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Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography
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Motivated by the quest for black holes in anti-de Sitter braneworlds, and, in particular, by the
holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we
numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in
the (zero-temperature) Boulware vacuum state. In the absence of an exact analytical expression for hT��i
in four dimensions we work within the s-wave approximation. Our results show that the quantum
corrected solution is very similar to Schwarzschild spacetime until very close to the horizon, but then a
bouncing surface for the radial function appears which prevents the formation of an event horizon. We
also analyze the behavior of the geometry beyond the bounce, where a curvature singularity arises. In the
dual theory, this indicates that the corresponding 5D static classical braneworld solution is not a black hole
but rather a naked singularity.
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I. INTRODUCTION

The study of quantum effects in black hole spacetimes
comes back to the early seventies, when Hawking discov-
ered [1] that black holes evaporate by emission of thermal
radiation (see also [2,3]). This result generated enormous
interest in the subject, especially after Hawking himself
speculated [4] that the evaporation process will lead to the
disappearance of the black hole and the information about
its formation will be lost forever. This is a radical con-
clusion, as it implies that in the quantum theory the whole
process of black hole formation and evaporation is
nonunitary.

It is clear, however, that the approximation considered to
derive this result, i.e. the quantization of matter fields in the
fixed classical background describing the formation of a
Schwarzschild black hole, and even the framework used,
the semiclassical theory of gravity (see, for instance, [5–
7]), cannot lead to a reliable resolution of this paradox. At a
certain point during the evolution the quantum effects will
backreact and modify significantly the background geome-
try, which therefore cannot be considered as fixed, nor
evolved in a quasistatic approximation. Moreover, once
the black hole has reached the Planck size, quantum gravi-
tational effects will become important and cannot be ne-
glected anymore.1 Thus it is no wonder that still today
Hawking’s provocation continues to raise much debate
and, although most people do not want to give up unitarity
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way out of this problem one usually argues that
itational effects should always be negligible com-
due to a large number N of matter fields.
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[8] (and between them, remarkably, now Hawking himself
[9]), a definitive answer on whether and how information is
recovered in black hole evaporation is still lacking.

To take into account self-consistently the backreaction
effects, one needs to solve exactly the semiclassical
Einstein equations

G���g��� �
8�G

c4 h�jT���g���j�i (1)

for the metric g��, where the quantity on the right-hand
side represents the expectation value of the stress-energy
tensor operator of the matter fields in a suitable quantum
state j�i.

In the fixed Schwarzschild background

ds2 � gschw
�� dx�dx�

� ��1� rS=r�c
2dt2 �

dr2

�1� rS=r�
� r2d�2; (2)

where rS � 2GM=c2 is the Schwarzschild radius, three
inequivalent quantum vacuum states can be defined. The
first is the Boulware state jBi [10], probably the most
natural one, constructed by requiring that in the asymptotic
region, where the metric becomes Minkowskian, it reduces
to the Minkowski ground state jMi. It has the property that
hBjT��jBi vanishes asymptotically, but the drawback is a
strong divergence at the horizon r � rS [11]. One can
circumvent this difficulty by introducing a new quantum
vacuum state jHi, called the Hartle-Hawking state [12],
such that hHjT��jHi is regular at the horizon. However,
one pays a price, i.e. this stress tensor is nonvanishing at
large r and describes thermal radiation at the Hawking
temperature

T �
@c3

GkB

1

8�M
; (3)
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where kB is Boltzmann’s constant. The associated physical
situation is that of a black hole in a cavity, in thermal
equilibrium with its own radiation. The third possibility,
the Unruh state jUi [13], is constructed in such a way as to
reproduce the late time behavior of the quantum matter
fields in the classical background of a collapsing star
forming a black hole. By requiring that no particles are
present at infinity in the past and that hUjT��jUi is regular
at the future horizon, one finds, as a consequence, an
outgoing flux of thermal radiation (the Hawking flux) in
the asymptotic future.

By inserting the fixed background expression
h�jT���g

schw
�� �j�i in the right-hand side of Eq. (1) one

can solve perturbatively the backreaction equations at
O�@� to find the first order quantum corrections �g�� to
the Schwarzschild metric, i.e. g�� � gschw

�� � �g��. This
is a good approximation to the full solution of (1) only
when �g�� � gschw

�� , i.e. when the quantum terms are
small compared to the background.2 In the case of large
mass being the Hawking temperature very small this con-
dition is satisfied, for an evaporating black hole, for most of
its lifetime, but eventually at the late stages of the evapo-
ration one faces the problems mentioned above. Turning to
the static configurations, this is a good approximation in
the Hartle-Hawking case since hHjT��jHi never gets large,
while for Boulware it is certainly valid at infinity but not at
the horizon due to the divergence of the quantum stress
tensor there. The problem of understanding how, in this
case, the quantum effects modify the structure of the
classical horizon is not an easy one. One usually disregards
this question since the Boulware state describes the vac-
uum polarization around a static star whose radius is bigger
than rS, and therefore this divergence is not physically
relevant.

