a)2
sinh

(
πw

a

)
δ(E1 − E2 +w),

(3.11)

where a factor 2π comes from the one-dimensional (1D) angular integration of the transverse
momentum. Performing the integral in |Ek⊥|, we have

Ṗ2→1 (spontaneous)= g2
|〈E1|m(0)|E2〉|

21E

2π
, (3.12)

which, as expected, exactly coincides with the result (3.8).

3.2. Induced emission of a uniformly accelerated detector

We now study the process of induced emission of a uniformly accelerated detector in Minkowski
spacetime when the quantum field is in the usual Minkowski vacuum state. Let us consider then
the process |E2〉|0M〉 → |E1〉|ψ〉 for a uniformly accelerated trajectory. Since the initial state
|0M〉 is not the vacuum state for an accelerated observer, one would expect the transition rate
for this process to be enhanced by induced emission. We will obtain the probability rate for the
process of induced emission by computing the total emission probability rate and subtracting
from it the spontaneous emission rate. As before, the only non-vanishing contribution will be
for one-particle Minkowski states, so we consider |ψ〉 = |Ek〉. The corresponding amplitude is
then

ig〈E1|m(0)|E2〉

∫
dτ ei(E1−E2)τ

1√
2(2π)3w

eiw(t (τ )−cos θx(τ )), (3.13)
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where t = t (τ ), x = x(τ ) is the accelerated trajectory (3.9) and θ is the angle between Ek and the
x-axis. Taking into account the form of the trajectory (3.9), this amplitude can be rewritten as

ig〈E1|m(0)|E2〉√
2(2π)3w

∫
dτei(E1−E2)τ eiw/2a(eaτ

−e−aτ
−cos θ (eaτ+e−aτ )). (3.14)

Squaring the modulus of the above amplitude, we obtain the transition probability

P2→1,Ek =
g2

|〈E1|m(0)|E2〉|
2

2(2π)3w

∫
dτ1dτ2ei(E1−E2)(τ1−τ2)

×eiw/2a(eaτ1−e−aτ1−eaτ2 +e−aτ2−cos θ (eaτ1 +e−aτ1−eaτ2−e−aτ2 )). (3.15)

Defining 1τ = τ1 − τ2 and 1τ +
= (τ2 + τ1)/2, we can rewrite P2→1,Ek as

P2→1,Ek =
g2

|〈E1|m(0)|E2〉|
2

2(2π)3w

∫
d1τ +d1τ ei(E1−E2)1τ

×ei2wa−1 sinh (a1τ/2)[cosh (a1τ+)−cos θ sinh (a1τ+)]. (3.16)

To work out the integral in 1τ , it is convenient to perform the change of variable
U ≡ a−1e−a1τ/2 and capture the dependence on 1τ + in the positive-definite variable α =

cosh(a1τ +)− cos θsinh(a1τ +). We then obtain

P2→1,Ek =
g2

|〈E1|m(0)|E2〉|
2

2(2π)3w

∫
d1τ +2ai21E/a−1

∫
∞

0
dUU i21E/a−1e−iαw(U−(a2U )−1). (3.17)

The integral in U does not converge absolutely. This is because we are working with plane
waves, instead of wave packets, to represent the states |ψ〉. An integration over frequencies
using wave packets makes the integral convergent. Nonetheless, one can still work with plane
waves by inserting an infinitesimal negative real part to make the integral convergent. Therefore,
one must add the appropriate ±iε terms to w in the exponent. Using now the identity∫

∞

0
dxx c ea/x+bx

= 2(−a)(1+c)/2(−b)−(1+c)/2K−1−c(2
√

ab), (3.18)

for Re[a]< 0, Re[b]< 0, where K is a modified Bessel function, we obtain

P2→1,Ek =
g2

|〈E1|m(0)|E2〉|
2

2(2π)3w

∫
d1τ + 4

a
(iw− ε)i1E/a (−iw− ε)−i1E/a K−i21E/a(2wα/a).

