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We discuss two aspects of f�R� theories of gravity in metric formalism. We first study the reasons to
introduce a scalar-tensor representation for these theories and the behavior of this representation in the
limit to General Relativity, f�R� ! R. We find that the scalar-tensor representation is well behaved even in
this limit. Then we work out the exact equations for spherically symmetric sources using the original f�R�
representation, solve the linearized equations, and compare our results with recent calculations of the
literature. We observe that the linearized solutions are strongly affected by the cosmic evolution, which
makes very unlikely that the cosmic speedup be due to f�R� models with correcting terms relevant at low
curvatures.
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I. INTRODUCTION

In the last few years, modified theories of gravity of the
f�R� type, where R is the Ricci scalar, have received much
attention. These theories have the ability to generate late-
time cosmic acceleration and also early-time inflation de-
pending on the details of the function f�R� considered. In
this sense, they represent an interesting alternative to the
combination of General Relativity (GR) plus dark energy
models [1,2], and to other explanations for the cosmic
speedup [3,4]. A given gravity Lagrangian f�R� can, in
addition, lead to two completely different theories depend-
ing on the variational principle used to derive the equations
of motion. Here we will be dealing with the most common
choice, the metric variational formalism. The other choice,
Palatini formalism, assumes that the connection is a field
independent of the metric and will not be considered here
(see [5–17] for details).

The dominant underlying philosophy in the construction
of f�R�models has been that nonlinear curvature terms that
grow at low curvatures could have a negligible effect in
stellar systems or galactic scales, where the curvature is
assumed to be relatively high, but a nontrivial one in the
cosmic regime, where the curvatures involved are orders of
magnitude smaller. This idea has led to many different
proposals, among which the Carroll et al. model f�R� �
R��4=R [18] is perhaps the most known (see also [19]
for earlier models). A rich debate in various arenas has
taken place with some authors focusing on the cosmologi-
cal aspects,1, and others on the predictions of these theories
at smaller scales (Newtonian and post-Newtonian re-
gimes). Among the latter, some claim that models of the
1=R type are ruled out by solar system and/or laboratory
experiments [22–27] (see also [28] for a discussion of Rn

models), and others defend the opposite [29–34] (see also
[35] for a critical discussion of these two positions). An
important element in this discussion was the identification

of f�R� theories with a class of scalar-tensor theories
[22,23,36], which allowed one to reinterpret the equations
of motion and made more accessible the computation of
the Newtonian and post-Newtonian limits. More recently,
however, this scalar-tensor approach has been criticized
and, apparently, shown to break down for theories close to
GR [34]. It was then claimed that solar system tests do not
actually rule out theories of the type f�R� � R� �g�R�,
with � a small parameter, because the corresponding
scalar-tensor theory is not well defined in the limit �!
0. This conclusion, on the other hand, has also been
criticized recently in [25–27], where spherically symmet-
ric weak field configurations have been studied using the
original f�R� representation. In those works, it has been
found that the post-Newtonian parameter � turns out to be
� � 1=2, in agreement with the results found using the
scalar-tensor approach in [22]. Solar system experiments
again seem to rule out f�R� theories. However, there is
something unclear in those works that should be reana-
lyzed before accepting their conclusions. In [25–27] the
wrong coordinate system was used to carry out the calcu-
lations and identify the post-Newtonian parameter �. In
fact, for the discussion of solar system experiments and the
identification of post-Newtonian parameters, one should
use isotropic coordinates instead of Schwarzschild coor-
dinates (see [37], page 1097 for details). This point and
others will be carefully addressed here.