The motivation for our work comes from braneworld
physics, where much work is being done on the search for
black hole solutions in the Randall-Sundrum model RS2
[14]. This is technically a very involved situation and so far
nobody has achieved the goal of finding a five-dimensional
solution describing a black hole localized on the brane
[15]. An interesting physical interpretation of this fact
comes from the application of the holographic anti-de
Sitter/conformal field theory correspondence [16], for
which classical 5D bulk solutions are dual to 4D self-
consistent semiclassical configurations where gravity is
coupled to quantum matter fields [17]. If this is so then a
classical static 5D ‘‘black hole’’ will be mapped to a 4D
static solution of the backreaction equations. Staticity
naturally selects the Hartle-Hawking and Boulware states.
2The natural coordinates to be used in this context are the
Schwarzschild ones given in (2). In more general terms, this
approximation scheme is valid whenever the quantum terms
generate a correction to the curvature which is small compared
to its background value.
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If, in addition, we require that the 4D configuration be
asymptotically flat, then the choice must be the Boulware
state. That this is the correct choice is supported by the fact
that for a large radius the corrections to the Newtonian
potential in this state match those calculated classically in
5D [18].

In order to solve the backreaction equations in the
Boulware vacuum the exact expression of
hBjT���g���jBi for an arbitrary geometry is needed. No
such expression exists in four dimensions (an analytic
approximation for static spherically symmetric spacetimes
has, however, been developed in [19]). The situation
greatly improves if one restricts to the s-wave approxima-
tion for spherically symmetric backgrounds. Within this
context, in Sec. II we review the classical and semiclassical
theories of gravity coupled to a massless and minimally
coupled scalar field. Since in this case the expression of
hBjT���g���jBi is available, we end the section by writing
down the relevant backreaction equations. These equations
cannot be exactly solved analytically, and we approach the
problem in two steps. First, in Sec. III, we consider the
equations arising in the Polyakov theory, which can be
derived from ours using a near-horizon approximation for
the scalar field (this amounts to neglecting backscattering
effects in the propagation of the matter fields). These
equations are decoupled, in the sense that one can derive
an equation relating the conformal factor of the metric �
[ds2 � e2���c2dt2 � dx2� � r2d�2] as a function of the
radius r only (or � or z through the definitions r �
r0e�� � r0z according to the convenience) which is then
integrated numerically and from which one can derive the
dependence on the spatial coordinate � � ��x� and r �
r�x�. The quantum corrected solution is very similar to the
Schwarzschild solution from infinity until very close to the
classical horizon r � rS, where, as expected, big differ-
ences emerge. In particular, there exists a timelike surface
r � rB where the radial function r bounces (i.e. the two-
spheres reach a minimum radius rB and then they start to
increase) and, beyond it, a null curvature singularity with
infinite radius at a finite affine distance. Armed with these
techniques and results, we face, in Sec. IV, the full back-
reaction equations in the s-wave approximation, which are
much more complicated. The differences with respect to
the previous case are that the bounce is located closer to the
classical horizon r � rS and that the curvature singularity
is now timelike and has finite radius. Finally, in Sec. V we
summarize our conclusions.

II. GRAVITY COUPLED TO A MASSLESS SCALAR
FIELD IN THE s-WAVE APPROXIMATION

It is convenient, in the context of the s-wave approxi-
mation, to work with spherically reduced theories. Under
the spherically symmetric ansatz

ds2
�4� � ds2

�2� � r
2d�2; (4)
-2
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the Hilbert-Einstein action

S�4�g �
c3

16�G

Z
d4x

������������
�g�4�

q
R�4� (5)

reduces to

Sg �
c3

4G

Z
d2x

�������
�g
p

�r2R� 2�1� jrrj2��; (6)

where the geometrical quantities refer to the radial part
ds2
�2� of the four-dimensional metric. Note that the radial

variable r here plays the role of a scalar field with a non-
trivial coupling to the radial sector of the metric. Einstein’s
equations for spherically symmetric configurations in vac-
uum can be rewritten as

2�������
�g
p

�Sg
�gab

	
c3

4G
��2rrarbr� gab�2r�r� 1� jrrj2��

� 0; (7)

2�������
�g
p

�Sg
�r
	
c3

G
�rR� 2�r� � 0: (8)

The solution of these equations is the Schwarzschild ge-
ometry

ds2
�2� � �

�
1�

2GM

c2r

�
�dt2 � dr
2�

r
 � r�
2GM

c2 ln
�
1�

2GM

c2r

�
;

(9)

where r
 is the so-called ‘‘tortoise’’ coordinate.
Turning to the matter sector, let us consider the action

for a minimally coupled massless scalar field (in Gaussian
units)

S�4�m � �
1

8�

Z
d4x

������������
�g�4�

q
�rf�2: (10)

In the background ds2
�4� � gabdx

adxb � r2d�2 the field f
can be expanded in spherical harmonics, of which we pick
up only the s-wave component

f � f�xa� 	
fl�0

r
Y00: (11)