(3.19)

Taking into account that, in the limit ε → 0+, ln(−w + iε)= iπ + lnw, we obtain

P2→1,Ek =
g2

|〈E1|m(0)|E2〉|
24eπ1E/a

2(2π)3wa

∫
d1τ +K−i21E/a(2wα/a). (3.20)

The transition probability rate for this process is then given by

Ṗ2→1,Ek =
g2

|〈E1|m(0)|E2〉|
24eπ1E/a

2(2π)3wa
K−i21E/a(2wα/a). (3.21)
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Summing now over all possible energies for the one-particle final states, we obtain∫
∞

0
dww2 Ṗ2→1,Ek =

g2
|〈E1|m(0)|E2〉|

24eπ1E/a

2(2π)3a

∫
∞

0
dwwK−i21E/a(2wα/a)

=
g2

|〈E1|m(0)|E2〉|
2

4π

1E

2π

e2π1E/a

(e2π1E/a − 1)

1

α2
, (3.22)

where we have made use of the following identity,∫
∞

0
dxx K−ia(bx)=

aπ

2b2 sinh (aπ/2)
, (3.23)

where a and b > 0 are real numbers. We still have to perform the angular integration. Using∫
d�Ekα

−2
= 2π

∫ 1

−1
d(cos θ)

1

(cosh (a1τ +)− cos θ sinh (a1τ +))2
= 4π, (3.24)

we finally obtain

Ṗ2→1 ≡

∫
∞

0
d�Ek dww2 Ṗ2→1,Ek = g2

|〈E1|m(0)|E2〉|
21E

2π

e2π1E/a

e2π1E/a − 1
. (3.25)

Note that, in the limit a → 0, we recover the expression for the spontaneous emission, which
indicates that contribution is already contained in (3.25). Since the probability rate Ṗ2→1 is the
sum of the probability rate for the spontaneous process Ṗ2→1 (spontaneous) plus that of the
stimulated process Ṗ2→1 (induced), by subtracting Ṗ2→1 (spontaneous) from (3.25) we obtain

Ṗ2→1 (induced)= g2
|〈E1|m(0)|E2〉|

21E

2π

1

e2π1E/a − 1
. (3.26)

3.3. Absorption of a uniformly accelerated detector

We can also consider the probability rate for the excitation of the detector |E1〉|0M〉 → |E2〉|Ek〉,
accompanied by the emission of a Minkowski particle. This can easily be extracted from (3.21),
and one obtains

Ṗ1→2,Ek =
g2

|〈E1|m(0)|E2〉|
24e−π1E/a

2(2π)3wa
K i21E/a(2wα/a). (3.27)

Summing on all possible final states, one obtains the excitation probability rate Ṗ1→2,

Ṗ1→2 = g2
|〈E1|m(0)|E2〉|

21E

2π

1

e2π1E/a − 1
, (3.28)

which, as expected (see (1.1) and (1.2)), coincides with the above induced emission rate
Ṗ2→1 (induced).

3.4. Thermality

From the previous calculations we find

Ṗ1→2

Ṗ2→1
=

Ṗ2→1 (induced)

Ṗ2→1 (induced)+ Ṗ2→1 (spontaneous)
=

1E
2π

1
e2π1E/a−1

1E
2π

1
e2π1E/a−1 + 1E

2π

= e−2π1E/a. (3.29)
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According to Einstein’s detailed balance relation for systems in thermal equilibrium,

