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a) Dipartimento di Fisica dell’Università di Bologna and INFN sezione di Bologna, Via Irnerio

46, 40126 Bologna, Italy
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Abstract

We analyze the creation of scalar massless particles in two dimensions under the action

of conformal transformations. We focus our attention to Mobius transformation and clarify

an apparent tension between the results obtained with the Bogolubov coefficients and those

obtained within the conformal field theory approach.
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One of the basic ingredients of quantum field theory in curved spacetime

[1] are the Bogolubov transformations. These reflect the absence, in general, of

a privileged vacuum state, in parallel to the absence of global inertial frames.

This framework is general and can be applied to a large number of physical

situations, including flat spacetime (like the Unruh-Fulling effect [1]). On the

other hand, of particular physical interest are those field theories possessing

the spacetime conformal symmetry SO(d, 2), where d is the dimension of the

Lorentzian spacetime. This symmetry is especially powerful in two dimensions,

where the group SO(2, 2) can be enlarged to an infinite-dimensional group [2].

However, this SO(2, 2) subgroup, which includes dilatations, Poincaré and spe-

cial conformal transformations, still plays an important role because it leaves

the vacuum invariant [2]. From the point of view of Bogolubov transformations

this should imply that the β coefficients associated to them vanish. This is ob-

vious for Poincaré and dilatations: they do not produce any mixing of positive

and negative frequencies. For special conformal transformations the β coeffi-

cients (calculated for a massless scalar field) are vanishing only if one considers

the two branches of the transformation. If we consider only one branch we

get a nonvanishing result [3, 1], which has been interpreted with the fact that

the absence of energy (always true irrespective of the presence of one or two

branches) does not imply absence of quanta too. The purpose of this note is to

clarify this apparent tension between both approaches.

Let us first briefly review the definition of the Bogolubov coefficients for the

two-dimensional massless scalar field f satisfying the wave equation

∇2f = 0 . (1)

In conformal gauge ds2 = −e2ρdx+dx− we can decompose the field into positive

and negative frequencies using the standard mode solutions:

f =
∫ ∞
0

dw√
4πw

(
→
awe−iwx− +

←
awe−iwx+

+
→
a
†
weiwx− +

←
a
†
weiwx+

) . (2)

These modes form an orthonormal basis under the scalar product

(f1, f2) = −i

∫
Σ

dΣµ (f1∂µf∗2 − ∂µf1f
∗
2 ) , (3)
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where Σ is an appropiate Cauchy hypersurface. One can construct the Fock

space from the commutation relations

[
→
aw,

→
a
†
w′ ] = δ(w − w′) , (4)

[
←
aw,

←
a
†
w′ ] = δ(w − w′) . (5)

The vacuum state |0x〉 is defined by

→
aw|0x〉 = 0,

←
aw|0x〉 = 0 , (6)

and the excited states can be obtained by the application of creation operators
→
a
†
w,
←
a
†
w out of the vacuum. We can perform an arbitrary conformal transfor-

mation

x± → y± = y±(x±) , (7)

and consider the expansion

f =
∫ ∞
0

dw√
4πw

(
→
b we−iwy− +

←
b we−iwy+

+
→
b
†
weiwy− +

←
b
†
weiwy+

) . (8)

As both sets of modes are complete, the new modes 1√
4πw

e−iwy− , 1√
4πw

e−iwy+

can be expanded in terms of the old ones:

e−iwy±

√
4πw

=
∫ ∞
0

dw′√
4πw′

(
α±ww′e

−iw′x± + β±ww′e
iw′x±

)
, (9)

where α±ww′ and β±ww′ are called the Bogolubov coefficients. These coefficients

can be evaluated by the following scalar products

α±ww′ = (φ̄±w , φ±w′) (10)

β±ww′ = −(φ̄±w , φ±∗w′ ) (11)

where φ±w = e−iwx±
√

4πw
, φ̄±w = e−iwy±

√
4πw

. The results are:

α±ww′ =
1
2π

√
w

w′

∫
dx±

(
dy±

dx±

)
e−iwy±(x±)+iw′x± , (12)