Under this assumption, integration of the angular variables
in (10) leads to

Sm � �
1

2

Z
d2x

�������
�g
p

r2�rf�2: (12)

Varying this action with respect to the radial part of the
metric, we obtain a two-dimensional stress-energy tensor

�
2c�������
�g
p

�Sm
�gab

	 Tab; (13)

which is related to the radial components of the corre-
sponding four-dimensional one by the relation
104023
T�4�ab �
Tab

4�r2 : (14)

Moreover, by varying (12) with respect to r we get the
expression for the angular components of the four-
dimensional stress-energy tensor

T�4�		 �
T�4�’’
sin2	

� �
rc

8�
������������
�g�2�

q �Sm
�r

: (15)
A. Semiclassical theory

The advantage of the approximation considered is that in
this case, unlike the full four-dimensional treatment, one
can provide an analytic expression for the expectation
values of all components of the stress-energy tensor. We
shall briefly review the main steps involved. The details
can be found in [7]. To this end it is very convenient to
parametrize the radial part of the four-dimensional metric
in the conformal gauge as

ds2
�2� � �e

2�dx�dx�; (16)

and moreover it is also useful to parametrize the radial
coordinate as follows,

r � r0e��: (17)

One can univocally provide an expression for hT�4���i and
hT�4�		 i by imposing two simple conditions:
(i) t
-3
he covariant conservation laws

r�hT�4���i � 0; (18)

which can be rewritten as

rahTabi � rb�
1�������
�g
p

�
�Sm
��

�
; (19)
(ii) a
t an arbitrary point X of the spacetime manifold the
expectation values of the quantum stress-energy
tensor hT���x��X��i reduce to the normal ordering
ones h: T���x��X�� :i when using a locally inertial
frame 
�X based on that point,

hT���

�
X�X��i � h: T���


�
X�X�� :i: (20)
These two conditions are strong enough to provide a
generic expression for the expectation values of the stress-
energy tensor. In particular, the breaking of the classical
Weyl symmetry (meaning that classically gabTab � 0)
produces a nonvanishing trace anomaly which can be
derived from the above conditions. One easily obtains that

hTi �
@

24�
�R� 6�r��2 � 6���: (21)

The full expression for the expectation values of the stress-
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energy tensor components, in an arbitrary conformal coor-
dinate system, is

h�jT���x��j�i � �
@

12�
�@��@��� @2

���

�
@

2�
�@��@��� ��@���

2�

� h�j: T���x�� :j�i; (22)

h�jT���x��j�i � �
@

12�
�@�@��� 3@��@��

� 3@�@���; (23)

�
�

���������Sm��

���������
�
�

�
�

���������Sm��

���������
�
��0

�
@

2�
�@�@��� @��@��

� @��@��� 2�@�@���: (24)

The dependence on the quantum state is all contained in
the three functions h�j: T�� :j�i and h�j �Sm�� j�i��0.
These functions are not independent and verify the follow-
ing relations,

@�h�j: T�� :j�i � @��
�

�

���������Sm��

���������
�
��0

�
@

4�
@��@��@��� @�@��� � 0: (25)
B. Backreaction equations in the Boulware state

In a dynamical scenario such as black hole evaporation it
is highly nontrivial to unravel the precise form of the state-
dependent functions h�j: T�� :j�i and h�j �Sm�� j�i��0.
However, in this paper we are interested in static configu-
rations, for which � and � are functions of the spatial
coordinate x � �x� � x��=2 only, i.e. � � ��x� and � �
��x�. This coordinate x reduces, in the classical limit, to
the tortoise coordinate r
 given in (9). For the Boulware
state it is natural to impose that

hBj: T���t; x� :jBi � 0: (26)

This allows us to determine, from Eq. (25), the function
h�j �Sm�� j�i��0,

�
B
���������Sm��

��������B
�
��0
� �

@

16�
��2

x ��xx�x
�x

; (27)

where the index x means a derivative with respect to the
coordinate x. Thus we have all the ingredients we need to
write down the backreaction equations in the Boulware
state, which describe how the Schwarzschild solution is
modified due to pure vacuum polarization effects
104023
2c�������
�g
p

�Sg
�g��

� h�jT��j�i;

2c�������
�g
p

�Sg
�g��

� h�jT���x
��j�i;

�
�Sg
��
�

�
�

���������Sm��

���������
�
;

(28)

where

2�������
�g
p

�Sg
�g��

�
c3r2

0e
�2�

G
�@2
���2@��@����@���

2�;

2�������
�g
p

�Sg
�g��

�
c3r2

0e
�2�

G

�
�@�@���2@��@��

�
1

4r2
0

e2�����
�
;

�
�Sg
��
�2

c3r2
0e
�2�

G
�@�@���@��@���@�@���:

(29)

It is convenient to fix the constant scale r0 as follows: r0 	����
�
p
�

�����������������������
l2Planck=12�

q
�

�����������������������
@G=12�c3

p
.