N2/N1 = e−1E/T
=

Ṗ1→2

Ṗ2→1
, (3.30)

the result (3.29) shows that the detector internal energy states are populated as if they were
immersed in a thermal bath at temperature T = a/2π . Therefore, following Einstein, the mean
particle number per mode of the scalar radiation field should obey Planck’s law,

nw =
1

ew/T − 1
, (3.31)

in agreement with the result obtained from the Bogolubov coefficient approach.
An important comment is now in order. If one considers the detector’s emission and

absorption rates for a final state having momentum Ek of the emitted scalar particle, the
thermal condition (3.30) is still satisfied for each individual mode Ek. This can be seen from
equations (3.21) and (3.27). Since the Bessel function K i21E/a(x) is real and invariant under
the change 1E → −1E , the ratios Ṗ1→2,Ek/Ṗ2→1,Ek lead to the Boltzmann thermal factor
e−2π1E/a for every Ek. From this observation, the result (3.29) can be easily understood, since
Ṗ2→1 = eπ1E/a M(1E/a) and Ṗ1→2 = e−π1E/a M(1E/a), where M(1E/a) represents the
integral over momenta Ek of the Bessel function times the (momentum independent) common
factor g2

|〈E1|m(0)|E2〉|
2/(4π3a). The thermal result (3.29), therefore, stems from the thermal

properties of the transition rates to individual Ek-modes and is not the result of integrating over
all the momenta Ek. Indeed, one may also relate the absorption and emission probability rates by
considering a shift in the variable 1τ in equation (3.16) of the form 1τ →1τ + 2π i/a, which
immediately leads to P1→2,Ek = e−2π1E/a P2→1,Ek . We will come back to this point in section 5.

4. Transition probabilities and two-point functions

It is common in the literature (see, for instance, [16]) to express the transition probabilities
computed in section 3 in terms of the two-point correlation function of the field. The sum
over all possible one-particle states needed to obtain the transition probabilities in the previous
section leads to a sum in modes

∑
Ek(u)

M
Ek
(x1)uM∗

Ek
(x2) that gives rise to the two-point function

for the Minkowski vacuum. Then, if we perform the integration over all the final states in the
expressions for the transition probabilities in the previous section prior to the integration in time,
we obtain

Pi→ f = g2
|〈E f |m(0)|Ei〉|

2 Fi→ f (1E), (4.1)

where Fi→ f (1E) is the so-called response function,

Fi→ f (1E)=

∫ +∞

−∞

dτ1 dτ2 ei(Ei −E f )1τGM(1τ − iε), (4.2)

and 1τ = τ1 − τ2 (from now on the limit ε → 0+ is understood). In the previous expressions
we can have i = 1, f = 2 or i = 2, f = 1, and 1E is positive by definition. The quantity (4.2)
is essentially given by the Fourier transform of the Wightman two-point function GM(1τ − iε)
evaluated on the detector’s trajectory. For a massless field, the Wightman two-point function for
the Minkowski vacuum |0M〉 in (4.2) is given by

GM(x1, x2)≡ 〈0M|8(x1)8(x2)|0M〉 = −
1

4π 2[(t1 − t2 − iε)2 − (Ex1 − Ex2)2]
, (4.3)
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with (t, Ex) inertial coordinates. The projection on the accelerated trajectory (3.9) gives

GM(1τ − iε)=
−(a/2)2

4π 2 sinh2 [(a/2)(1τ − iε)]
. (4.4)

The transition probability per unit proper time is then given by

Ṗ i→ f = g2
|〈E f |m(0)|Ei〉|

2 Ḟi→ f (1E), (4.5)

where

Ḟi→ f (1E)=

∫ +∞

−∞

d1τei(Ei −E f )1τGM(1τ − iε). (4.6)

Paralleling the previous section, we want to obtain separate expressions for the different
processes. For the induced emission, we can obtain an expression simply by subtracting the
spontaneous emission rate (3.12) from the total probability rate Ṗ2→1 given by the above
expression (4.5),

Ṗ2→1 (induced)= g2
|〈E1|m(0)|E2〉|

2

(
Ḟ2→1(1E)−

1E

2π

)
. (4.7)