β±ww′ = − 1
2π

√
w

w′

∫
dx±

(
dy±

dx±

)
e−iwy±(x±)−iw′x± . (13)
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The relation between creation and annhilation operators in the two basis is

→
b w =

∫ ∞
0

dw′
(

α−∗ww′
→
aw′ − β−∗ww′

→
a
†
)

, (14)

along with the corresponding one for
→
b
†
w. Similar equations hold for the left

movers. Therefore the expectation value of the (right mover sector) particle

number operator
→
Nw ≡

→
b
†
w

→
b w is given by the expression

〈0x|
→
Nw|0x〉 =

∫ ∞
0

dw′|β−ww′ |
2 . (15)

Let us now discuss how to obtain an expression for 〈0x|
→
Nw|0x〉 within

the framework of conformal field theory. The two-point correlation function

〈0x|f(x)f(x′)|0x〉 is ill-defined due to the infrared divergence of the scalar field

in two dimensions. This can be cured by introducing a frequency cut-off λ. In

doing so one gets

〈0x|f(x)f(x′)|0x〉 = − 1
4π

(
2γ + lnλ2(x− x′)2

)
, (16)

where γ is the Euler constant. The ambiguity inherent to the cut-off disap-

pears when one considers, instead of the two-point function for the field f , the

correlations for the derivatives ∂±f . We have then

〈0x|∂±f(x±)∂±f(x′±)|0x〉 = − 1
4π

1
(x± − x′±)2

. (17)

Under conformal transformations x± → y± = y±(x±), the above correlation

functions transform according to the rule for primary fields:

〈0x|∂±f(y±)∂±f(y′±)|0x〉 = − 1
4π

(
dx±(y±)

dy±

)(
dx±(y′±)

dy±

)
1

(x±(y±)− x′±(y±))2
.

(18)

These relations are fundamental to construct the normal ordered stress tensor

: T±± : as well as the particle number operator. In the coordinates {x±} and the

choice of modes φ±w , the normal ordered stress tensor operator can be defined

via point-splitting

: T±±(x±) := lim
x±→x′±

∂±f(x±)∂±f(x′±) +
1
4π

1
(x± − x′±)2

. (19)
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Similar relations hold in the coordinates {y±} and with the choice of the modes

φ̄±w . It is easy to relate : T±±(y±) : with : T±±(x±) : and the result is

: T±±(y±) :=

(
dx±

dy±

)2

: T±±(x±) : − 1
24π

{x±, y±} , (20)

where

{x±, y±} =
d3x±

dy±3
/
dx±

dy±
− 3

2

(
d2x±

dy±2
/
dx±

dy±

)2

(21)

is the Schwarzian derivative. The two-point correlation function ∂±f(y±)∂±f(y′±)

also serves to construct the particle number operator. We start from the ex-

plicit form of the normal ordered operator : ∂±f(x±)∂±f(x′±) : in terms of the

creation and annihilation operators (for simplicity we shall consider only the

right mover sector)

〈0x| : ∂−f(y−)∂−f(y′−) : |0x〉 =
∫ ∞
0

dw

∫ ∞
0

dw′
√

ww′

4π
{〈0x|

→
b
†
w

→
b w′ |0x〉(eiwy−−iw′y′− +

e−iw′y−+iwy′−)− 〈0x|
→
b w

→
b w′ |0x〉e−iwy−−iw′y′− − 〈0x|

→
b
†
w

→
b
†
w′ |0x〉eiwy−+iw′y′−} . (22)

Now, instead of taking the limit x± → x′±, as in the construction of the stress

tensor, we shall take the following Fourier transform

1
(2π)2

∫ +∞

−∞
dy−dy′−〈0x| : ∂−f(y−)∂−f(y′−) : |0x〉e−iw̃y−+iw̃′y′−) =

√
w̃w̃′

4π
〈0x|

→
b
†
w̃

→
b w̃′ |0x〉 .