The static differential equations corresponding to
Eqs. (28) can then be written as

�xx ��2
x � 2�x�x � e2���xx � �2

x � 6�x�x � 6��2
x�;

(30)

�xx � 2�2
x �

e2�����

�
� e2���xx � 3��xx ��

2
x��; (31)

�xx ��2
x � �xx � e2�

�
3�xx � 6�x�x � 6��xx

�
3

2

��xx ��2
x�x

�x

�
: (32)

To solve these equations we have to add boundary con-
ditions which, in the present context, are naturally given by
imposing that for very large r the solution approaches the
classical one (9), i.e.,

� �
1

2
ln
�
1�

2GM

c2r

�
; (33)

r
 	 x � r�
2GM

c2 ln
�
1�

2GM

c2r

�
: (34)

We shall investigate how the relations � � ��r� and r �
r�x� are modified by (static) quantum effects.

It is convenient to analyze first what happens in a
simplified context, defined by neglecting the coupling of
the scalar field with the radial function r in the classical
matter action (12).
-4
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III. POLYAKOV THEORY’S APPROXIMATION

In this section we shall study a simplified version of the
problem outlined in the previous section. As already men-
tioned, we shall replace the action (12) by a new one
obtained by fixing the radial function r � rS � constant.
We then obtain

Smatter � �
1

2

Z
d2x

�������
�g
p

jr�rSf�j2: (35)

This approximation is usually motivated by arguing that, in
the vicinity of the classical horizon r
 rS � 2GM=c2, the
wave equation for the scalar field�

�
@2

@t2
�

@2

@r
2
� V�r�

�
�rf� � 0; (36)

where V�r� is the s-wave potential

V�r� �
�
1�

rS
r

�
rS
r3 ; (37)

reduces to the two-dimensional free wave equation�
�
@2

@t2
�

@2

@r
2

�
�rSf� � 0: (38)

This latter equation can indeed be derived by varying the
action (35).

The expression for h�jTabj�i can be derived in a num-
ber of different ways. Following the arguments of Sec. II A
one arrives at

h�jT��j�i � �
@

12�
��@���

2 � @2
��� � h�j: T�� :j�i;

(39)

h�jT��j�i � �
@

12�
@�@��; (40)

which are obtained from (22) and (23), by neglecting the
terms depending on � (note that in this approximation
h�j �Sm�� j�i � 0). Note that the above expressions can be
also obtained from the effective Polyakov action

SP � �
@

96�

Z
d2x

�������
�g
p

R��1R: (41)

The dependence on the quantum state is contained in the
functions h�j: T���x�� :j�i, which are taken to be zero in
the Boulware vacuum, i.e.

hBj: T���x�� :jBi � 0: (42)

In the Schwarzschild background [(33) and (34)] x� denote
the Eddington-Finkelstein coordinates and the components
of the quantum stress tensor read
104023
hBjT��jBi �
@

24�

�
�
rS
2r3 �

3

8

r2
S

r4

�
;

hBjT��jBi � �
@

24�

�
1�

rS
r

�
rS
2r3 :

(43)

At infinity hBjTabjBi ! 0 (where jBi reduces to the
Minkowski ground state jMi), while on the horizon
hBjT��jBi ! �@c

4=768�M2G2. These quantities are
strongly divergent when expressed in Kruskal coordinates
U
 e�x

�=2rS , V 
 ex
�=2rS regular on the future and past

horizons (H� and H�, respectively)

hBjTUUjBi 
H�
hBjT��jBi

�r� rS�
2 ;

hBjTVV jBi 
H�
hBjT��jBi

�r� rS�
2 :

(44)

This, in turn, means that quantum backreaction effects are
strong at the classical horizon r � rS.

The semiclassical equations in the Boulware vacuum
can then be written as follows,

c3r2
0e
�2�

G
�@2
��� 2@��@��� �@���

2�

� �
@

12�
��@���

2 � @2
���; (45)

c3r2
0e
�2�

G

�
�@�@��� 2@��@���

1

4r2
0

e2�����
�

� �
@

12�
@�@��; (46)

2
c3r2

0e
�2�

G
�@�@��� @��@��� @�@��� � 0; (47)

and, repeating the steps that led to Eqs. (30)–(32), we
rewrite them as

�xx ��2
x � 2�x�x � e2���xx � �2

x�; (48)

�xx � 2�2
x �

e2�����

�
� e2��xx; (49)

�xx ��
2
x � �xx � 0: (50)

We note that when the right-hand side of the above equa-
tions vanishes, while keeping finite the quotient e2�=� 	
r�2, we recover the classical equations and therefore the
Schwarzschild solution. Because of the divergent behavior
in (44), when r approaches the classical horizon rS we
expect nontrivial corrections to the classical metric.