If we now take into account the identity,∫ +∞

−∞

d1τ ei1E1τ GR(1τ − iε)=
1E

2π
, (4.8)

where GR is the vacuum two-point function of the accelerated observer (we recall that |0R〉 is
the Rindler vacuum),

GR(1τ − iε)≡ 〈0R|8(x1)8(x2)|0R〉 =
−1

4π 2(1τ − iε)2
, (4.9)

then expression (4.7) can easily be rewritten in terms of an integral as9

Ṗ2→1 (induced)= g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τ ei1E1τ [GM(1τ − iε)− GR(1τ − iε)]. (4.10)

An advantage of this expression for the purely induced emission rate is that the integrand
is now a smooth function over the real axis, even in the absence of the iε. This is so because
of the universal short-distance behavior of the two-point functions for any physical state [the
so-called Hadamard condition (see, for instance, [18])] that makes the divergences of both two-
point functions cancel out. Therefore, the iε prescription in the integrand of (4.10) is redundant
and can be omitted,

Ṗ2→1 (induced)= g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τei1E1τ [GM(1τ)− GR(1τ)]. (4.11)

The result of this integral is∫ +∞

−∞

d1τei1E1τ

[
−(a/2)2

4π2 sinh2 [(a/2)1τ ]
+

1

4π2(1τ)2

]
=
1E

2π

1

e2π1E/a − 1
, (4.12)

and, therefore, the result for Ṗ2→1 (induced) coincides with (3.26).

9 Note that Ṗ2→1 (induced) 6= Ṗ2→1. This fact was overlooked in [17], leading to a misunderstanding of the role
of the subtraction term GR(1τ − iε) in (4.10).
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The absorption probability rate Ṗ1→2 can be calculated in the same way, but with 1E →

−1E (recall that 1E > 0, by definition). Therefore, taking into account that the integral
in (4.12) is real, one obtains

Ṗ1→2 = g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τ e−i1E1τ [GM(1τ)− GA(1τ)]

= g2
|〈E f |m(0)|Ei〉|

21E

2π

1

e2π1E/a − 1
= Ṗ2→1 (induced). (4.13)

Thus, as expected, the absorption rate coincides with the rate of induced emission. We reproduce
in this way the same results as in the previous section.

It is interesting to note how the iε prescription, which provided a well-defined distributional
sense to the two-point functions, allows one to write a single expression (4.5) to account for
both the total emission and the absorption probability rates. This is so because, on the one hand,
the spontaneous emission probability rate can be computed as the residue of the pole of the
two-point function GM(1τ) at 1τ = 0 and, on the other hand, the stimulated emission and the
absorption probability rate can be computed as the sum of the residues of the infinite number of
poles of ei(E i −E f )1τGM(1τ) in the positive and negative imaginary axes, respectively, excluding
the one at 1τ = 0. The iε displaces the real pole of GM(1τ) from 1τ = 0 to 1τ = iε (recall
that ε > 0). Therefore, including the iε and using the Cauchy theorem, the integral (4.6) includes
the induced and spontaneous contribution when Ei − E f > 0 (emission) and only the induced
one when Ei − E f < 0 (absorption), allowing one to obtain the well-known compact integral
representation for both the total emission and the absorption probability rates. We will come
back to this point in section 5, where we show that there is an advantage in writing down
the separate expressions above for the different processes when one studies the influence of
trans-Planckian physics.

5. The role of trans-Planckian physics

The thermal spectrum obtained in the analysis in terms of Bogolubov coefficients (section 2)
seems to depend crucially on the exact validity of relativistic field theory on all scales. The
intermediate integral (2.8) involves an unbound integration in arbitrarily large Minkowskian
momentum k ′

x . If one introduces an ultraviolet cutoff 3 for |k ′

x | in that integral, which
particularizes a given Lorentz frame, the resulting spectrum is dramatically modified. This
can be implemented, for instance, by introducing a damping factor such as e−(y/2R)2 [with
R ≈ ln(3/a)] in (2.9) while keeping the integration limits up to infinity. Then the delta
function turns into δσ (w1 −w2)= e−(w1−w2)