(23)

Note that to obtain this last equation it is crucial to integrate over all range

in the coordinates y−, y′−. We then immediately get an expression for the

expectation value of the particle number operator
→
Nw =

→
b
†
w

→
b w of frequency w

:

〈0x|
→
Nw|0x〉 =

1
πw

∫ +∞

−∞
dy−dy′−〈0x| : ∂−f(y−)∂−f(y′−) : |0x〉e−iw(y−−y′−) .

(24)

From the above considerations we obtain

〈0x|
→
Nw|0x〉 = − 1

4π2w

∫ +∞

−∞
dy−dy′−e−iw(y−−y′−) (25)[(

dx−(y−)
dy−

)(
dx−(y′−)

dy−

)
1

(x− − x′−)2
− 1

(y− − y′−)2

]
.
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We mention that the integral
∫∞
0 dww〈0x|

→
Nw|0x〉 gives the integrated flux∫

dy−〈0x| : T−−(y−) : |0x〉.

As an illustrative example we shall show how the CFT approach reproduces

the thermal properties associated to the conformal transformation

x± = ±κ−1e±κy± . (26)

We can think of this transformation as relating the Minkowskian x± and Rindler

y± null coordinates, where κ is the acceleration parameter (the same relation

holds for the Schwarzschild black hole between the Kruskal and Eddington-

Finkelstein null coordinates with κ = 1/4M). Since we are using plane waves

instead of wave-packets we first work out an expression for 〈0x|
→
b
†
w

→
b w′ |0x〉

〈0x|
→
b
†
w

→
b w′ |0x〉 = − 1

4π2
√

ww′

∫ +∞

−∞
dy−dy′−[

dx−

dy−
(y−)

dx−

dy−
(y′−)

1
(x− − x′−)2

− 1
(y− − y′−)2

]e−iwy−+iw′y′− . (27)

Substitution of the relations (26) leads to

〈0x|
→
b
†
w

→
b w′ |0x〉 = − 1

2πw
δ(w − w′)

∫ +∞

−∞
dz

[
κ2e−κz

(1− e−κz)2
− 1

z2

]
e−iwz , (28)

where z = y− − y′−. Evaluation of the integral gives

〈0x|
→
b
†
w

→
b w′ |0x〉 = δ(w − w′)

1

e
2πw

κ − 1
, (29)

leading to the number of particles emitted per unit time of

〈0x|
→
Nw|0x〉 =

1

e
2πw

κ − 1
, (30)

which corresponds to the Planckian spectrum of radiation at the temperature

T = κ
2π . Similar results hold for the left mover sector. Evaluation of the

expectation value of the stress tensor using (20), taking into account that 〈0x| :

T±±(x±) : |0x〉 = 0, gives

〈0x| : T±±(y±) : |0x〉 =
κ2

48π
=

πT 2

12
. (31)
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This is nothing else but the stress tensor corresponding to a two dimensional

thermal bath of radiation at the temperature T .

We shall now analyse the case associated to the Mobius transformations

x± → y± =
a±x± + b±

c±x± + d±
(32)

where a±d± − b±c± = 1. These form the so called global conformal group

((SL(2, R) ⊗ SL(2, R))/Z2 ≈ SO(2, 2)) and have the property of giving a

vanishing Schwarzian derivative. Therefore, under the action of the Mobius

transformations the flux of radiation in the vacuum |0x〉 for the observer {y±}

vanishes

〈0x| : T±±(y±) : |0x〉 = 0 . (33)

Moreover, since the two-point function (17) is invariant under (32) it is clear

from (25) that the expectation value of the particle number operator also van-

ishes

〈0x|
→
Nw|0x〉 = 0 = 〈0x|

←
Nw|0x〉 . (34)

This is what we expect in the context of Conformal Field Theory, since the

vacuum is invariant under Mobius transformations. However, the conclusion

is different in the approach of the Bogolubov coefficients. For those Mobius

transformations which are not dilatations nor Poincaré such as

x− = − 1
a2y−

, (35)

where a is an arbitrary constant, the Bogolubov coefficients are

αww′ =
1
2π

√
w

w′

(∫ +∞

0
dy−e−iwy−−iw′/a2y− +

∫ 0

−∞
dy−e−iwy−−iw′/a2y−

)
,

βww′ = − 1
2π

√
w

w′

(∫ +∞

0
dy−e−iwy−+iw′/a2y− +

∫ 0

−∞
dy−e−iwy−+iw′/a2y−

)
.(36)