A. Decoupling the semiclassical equations

We shall exploit the fact that Eqs. (48)–(50) do not have
terms that depend explicitly on the variable x and, also, that
(48) and (50) are homogeneous differential equations of
-5
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FIG. 1. Classical (dashed line) and numerical (solid line) plots
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order two. This allows us to write a decoupled equation for
the function ����. We use the relations

�x � _��x; (51)

�xx � ����x�
2 � _��xx; (52)

where the dot indicates a derivative with respect to �.
Equation (48) can be rewritten as

�xx �
1� 2 _�� e2�� ��� _�2�

1� e2� _�
�2
x: (53)

Moreover, subtracting Eq. (50) from (48) we get

��� _�
�xx

�2
x
�

_��2� e2� _��

1� e2� : (54)

Equations (53) and (54) allow us to obtain the desired
equation

�� �
_��1� 2 _�� e2��1� _�� _�2��

1� e2� (55)

or, going back to the radial coordinate r � r0e��,

�rr � �
�1� r�r��r�2r� ��r�

r2 � �
: (56)

The equation for ��x� can be derived by combining
Eqs. (49) and (53),

�2
x �

e2�����

��1� 2 _�� e2� _�2�
; (57)

and, equivalently, for r�x��
dr
dx

�
2
�

e2�

1� 2r�r � ��
2
r
: (58)

In the classical limit (� � 0) Eqs. (56) and (58) become

�rr � �
2�1� r�r��r

r
(59)

and �
dr
dx

�
2
�

e2�

1� 2r�r
: (60)

The general solution to Eq. (59) is

�c �
1

2
ln
�
A�

B
r

�
(61)

where A and B are two integration constants. The
Schwarzschild metric can be easily recovered by setting
A � 1 (i.e., the metric is asymptotically Minkowskian,
�! 0 as r! �1) and B � �2GM=c2. Integration of
(60) leads to the identification of x with the tortoise coor-
dinate r
.

A natural thing would be to try to solve Eq. (56) pertur-
batively in �. This gives a good approximation to the full
solution when the quantum terms are small compared to
104023
the classical ones. At O��� this is true for large r where

��r 
 �
d�c
dr
�

�GM=c2r2

1� 2GM=c2r
� 2r; (62)

but not in the near-horizon region where the quantum terms
instead dominate. In this region, backreaction effects are
strong and cannot be treated perturbatively.

B. Numerical solution

The differential equation (56) cannot be solved analyti-
cally. It must be studied numerically and for this it is
convenient to rescale the radial coordinate and introduce
the dimensionless parameter z 	 r=

����
�
p

. We then get

�zz � �
�1� z�z��z�2z� �z�

z2 � 1
: (63)

This equation allows us to analyze in a nonperturbative
way the exact function ��z�. However, for reasons that will
be clear in a moment, the function � � ��z� is not single
valued. Therefore we have to study, instead, the function
z � z��� which verifies the differential equation

z�� �
�z� z���1� 2zz��

z2 � 1
: (64)

Imposing as a boundary condition that the solution
behaves, for very large z, as the classical one

��z! 1� �
1

2
ln
�
1�

2a
z

�
(65)

with a 	 GM=c2
����
�
p

, we can generate numerically the
solution to (64). We find that the quantum corrected solu-
tion is everywhere similar to the classical one, up to the
vicinity of the classical horizon. We can observe this
behavior in Fig. 1. We have chosen a black hole of small
size (a � 103) since in this case the differences between
the classical and the semiclassical solutions can be better
appreciated.
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We observe that for regions far away from the classical
horizon (z� 1, i.e. �! 0) the numerical solution and the
classical one are very similar. However, in the vicinity of
the classical horizon the quantum corrected solution suf-
fers a bounce, absent in the classical solution, around �

�8:3 and then grows up slowly. This is the reason why we
have had to solve numerically z � z��� instead of � �
��z�. Note that this point appears at a finite value of �, and,
therefore, that the time-time component of the metric gtt
does not vanish. The existence of this bouncing point is
better represented in Fig. 2, where we plot the derivative z�
in terms of �. The existence of a zero for z� signals a
bouncing point for the radial function.

This qualitative behavior of the radial function is main-
tained irrespective of the size of the black hole. For a solar-
mass black hole (a � 1039) the bounce appears at ��zB� 

�91. This result implies, as we will see later with more
detail, that the classical horizon is eliminated by the quan-
tum corrections. However, it is important to remark that the
value of the conformal factor of the metric at the bouncing
surface is very small. In fact, the redshift for a signal
emitted by a static observer at the bounce and received at
infinity

E1
EBounce

� e��zB� (66)

transforms, for instance, a Planckian energy EBounce 

1019 GeV into an energy of the order E1 
 10�12 eV at
infinity. Moreover, we find that, for a � 1039, zB � zS �
8:48� 10�4, where zS 	 2a � 2� 1039. This shows that
the bouncing surface is indeed very close to the classical
horizon (the difference between zB and zS increases as one
reduces the mass).