In this work we will discuss in some detail the scalar-
tensor representation of f�R� models of the type f�R� �
R� �g�R� and their limit to GR. Firstly, we will motivate
the introduction of the scalar-tensor representation and will
then show that it is well defined even in the limit �! 0.
Secondly, we will consider the weak field limit for spheri-
cally symmetric sources using the original f�R� represen-
tation. We will show that the same results found in [24]
using the scalar-tensor approach are found here using the
f�R� form. For our calculations we use isotropic coordi-
nates. In the appendix, we also solve the linearized equa-
tions using Schwarzschild coordinates and transform the
solution to isotropic coordinates. This will serve as a con-
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sistency check for our calculations. In order to provide a
complete description of the dynamics of f�R� theories, in
our derivation we will take into account the interaction of
the local system with the background cosmology. This will
allow us to better understand the limit to General Relativity
of f�R� theories. We will see how, driven by the cosmic
expansion, a theory characterized by a low curvature scale
R� goes from a General Relativistic phase, in which the
post-Newtonian parameter � � 1, to a scalar-tensor phase,
in which �! 1=2. Though we will be mainly discussing
the weak field regime, we provide here the basic concepts
and formulas that (hopefully) will be used in a forthcoming
work [38], in which the strong field regime and the con-
tribution of higher-order corrections to the linearized the-
ory [39] will be studied.

The paper is organized as follows. We first define the
action and derive the equations of motion for f�R� theories.
Those equations are then physically interpreted, which
motivates the introduction of the scalar-tensor representa-
tion. We then discuss the conditions for the equivalence
between f�R� theories and scalar-tensor theories and study
the limit f�R� ! R. The next step is to write the equations
of motion for spherically symmetric systems and obtain the
relevant solutions for weak sources. We then discuss the
results obtained and the interaction of the system with the
background cosmology. We finish with a brief summary
and conclusions. In the appendix we solve the equations
using Schwarzschild coordinates as a consistency check
for our results.

II. THE THEORY

The action that defines f�R� gravities has the generic
form

 S �
1

2�2

Z
d4x

�������
�g
p

f�R� � Sm�g��;  m� (1)

where Sm�g;  m� represents the matter action, which de-
pends on the metric g�� and the matter fields  m, and �2 is
a constant with suitable units.2 For notational purposes, we
remark that the scalar R is defined as the contraction R �
g��R��, where R�� is the Ricci tensor

 R�� � �@����� � @����� � �������� � �������� (2)

and ��	� is the connection, which is defined as

 ��	� �
g��

2
�@	g�� � @�g�	 � @�g	�� (3)

Variation of (1) leads to the following field equations for
the metric

 

f0�R�R���
1

2
f�R�g���r�r�f0�R��g���f0�R���2T��

(4)

where f0�R� 	 df=dR. According to (4), we see that, in
general, the metric satisfies a system of fourth-order partial
differential equations. The trace of (4) takes the form

 3�f0�R� � Rf0�R� � 2f�R� � �2T (5)

This equation will be useful for the physical interpretation
of the field equations.

A. Physical interpretation

Let us consider a generic f�R� theory not necessarily
close to GR and rewrite (4) in the form
 

R�� �
1

2
g��R �

�2

f0�R�
T�� �

1

2f0�R�
g���Rf

0�R� � f�R��

�
1

f0�R�
�r�r�f0�R� � g���f0�R�� (6)

The right hand side of this equation can now be seen as the
source terms for the metric. This equation, therefore, tells
us that the metric is generated by the matter and by terms
related to the scalar curvature. If we now wonder about
what generates the scalar curvature, the answer is in (5).
That expression says that the scalar curvature satisfies a
second-order differential equation with the trace T of the
energy-momentum tensor of the matter and other curvature
terms acting as sources. We have thus clarified the role of
the higher-order derivative terms present in (4). The scalar
curvature is now a dynamical entity which helps generate
the spacetime metric and whose dynamics is determined by
(5).

At this point one should have noted the essential differ-
ence between a generic f�R� theory and GR. In GR the
only dynamical field is the metric and its form is fully
characterized by the matter distribution through the equa-
tions G�� � �2T��. The scalar curvature is also deter-
mined by the local matter distribution but through an
algebraic equation, namely, R � ��2T. In the f�R� case
both g�� and R are dynamical fields, i.e., they are governed
by differential equations. Furthermore, the scalar curvature
R, which can obviously be expressed in terms of the metric
and its derivatives using (2), now plays a nontrivial role in
the determination of the metric itself.