2/σ 2
/σ

√
π , where σ = 1/R. The number of particles

described by wave packets of the (standard) form uw j nEk⊥
= ε−1/2

∫ w j +ε/2
w j −ε/2

dw ei2πnw/ε(u)R
w,Ek⊥

,
which are localized at the instant tn = 2πn/ε and are peaked at the frequency w j = ( j + 1/2)ε
with width ε, then becomes δ(Ek⊥1 − Ek⊥2)(e

2πw j/a − 1)−1e−(tnσ/2)2 , which decays exponentially
with time as tn → ∞, showing that thermality becomes a transient process even if 3 is at the
Planck scale.10

This apparent sensitivity of the thermal distribution of Rindler quanta to the high-frequency
band of the spectrum of fluctuations of the field in the Minkowski vacuum contrasts with the

10 As we will show later in this section, a different conclusion is reached when we introduce the cutoff in the
Bogolubov transformation method by means of a Lorentz-invariant procedure.
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derivation in terms of transition probabilities of the detector of section 3. To show that the
detector energy levels are thermally populated (as if it were immersed in a thermal bath) does
not require one to integrate over all the Minkowskian momenta. This follows from the fact
that the individual transition rates for each (Minkowskian) mode of momentum Ek satisfy the
detailed balance relation, as discussed in the last paragraph of section 3. In addition, it can be
shown that the relative contribution of trans-Planckian Minkowski modes to the integral (3.22) is
negligible, even at late times. This indicates that the thermal properties of the radiation bath that
excite the detector are not crucially linked to the integration over large frequencies/momenta in
the spectrum of (real) Minkowskian modes.

Since the sum over momenta in section 3 is not the reason for the existence of the thermal
properties, the only place where trans-Planckian physics could play a role is in the integration
in 1τ . In order to study this integral, it is convenient to first integrate in Ek, which leads to
the derivation of the acceleration radiation in terms of the two-point functions presented in
section 4. Using (4.5) and (4.6), we have the following integral expression for the emission
probability rate,

Ṗ2→1 = g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τ ei1E1τ/h̄[GM(1τ − iε)]

= g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τ ei1E1τ/h̄

[
−

h̄(a/2)2

4π 2 sinh2 [(a/2)(1τ − iε)]

]
= g2

|〈E1|m(0)|E2〉|
21E

2π

e2π1E/a

e2π1E/a − 1
, (5.1)

and for the absorption probability rate (see (4.13)),

Ṗ1→2 = g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τ e−i1E1τ/h̄[GM(1τ − iε)]

= g2
|〈E1|m(0)|E2〉|

2

∫ +∞

−∞

d1τe−i1E1τ/h̄

[
−

h̄(a/2)2

4π 2 sinh2
[

a
2 (1τ − iε)

]]

= g2
|〈E1|m(0)|E2〉|

21E

2π

1

e2π1E/a − 1
. (5.2)

In the above integrals, the iε term plays a fundamental role in regularizing the denominator of
the integrand, which otherwise would lead to a divergence as1τ → 0. This could be seen as an
indication that ultrashort (sub-Planckian) distances (1τ)2 < `2

P (`P is the Planck length) play a
relevant role in the outcome of those integrals. A Planckian cutoff for 1τ in the above integrals
substantially modifies the thermal result. However, the integral representation of the transition
probability rates provided by the iε prescription cannot be properly used to evaluate the effect
of such a cutoff. The iε prescription is incompatible with cutting out part of the integration
path [18]. The distributional character of the integrand, in contrast with the smooth integrand
of (4.12), prevents us from properly evaluating the relative contribution of trans-Planckian
physics in terms of the above integral expressions.