C. Behavior of the metric around the bounce

Around the bounce zB the function z��� behaves as

z��� � zB �
1
2A��� �B�

2 � � � � : (67)

Plugging this expansion into (64) we get immediately that
104023
A �
zB

z2
B � 1

: (68)

Therefore

��z� � ��zB� �

�������������������������������������
2�z2

B � 1��z� zB�
zB

s
; (69)

and

�z � �

�������������������������
z2
B � 1

2zB�z� zB�

s
: (70)

To estimate the form of the metric at r
 rB,

ds2
�4� � �e

2�c2dt2 � e2�
�
dx
dr

�
2
dr2 � r2d�2; (71)

we need to find the relation between r and x. From Eq. (58)
we have that

e2�
�
dx
dr

�
2
� 1� 2z�z � �2

z � 1� 2r�r � ��2
r : (72)

In the region r
 rB the right-hand side is dominated by the
pure quantum term �2

z � ��2
r , with �z given in (70), and so

we have

r � rB �
1

2

rB
r2
B � �

e2��zB��x� xB�2 � � � � : (73)

Therefore the form of the metric is approximated by

ds2
�4� � �e

2�c2dt2 �
r2
B � �

2r2
B

dr2

�1� rB
r �
� r2d�2: (74)

The quantum corrected geometry is not singular at the
bounce, as it can be checked that all curvature invariants
are regular at r � rB. Note that r is not a good spatial
coordinate to extend the metric (74) beyond rB, one should
rather use x [see (73)].

Finally we should briefly note that the surface r � rB is
not an event horizon since gtt�rB� � 0. However, there
g�1
rr �rB� � 0 and this means that @�r2 < 0 for points x

inside rB and only for r � rB we have @�r2jrB � 0. This
means that the surface r � rB still plays the role of an
apparent horizon for outgoing radiation.

D. The geometry beyond the bounce

We shall now investigate the geometry beyond the
bouncing surface. To this end we study the 2D curvature
for � < ��zB�. Starting from the expression of the 2D
curvature

R � 8e�2�@�@�� � �2e�2��xx; (75)

where �xx is given by [see Eq. (52) where here and in the
next formulas, _� and �� are written in terms of derivatives
with respect to z)

�xx � �z�z � z
2�zz��

2
x � z�z�xx; (76)
-7
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and from (53) we get

R � �2z2 z�zz � �2z� �z��
2
z

z� �z
e�2��2

x: (77)

We can get a simplified expression for the curvature by
taking into account our basic differential equation (63) for
��z�,

R � �2z2 �zz
1� z�z

e�2��2
x � 2z2 �z�2z� �z�

z2 � 1
e�2��2

x:

(78)

Moreover, from (58) we have

e�2��2
x �

1

�z2�1� 2z�z � �
2
z�
�

z2
�

�z2�1� 2zz� � z
2
��
;

(79)

and therefore the final expression for the curvature is

R �
2

��z2 � 1�

�z�2z� �z�

�1� 2z�z � �
2
z�

�
2

��z2 � 1�

�2zz� � 1�

�1� 2zz� � z2
��
: (80)

The natural singularity at z � 1 (r �
����
�
p

), which
mimics the classical singularity at r � 0, does not belong
to the physical spacetime because of the existence of the
bounce rB encountered before. Singularities can only be
generated by zeroes of the denominator in (80). Before rB
we have z� > 0, so 1� 2zz� � z

2
� can never be zero. At

z � zB we have z� � 0, so

R �
2

��z2
B � 1�

: (81)

After the bounce z� < 0 and, therefore, one can potentially
encounter a curvature singularity. The numerical analysis
indicates that such a singularity can be found only when
z! �1. For this we need that �1� 2zz� � z

2
�� 
 0 when

z! �1. The zeroes of the above second order polyno-

mial z� � �z�
��������������
z2 � 1

p
are an exact solution to the dif-

ferential equation (64). Since the numerical analysis shows
that, for large z in the interior region, z� 
�1=2z� � � � ,

this means that asymptotically we have z� 
�z���������������
z2 � 1

p
� f�z�, where znf�z� ! 0 as z! �1 for every

positive integer number n.3 The behavior of the curvature
is then

R
�
1

z5f�z�
; (82)
3We note that the solution z� � �z�
��������������
z2 � 1

p
corresponds to

the one found in [20] as an exact solution to Eqs. (48)–(50)
where the exponential term e2�����=� is neglected.
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which clearly shows the existence of a singularity at z �
�1. A detailed computation, using (53), shows that (for
z! �1)

z

�������
�x
p

: (83)

Using Eq. (72) it is easy to realize that in the limit z!�1
we have f�z� 
 e�2z2

and this implies that the scalar cur-
vature goes to �1 there as

R
�
e2z2

z5
: (84)

Moreover, such a singularity is null (i.e. e2� ! 0 as z!
�1) and is located at a finite affine distance from any finite
z. Finally we remark that the singularity arises due to the
branching point for the radial function r 	 z

����
�
p

, with
respect to the spatial coordinate x, displayed in (83). This
is the underlying reason for the generation of the curvature
singularity at x � �1.
IV. QUANTUM CORRECTIONS IN THE s-WAVE
APPROXIMATION

The approximation used in the previous section consists,
essentially, in neglecting the effects of the potential barrier
for the wave equation (36). In this way we have simplified
considerably the technical problem. It is natural at this
point to ask whether the results obtained are maintained
when the effects of the potential are included. The detailed
analysis presented before has allowed us to introduce all
the techniques that we shall use to attack the full problem
in the s-wave approximation. The equations to solve are
now more involved. However, since the conceptual line to
follow should be clear, we will focus only on the most
important points.