B. Scalar-Tensor representation

The physical interpretation given above puts forward the
central and active role played by the scalar curvature in the
field equations of f�R� theories. However, (5) suggests that
the actual dynamical entity is f0�R� rather than R itself.
This is so because, besides the metric, f0�R� is the only
object acted on by differential operators in the field equa-
tions. Motivated by this, we can introduce the following

2We will see later how �2 is related to the effective Newton’s
constant [see Eq. (33) below].
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alternative notation

 
 	 f0�R� (7)

 V�
� 	 R�
�f0 � f�R�
�� (8)

and rewrite (4) as
 

R���g� �
1

2
g��R�g� �

�2



T�� �

1

2

g��V�
�

�
1



�r�r�
� g���
� (9)

Using the same notation, (5) turns into

 3�
� 2V�
� �

dV
d

� �2T (10)

This slight change of notation helps us identify (9) and (10)
with the field equations of a Brans-Dicke theory with
parameter ! � 0 and nontrivial potential V�
�, whose
action takes the form

 S �
1

2�2

Z
d4x

�������
�g
p

�
R� V�
�� � Sm�g��;  m� (11)

In terms of this scalar-tensor representation our interpreta-
tion of the field equations of f�R� theories is obvious, since
both the matter and the scalar field help generate the
metric. The scalar field is a dynamical object influenced
by the matter and by self-interactions according to (10).

We would like to remark that, according to the above
derivation, the only requirement needed to express the field
equations of an f�R� theory in the form of a Brans-Dicke
theory is that f0�R� be invertible,3 i.e., that R�f0� exist. This
is necessary for the construction of V�
�. Therefore, the
differentiability condition f00�R� � 0 that one finds follow-
ing other derivations of the scalar-tensor representation
[22,23,34,36] is just a superfluous condition generated by
the particular method used.4.

The inverse problem of finding the f�R� theory corre-
sponding to a given scalar-tensor theory of the form given
in (11) also requires an invertibility condition only. In this
case, the equations of motion lead to R � dV=d
. If this
expression can be inverted to obtain 
�R� then the corre-
sponding f�R� Lagrangian is given by

 f�R� � R
�R� � V�
�R�� (12)

We thus conclude that the condition for the equations of
motion of an f�R� theory to be equivalent to those of a! �
0 Brans-Dicke theory is that the function f0�R� be inver-
tible. Conversely, for a given ! � 0 Brans-Dicke theory

the condition for the equivalent f�R� theory to exist is that
the function dV�
�=d
 � R be invertible.

C. Limit f�R� ! R

Now that the scalar-tensor representation of f�R� theo-
ries has been introduced and the conditions for their
equivalence clarified, we will consider the limit f�R� going
to R to gain some insight on their dynamical properties. We
will also show that the equivalence is, by no means, broken
in this limit.

Let us concentrate on models of the form f�R� � R�
�g�R� with � an adjustable small parameter. The scalar
field is therefore identified with 
 � 1� �g0�R� and be-
comes a constant, 
 � 1, in the limit �! 0. The relevant
part of 
 is therefore contained in ’ � g0�R�. By inverting
this relation we find R � R�’�, which allows us to express
the scalar potential as V�
� � ��R�’�’� g�R�’��� 	
� ~V�’�. The action (11) then turns into

 S �
1

2�2

Z
d4x

�������
�g
p

��1� �’�R� � ~V�’��

� Sm�g��;  m� (13)

As expected, the limit �! 0 leads smoothly to the action
of GR. Let us now look at the equation of motion for 
 to
see what happens in that limit. In terms of ’, (10) can be
recast as

 ��3�’� ’R�’� � 2g�R�� � R�’� � �2T (14)

In the limit �! 0 the dynamical part of this equation, that
involving �’, vanishes and we recover the familiar (alge-
braic) relation R � ��2T. This means that ’ has com-
pletely decoupled from the theory. As a consequence R
becomes independent of ’ and we can state with confi-
dence that the limit to GR is smooth. This shows that the
equivalence between f�R� gravities and their related
Brans-Dicke theories holds even in the limit of GR, since
no inconsistency is found in this limit.