In contrast, when the different contributions to the transition processes are worked out
separately (see expressions (4.11) and (4.12) in section 4), the integrals are well-defined smooth
functions. This implies that expression (4.11), as pointed out in [19, 20], can be used to properly
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estimate the interval of 1τ that significantly contributes to the overall integral for the induced
emission rate,∫ +∞

−∞

d1τ e−i1E1τ

[
−(a/2)2

4π2 sinh2 [(a/2)1τ ]
+

1

4π2(1τ)2

]
=
1E

2π

1

e2π1E/a − 1
. (5.3)

One finds that values of 1τ giving the dominant contribution to the above integral are of the
same order as the acceleration a itself (for non-extreme values of 1E). That is, neither very
large nor very small values of 1τ , in comparison with a, are important for obtaining the
result. To be more precise, one can compute the integral (5.3), excluding the contribution of
ultrashort proper time lapses |1τ |< `P, and the result for the induced emission probability
rate is

Ṗ2→1 (induced)= g2
|〈E1|m(0)|E1〉|

21E

2π

(
1

e2π1E/a − 1
−

a `P

48π 31E/a
+ O(a`P)

3

)
, (5.4)

where we can see that the correction term is completely negligible relative to the thermal term
if a � `−1

P and if the energy gap 1E is not much larger than the temperature, a/(2π), of
the thermal spectrum. Exactly the same result is obtained for the excitation probability rate.
Obviously, the spontaneous emission is robust against trans-Planckian physics.11 Therefore, we
conclude that for an accelerated detector, the behavior of the two-point function relative to
Planckian lapses of proper time does not affect the bulk of the thermal radiation.

The above analysis indicates that the spectrum of thermal radiation felt by a uniformly
accelerated observer in Minkowski spacetime is rooted on energy scales of the same order as
the energy scale defined by the temperature of the spectrum. We want to point out that the
derivation of the transition probability rates in terms of two-point functions in the previous
section has allowed us to introduce a cutoff in such a way that Lorentz invariance is manifestly
respected. This contrasts with the introduction of a non-Lorentz-invariant cutoff as is sometimes
felt to be necessary to avoid appealing to trans-Planckian frequencies in computing the
Bogolubov coefficients. Such a cutoff that distinguishes a particular inertial frame also produces
a substantial modification of the thermal spectrum at late times. This late-time modification is an
explicit consequence of the breakdown of Lorentz invariance, because different instants along
the trajectory are related by a Lorentz boost. However, when defined in a Lorentz-invariant way,
as in our analysis, trans-Planckian physics does not play a fundamental role in obtaining the
thermal spectrum of the acceleration radiation.

In the remaining part of this section, we want to extend the previous analysis of the trans-
Planckian contribution to the thermal spectrum, as measured by a particle detector, to the method
of calculating the mean number per mode of ‘Rindler’ particles nw present in the Minkowski
vacuum state. The derivation of this mean number using Bogolubov coefficients has already
been summarized in section 2. We will also make some comments about the extension of our
analysis to the computation of Hawking radiation by black holes.

In the first paragraph of this section, we showed that introducing a high-frequency cutoff in
the calculation of Bogolubov coefficients strongly affects the thermal spectrum. This contrasts

11 The result Ṗ2→1 (spontaneous)= g2
|〈E1|m(0)|E2〉|

2 ((E2 − E1)/2π) stems essentially from evaluating the
amplitude of the modes defining the vacuum at the (low) frequency w =1E ≡ E2 − E1. Moreover, the derivation
in terms of the accelerated detector indicates that the integral in (3.11) does not require very large |Ek⊥| due to the
exponential decay of the Bessel function. Additionally, the spontaneous emission rates of all microscopic systems
calculated in the conventional low-energy frameworks agree with observations.
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with our previous conclusion. This apparent conflict boils down to whether or not one insists
on respecting Lorentz invariance. We prefer to preserve this symmetry. To achieve this, we
reformulate the analysis of the mean number distribution of quanta obtained in section 2 in such
a way that a study of the trans-Planckian contribution to the thermal spectrum can be done using
invariant quantities, thus paralleling our analysis in terms of particle detectors.