In the Schwarzschild spacetime the expectation values
of the stress tensor components in the Boulware state [see
(22)–(27)] are

hBjT��jBi �
@

24�

�
�

2rS
r3 �

15

8

r2
S

r4

�

�
@

16�r2

�
1�

rS
r

�
2

ln
�
1�

rS
r

�
;

hBjT��jBi �
@

12�

�
1�

rS
r

�
rS
2r3 ;�

�

���������Sm��

���������
�
� �

7@

16�
rS
r3 �

@

2�
r2
S

r4 �
@

8�r2

�
1�

2rS
r

�

�

�
1�

rS
r

�
ln
�
1�

rS
r

�
: (85)

All these quantities vanish asymptotically, while on the
horizon the leading divergence is the same as in the
Polyakov case (44). Again, this means that to inspect the
near-horizon region r
 rS we need to solve exactly the
backreaction equations.
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A. Decoupling the semiclassical equations

We shall now proceed parallel to Sec. III to decouple the
system of differential equations (30)–(32) to generate a
single equation for � � ��r�. Using the relations �x �
_��x and �xx � ����x�

2 � _��xx we transform them into

�xx ��2
x � 2 _��2

x � e2�� ���2
x � _��xx � _�2�2

x

� 6 _��2
x � 6��2

x�; (86)

�xx � 2�2
x �

e2�����

�
� e2�� ���2

x � _��xx

� 3��xx ��2
x��; (87)

�xx ��
2
x � ���2

x � _��xx � e2�
�

3 ���2
x � 3 _��xx

� 6 _��2
x � 6��xx

�
3

2

��xx ��
2
x�x

�x

�
: (88)

From (86) and (87) we get

�xx�1� _�e2�� � �1� 2 _�� e2�� ��� _�2

� 6 _�� 6����2
x; (89)
104023
�xx�1� � _�� 3�e2�� � �2� � ��� 3�e2���2
x �

e2�����

�
;

(90)

which can be rewritten as

�2
x �
�1� _�e2��e2�����

�D
; (91)

�xx �
�1� 2 _�� e2�� ��� _�2 � 6 _�� 6���e2�����

�D
;

(92)

where

D � ��1� � _�� 3�e2���1� 2 _�� e2�� ��� _�2 � 6 _�

� 6��� � �1� _�e2���2� � ��� 3�e2��: (93)

Taking into account that

�xxx

�x
� _�xx; (94)

and plugging the expressions (91) and (92) into (88), we
obtain, after a straightforward but very long calculation, a
third order differential equation relating � and r,
�r2 � 3�� 6��� r�r�2r2 � 6�� r��r�� � �72�2�2�r2 � 3�� r��r� � 6r���12r�� �r�6r4 � 40r2�� 63�2

� 2r��r�4r2 � 14�� r��r�� � r��2r2 � 15�� 2r��r��rr� � r2�r��6r4 � 56r2�� 93�2��3
r

� 2r2�2�r2 � 6���4
r � �2

r�4r6 � 54r4�� 162r2�2 � 162�3 � 9r2�3�rr� � r2�2�r4 � 5r2�� 12�2��rr

� 9�3�2
rr � 3r�2�rrr� � r�r�4r4 � 6r2�� 72�2 � ��2r4 � 14r2�� 69�2��rr � 3r�3�rrr��� � 0: (95)

The second factor in the above equation is the relevant one since it leads directly, when � � 0, to the classical equation
(59). The quantum corrections to the Schwarzschild metric should then be computed by exactly solving the above
differential equation. Introducing the dimensionless coordinate z � e�� � r=

����
�
p

we get an ordinary differential equation
for � � ��z�. However, as we have already explained in the analysis of the Polyakov theory, since the function � � ��z�
could not be one-to-one it is more appropriate to work directly with the differential equation for the function z � z���. It
reads as follows,

18���21� 4��zz4
� � 216�2z5

� � 2z8z2
��2z� � z��� � 2z7z��3z� � 2z3

� � z��� � 3z3z���31� 4��z� � 8�3� 10��z3
�

� �23� 4��z��� � 6z2z2
���27� 28��z� � 12��1� ��z3

� � 15�z��� � 2z6z��1� 27z2
� � 5z�z���

� 3z4��3z�� � 2z���2� ��27� 8��z2
� � 2�2� ��z�z��� � z���� � z

5�56z2
� � 6�1� 6��z4

�

� 9z2
�� � z��14z�� � 3z����� � 0: (96)
B. Numerical solution

We solve numerically the above equation by imposing
that, for very large z and �! 0, the solution approaches
the classical one. We find that the solution is almost
identical to the classical one up to the vicinity of a surface,
which we also denote as zB, located very close to the
classical horizon. The result (for a solar-mass black hole
a 	 GM=c2