If one restricts only to one branch (for instance 0 < y− < +∞) the results,

given in [3, 1, 4], are

αww′ =
1
aπ

K1(2i
√

ww′/a2) ,

βww′ =
i

aπ
K1(2

√
ww′/a2) , (37)
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where K1 is a modified Bessel function. Therefore confining to just one branch

would seem to give paradoxical results, namely a vanishing flux but a production

of quanta due to the nonvanishing β coefficient

〈0x|
→
Nw |0x〉 6= 0 . (38)

We mention that the transformation (35) originally appeared in the moving

mirror model of Davies and Fulling [3] and more recently in the analysis of

extremal black holes [5, 6, 7] and in the late-time behaviour of evaporating

near-extremal Reissner-Nordstrom black holes [8]. On the other hand, (38),

based on (37), does not only give a nonvanishing particle number, but also

exhibits a logarithmic infrared divergence. It has been suggested in [5] that such

divergence can be cured, as usual, by using wave packets instead of plane waves.

However, it has been recently pointed out in [6] that the integrals (12), (13)

defining the Bogolubov coefficients are not well defined for the transformation

(35). Indeed, the results (37) are obtained by means of an unjustified Wick

rotation. This problem cannot be cured by using wave packets [6].

The results (38), (37) and (34) are in apparent contradiction. The result

(34) is well established, since the Mobius invariance of the vacuum is almost

an axiom of CFT. It cannot be eluded if one wants to maintain the conformal

invariance at the quantum level. However, the full Mobius transformation (35),

on which the CFT results are based, cannot be restricted only to one branch.

Therefore in order to make the comparison one has to consider also the second

integral, from −∞ to 0, in the formulas (36) leading to

αww′ = Re

[
2
aπ

K1(2i
√

ww′/a2)
]

,

βww′ = 0 . (39)

This result restores compatibility with the CFT, as zero β coefficient implies

that no quanta are produced, in agreement with the fact that the energy flux is

zero. This result of the cancellation of the β coefficient should be general and

independent of the prescription one could use to properly define the integral

(36).

7



A.F. and J.N-S thank V. Frolov, S. Gao and A. Zelnikov and G.O. thanks L.

Parker for very useful discussions. This research has been partially supported by

the research grants BFM2002-04031-C02-01 and BFM2002-03681 from the Min-

isterio de Ciencia y Tecnologia (Spain), EU FEDER funds, the INFN-CYCIT

Collaborative Program and the Generalitat Valenciana. G.J.O. acknowledges

the Department of Physics of the University of Wisconsin at Milwaukee for

hospitality and the Generalitat Valenciana for financial support.

References

[1] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cam-

bridge University Press (1982)

[2] P. Ginsparg, in Applied Conformal field theory, 1988 Les Houches lectures,

Ed. by E. Brezin and J. Zinn-Justin (North-Holland, Amsterdam, 1990),

page 1

[3] P.C.W. Davies and S.A. Fulling, Proc. R. Soc. London A 356 (1977) 237

[4] R. Parentani, Nucl. Phys. B 465 (1996) 175

[5] S. Liberati, T. Rothman and S. Sonego, Phys. Rev. D 62 (2000) 024005

[6] S. Gao, Phys. Rev. D 68 (2003) 044028

[7] F.G. Alvarenga, A.B. Batista, J.C. Fabris, G.T. Marques, gr-qc/0306030

[8] A. Fabbri, D.J. Navarro, J. Navarro-Salas and G.J. Olmo, Phys. Rev. D

68 (2003) 041502(R); A. Fabbri, D.J. Navarro and J. Navarro-Salas, Nucl.

Phys. B 628 (2002) 361

8