As originally shown by Fulling [2], the spectrum of acceleration radiation can be derived by
computing the content of ‘Rindler’ particles in the Minkowski vacuum state. This mean number
of Rindler particles per mode nw can be expressed as nw ≡ 〈0M|N R

w |0M〉, where N R
w is the Rindler

particle number operator. In terms of Bogolubov coefficients, that quantity is evaluated as

nw = 〈0M|N R
w |0M〉 =

∑
w′

|βww′|
2. (5.5)

On the other hand, as explained in [19, 20, 24], one can rewrite the previous expression in terms
of two-point functions as

〈0M|N R
w |0M〉 =

∫
6

d6µ

1 d6ν
2 [uR

w,Ek⊥

(x1)
↔

∂ µ][uR∗

w,Ek⊥

(x2)
↔

∂ ν](GM(x1, x2)− GR(x1, x2)), (5.6)

where 6 is a Cauchy hypersurface, uR
w,Ek⊥

(x) are the Rindler modes defined in (2.4) and
GM,GR are the two-point functions for the Minkowski and Rindler vacuum states, respectively.
Choosing the null plane H−, defined by V ≡ t + x = 0, as the initial data hypersurface, we
obtain12

nw = 〈0M|N R
w |0M〉 =

2π

w

∫ +∞

−∞

d1u e−iw1u

[
−(a/2)2

4π 2 sinh2 [(a/2)1u]
+

1

4π 2(1u)2

]
=

1

e2πw/a − 1
,

(5.7)

where u is the null coordinate u ≡ τ − ξ and 1u ≡ u1 − u2. Note, in passing, that if we project
the acceleration trajectory (ξ = 0) onto the horizon H−, then the point on H− characterized by
the coordinate u corresponds to the point on the uniformly accelerated trajectory characterized
by coordinate τ .

We want to point out now that the previous derivation of the thermal spectrum using
equations (5.6) and (5.7) is closely related to the derivation presented in section 4 using particle
detectors and two-point functions. To be more precise, if we compare the generic relation
Ṗ1→2 = Buw (recalling that uw represents the energy density per mode w of the radiation) with
the result for the excitation emission rate (4.13), we see that the mean number of particles per
mode w for the thermal distribution corresponds to the integral

nw ≡
1

e2πw/a − 1
=

2π

w

∫ +∞

−∞

d1τe−iw1τ

[
−(a/2)2

4π 2 sinh2 [(a/2)1τ ]
+

1

4π 2(1τ)2

]
. (5.8)

This integral coincides with (5.7), with 1τ replaced by 1u. Note that, along H−, the quantity
1u is invariant under Lorentz transformation. Thus, we see that there is a clear relation between
the derivation of the acceleration radiation using accelerated particle detectors and the derivation
based on the Rindler particle number. The former derivation showed that invariantly defined
trans-Planckian physics does not significantly affect the observed radiation. This implies that

12 We neglect an infinite factor δ(0) arising in the integral as a consequence of using plane-wave modes. By using
the standard normalizable wave packets, that factor disappears.
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we use the condition |1u|< `P to characterize in a Lorentz-invariant way the trans-Planckian
physics in equations (5.6) and (5.7). A further discussion of the Lorentz-invariant cutoff
introduced here and the comparison with the cutoff |1U |< `P, with U ≡ t − x , can be found
in [21, 22].