����
�
p
� 1039) is depicted in Fig. 3 which shows

the existence of a bounce for the radial function at �B �
�89:69, where

z��� � zB �
1
2A��� �B�

2 � � � � ; (97)

and A is a positive coefficient to be computed numerically.
Moreover, we find that zB � zS � 1:76� 10�37.
Therefore, its location is much closer to the classical
horizon than in the Polyakov theory approximation of
Sec. III.
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FIG. 3. Plots of the function z����, classical (dashed line) and
numerical (solid line), for a � 1039.
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C. Branching point for the radial function

The main difference with respect to the Polyakov theory
appears in the relation between r and x. In terms of the
function z��� we have

e2�
�
dx
dr

�
2
�

zz�D

�1� zz��
; (98)

e2�
�
dx
d�

�
2
�

�zz3
�D

�1� zz��
; (99)

where

D �
1

z4z4
�
f��z2z� � z� 3z���z2z3

� � 2z3z2
� � z2z��

� 5zz2
� � z

2z� � 6�z3
�� � �z

2z� � z�

� �2z2z3
� � 3z3

� � z
2z�� � zz

2
��g: (100)

In Fig. 4 we show the typical behavior of the function D in
terms of �.

Note that in the vicinity of the bounce z� ! 0, and from
(100), we have D
 z�3

� . Therefore
-89.74 -89.73 -89.72 -89.71
ρ

-1.5 • 10 79

-1.25 • 10 79

-1 • 10 79

-7.5 • 10 78

-5 • 10 78

-2.5 • 10 78

D

FIG. 4. For a � 1039 the bounce of the radial function (D �
�1) is located at �
�89:69. At �
�89:72 the function D
vanishes.
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e2�
�
dx
dr

�
2



1

z2
�
; (101)

and hence

dr
dx

 z�: (102)

In other words, the expansion of r in terms of x has to be of
the form r � rB � ��x� xB�

2 � � � � , where � is a nu-
merical constant, in agreement with the analytic behavior
encountered in (73).

A similar argument allows us to determine the behavior
of r in terms of x around the zero of the function D. This
happens at � � �M & �B, just after the bounce. Around
the zero of D we have D�r� 
 rM � r. Therefore

dx
dr

�

���������������
rM � r
p

; (103)

and hence

r � rM � ��x� xM�2=3 (104)

where � is a numerical positive constant. The radial func-
tion has a branching point at x � xM, which turns out to be
the minimum possible value for the tortoise coordinate x.

The form of the metric in this region is

ds2
�4� � e2��r���c2dt2 � dx2�

� �rM � B�x� xM�
2=3�2d�2 (105)

where, according to our previous analysis, the function
��r� is finite and regular at rM. The above metric has a
singularity at r � rM, which cannot be avoided by a
change of coordinates. It is indeed a curvature singularity
as we now show. The 4D scalar curvature can be expressed,
in terms of � and �, as follows,

R�4� � �2e�2���xx � 2�xx � 3�2
x� � 2e2�: (106)

The first term is just the two-dimensional scalar curvature
R � �2e�2��xx, which, according to (76), (91), and (92),
is

R � �
2

�z2D

�z3z�� � 2z3z� � z
2 � 6zz� � 6�z�

zz3
�

:

(107)

At x � xM, where D�xM� � 0, R and also the second and
third terms in (106) are divergent. Finally we note, from
(105), that this singularity is timelike, has finite radius rM
and is located at a finite affine distance away.
V. CONCLUSIONS

The existence of a bounce for the radial function r, prior
to the emergence of a spacetime singularity, is perhaps the
most significative result of our analysis. It already appears
in the simplified Polyakov theory and it is still there in the
-10
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most accurate s-wave approximation. It is natural to expect
it to persist in a full treatment of the problem.

Our results are perhaps not surprising from the semi-
classical point of view, where, due to the strong divergence
of the Boulware stress tensor at the Schwarzschild horizon,
important deviations from the classical behavior are indeed
expected to arise. However, they constitute an important
prediction for the search of static 5D braneworld configu-
rations with asymptotically flat boundary conditions on the
brane: such solutions are not black holes, but rather naked
singularities. In the 4D semiclassical context this reinfor-
ces the idea that the Boulware state describes the vacuum
polarization around a static star, not a black hole. Indeed
104023
the natural thing for a black hole is to be time dependent
and to evaporate via the Hawking effect.

Finally we point out that our analysis does not exclude
the existence of static braneworld black holes, but the price
to pay is to give up asymptotic flatness on the brane. This
means, in the dual 4D theory, to replace Boulware with the
Hartle-Hawking state.
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