To conclude this section, we mention that from (14) we
can extract valuable physical information. The parameter
�, which we now assume to be small and fixed, in front of
the �’ term makes apparent the existence of two regimes.
The first one corresponds to a behavior very close to GR, in
which R � ��2T is a good approximation. The second
regime arises when the terms on the right hand side are
small. In that situation, the contribution from the left hand
side can no longer be neglected. The behavior of R is then
dominated by ’, i.e., the full dynamics of (14) must be
taken into account, which means that R receives contribu-
tions from T and from its self-interactions (or, equivalently,
from ’). In this situation, the theory behaves as a scalar-
tensor theory, with ’ representing the scalar degree of
freedom. We will discuss further this point later on.

3The minimum requirement for a function of one variable to
be invertible in an interval is that the function be continuous and
one-to-one in that interval.

4If f00�R� vanishes at some point R0, we may need to choose
among different branches to extend the solutions R�f0� beyond
R0. In other words, R�f0� may not be unique in those cases.
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III. APPLICATIONS

A complete description of a physical system must take
into account not only the system but also its interaction
with the environment. In this sense, any physical system is
surrounded by the rest of the universe. The relation of the
local system with the rest of the universe manifests itself in
a set of boundary conditions. In our case, according to (5)
and (6), the metric and the function f0 (or, equivalently, R
or 
) are subject to boundary conditions, since they are
dynamical fields (they are governed by differential equa-
tions). The boundary conditions for the metric can be
trivialized by a suitable choice of coordinates. In other
words, we can make the metric Minkowskian in the asymp-
totic region and fix its first derivatives to zero (see chapter 4
of [40] for details). The function f0�R�, on the other hand,
should tend to the cosmic value f0�Rc� as we move away
from the local system. The precise value of f0�Rc� is
obtained by solving the equations of motion for the corre-
sponding cosmology. According to this, the local system
will interact with the asymptotic (or background) cosmol-
ogy via the boundary value f0�Rc� and its cosmic-time
derivative. Since the cosmic time-scale is much larger
than the typical time-scale of local systems (billions of
years versus years), we can assume an adiabatic interaction
between the local system and the background cosmology.
We can thus neglect terms such as _f0�Rc�, where dot
denotes derivative with respect to the cosmic time. The
problem of finding solutions for the local system, therefore,
reduces to solving (6) expanding about the Minkowski
metric in the asymptotic region,5 and (5) tending to

 3c�f0�Rc� � Rcf0�Rc� � 2f�Rc� � �2Tc (15)

where the subscript c denotes cosmic value, far away from
the system. In particular, if we consider a weakly gravitat-
ing local system, we can take f0 � f0c � ’�x� and g�� �
��� � h��, with j’j 
 jf0cj and jh��j 
 1 satisfying
’! 0 and h�� ! 0 in the asymptotic region. Note that
should the local system represent a strongly gravitating
system such as a neutron star or a black hole, the perturba-
tive expansion would not be sufficient everywhere. In such
cases, the perturbative approach would only be valid in the
far region. Nonetheless, the decomposition f0 � f0c � ’�x�
is still very useful because the equation for the local
deviation ’�x� can be written as

 3�’�W�f0c � ’� �W�f0c� � �2T; (16)

where T represents the trace of the local sources, we have
defined W�f0� 	 R�f0�f0 � 2f�R�f0��, and W�f0c� is a
slowly changing constant within the adiabatic approxima-

tion. In this case, ’ needs not be small compared to f0c
everywhere, only in the asymptotic regions.

A. Spherically symmetric solutions

The analysis of spherically symmetric solutions can be
carried out in several ways. One of them is to write the line
element using Schwarzschild coordinates

 ds2 � �B�~r�dt2 �
1

C�~r�
d~r2 � ~r2d�2: (17)

Another possibility, more suitable for the discussion of
observable effects, is to use isotropic coordinates [37].
We will follow here this second option and, for complete-
ness, we will discuss the other in the appendix to check the
consistency of our calculations. We define the line element

 ds2 � �A�r�e2 �r�dt2 �
1

A�r�
�dr2 � r2d�2�; (18)

which, assuming a perfect fluid for the sources, leads to the
following field equations (see [41] for a different approach)
 