The above discussion offers some hints for the study of the trans-Planckian question in
Hawking radiation by black holes. For a spherically symmetric black hole, the average number
of particles observed at late times in the state in which no particles are present at early times is
given by an expression analogous to (5.5), but in the black hole geometry [4]. A steady rate of
radiation is obtained from an explicit computation of the corresponding Bogolubov coefficients
and it turns out to be thermal. However, to get this, one needs to perform an unbounded
integration in the frequencies w′, as discussed, for example, in [9]–[11], [23], in parallel to
the unbounded integration in k ′

X for the acceleration radiation effect in (2.8). A cutoff in the
frequencies w′ will change the Hawking effect completely. It will introduce a damping time-
dependent factor modulating the thermal radiation. The Hawking radiation is then converted
into a transient phenomenon (see, for instance, [24, 25]).

In analogy with the acceleration radiation effect, it is possible to derive the Hawking effect
in terms of smooth integrals involving the difference between the two-point functions of the two
vacuum states involved. In fact, the general expression (5.6) can also be applied to the black
hole, with the Minkowski observer replaced by the so-called in observer, the Rindler observer
by the out observer, and the acceleration a by the surface gravity κ of the black hole (for details,
see [21, 24]). Exactly the same expression (5.7) is then obtained,13 where now u stands for the
retarded null coordinate u ≡ t − r∗, with t the Schwarzschild time and r∗ the tortoise coordinate.
The analysis performed for the acceleration radiation then suggests that (as was done in
[20, 24]) the condition |1u|< `P characterizes the regime of trans-Planckian physics entering
into the derivation of the thermal spectrum and that altering physics in this trans-Planckian
regime will not modify the fundamental properties of the Hawking radiation.

6. Conclusions

In this work, we have analyzed the trans-Planckian question for a uniformly accelerated detector.
We have split the transition probability rates into spontaneous and induced contributions. The
latter can be expressed as a Fourier integral with a smooth integrand involving the difference
between two-point functions. This permits us to estimate in a new way the contribution of
trans-Planckian physics to the induced probability rates and allows us to show that the main
contribution to the induced rates comes from the low energy scale defined by the acceleration
a. Trans-Planckian (and ultralow energy) contributions do not seem to play a central role.
Nevertheless, one cannot discard the fact that new effects could arise at the Planck scale if
one admits that at such high energies non-linear couplings of the field and detector emerge
or, even more, if the very notion of the spacetime and Lorentz invariance dissolve into more
elementary structures. In other words, we have assumed the validity of the field-detector model
up to energies well above the natural scale of the system. On the other hand, the close analogy
between the acceleration radiation and the Hawking effect suggests that the above arguments

13 The expression analogous to (5.7) for black holes is also relevant [20, 24] to preserve the near-horizon 2D
conformal symmetry of black holes, which seems to play a crucial role in understanding the Bekenstein–Hawking
entropy (see, for instance, [26]–[29]).
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also support the view of the Hawking effect as a low-energy phenomenon, in agreement with
recent results coming from a different perspective [30].
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Appendix. Spontaneous emission of a detector in de Sitter space

In this appendix we evaluate the spontaneous emission rate of the detector in a de Sitter space
described by the static metric ds2

= −(1 − r̃ 2 H 2)dt̃2 + (1 − r̃ 2 H 2)−1dr̃ 2 + r̃ 2d�2. To properly
compare this emission rate with that of the massless (conformal) field in Minkowski space
analyzed in section 2, we have to consider here a massless field with a conformal coupling
ξ = 1/6 to the curvature. In this situation, the form of the modes uwlm(t̃, r̃ , θ, φ) on the
detector’s trajectory t̃ = τ, r̃ = 0 (detector at rest and at the origin of static coordinates) is14

uwlm(τ )=

√
w

π
e−iwτ 1

√
4π
δl0. (A.1)

The transition probability for all possible one-particle final states is given by

Ṗ2→1 (spontaneous)= g2
|〈E f |m(0)|Ei〉|

2
∑
lm

∫ +∞

0
dw

w

2π
δ(E1 − E2 +w)δl0

= g2
|〈E1|m(0)|E2〉|

2 (E2 − E1)

2π
, (A.2)

which, as expected, coincides with (3.8).
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