Arr � Ar

�
2

r
�

5

4

Ar
A

�
�
�2�
f0
�
Rf0 � f�R�

2f0

�
A
f0

�
f0rr � f

0
r

�
2

r
�
Ar
2A

��
(19)

 

A r

�
2

r
�
f0r
f0
�
Ar
A

�
�
A2
r

4A
�
�2P
f0
�
Rf0 � f�R�

2f0

� A
f0r
f0

�
2

r
�
Ar
2A

�
(20)

where f0 � f0c � ’, and the subscripts in  r, f0r, f0rr, Mr
denote derivation with respect to the radial coordinate.
Note also that f0r � ’r and f0rr � ’rr. The equation for
’ is, according to (16) and (18),
 

A’rr � �A
�
2

r
�  r

�
’r �

W�f0c � ’� �W�f0c�
3

�
�2

3
�3P� ��: (21)

Equations (19)–(21) can be used to work out the metric of
any spherically symmetric system regardless of the inten-
sity of the gravitational field. For weak sources, however, it
is convenient to expand them assuming j’j 
 f0c and A �
1� 2M�r�=r, with 2M�r�=r
 1. The result is

 �
2

r
Mrr�r� �

�2�
f0c
� Vc �

1

f0c

�
’rr �

2

r
’r

�
(22)

 

2

r

�
 r �

’r
f0c

�
�
�2

f0c
P� Vc (23)

 ’rr �
2

r
’r �

�2

3
�3P� �� �m2

c’ (24)

5Note that the expansion about the Minkowski metric does not
imply the existence of global Minkowskian solutions. As we will
see, the general solutions to our problem turn out to be asymp-
totically de Sitter spacetimes.
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where we have defined

 Vc 	
Rcf0c � f�Rc�

2f0c
(25)

 m2
c �

f0�Rc� � Rcf
00�Rc�

3f00�Rc�
: (26)

This expression for m2
c was first found in [24] within the

scalar-tensor approach. It was found there that m2
c > 0 is

needed to have a well-behaved (nonoscillating) Newtonian
limit. This expression and the conclusionm2

c > 0 were also
reached in [42] by studying the stability of de Sitter space.
The same expression has also been found more recently in
[27,39]. Outside of the sources, the solutions of (22)–(24)
lead to

 ’�r� �
C1

r
e�mcr (27)

 A�r� � 1�
C2

r

�
1�

C1

C2f0c
e�mcr

�
�
Vc
6
r2 (28)

 A�r�e2 � 1�
C2

r

�
1�

C1

C2f0c
e�mcr

�
�
Vc
3
r2 (29)

where an integration constant  0 has been absorbed in a
redefinition of the time coordinate. The above solutions
coincide, as expected, with those found in [24] for the
Newtonian and post-Newtonian limits using the scalar-
tensor representation. Comparing our solutions with those,
we identify

 C2 	
�2

4�f0c
M� (30)

 

C1

f0cC2
	

1

3
(31)

where M� �
R
d3x��x�. The line element (18) can be

written as
 

ds2 � �

�
1�

2GM�
r
�
Vc
3
r2

�
dt2

�

�
1�

2G�M�
r

�
Vc
6
r2

�
�dr2 � r2d�2� (32)

where we have defined the effective Newton’s constant

 G �
�2

8�f0c

�
1�

e�mcr

3

�
(33)

and the effective post-Newtonian parameter

 � �
3� e�mcr

3� e�mcr
: (34)

This completes the lowest-order solution in isotropic co-
ordinates. The higher-order corrections to this solution will

be studied in detail elsewhere [38] (see also [39] for a
recent discussion of those corrections).

Had we used the Schwarzschild line element (17), the
result would be (see the appendix for details)
 

ds2 � �

�
1�

C2

~r

�
1�

e�mc~r

3

�
�
Vc
3

~r2

�
dt2

�

�
1�

C2

~r

�
1�

1�mc~r
3

e�mc~r
�
�
Vc
3

~r2

�
d~r2

� ~r2d�2: (35)

We see that the Newtonian limit, the function in front of
dt2, coincides with the result obtained using isotropic
coordinates (neglecting higher-order corrections due to
the change of coordinates). However, the first post-
Newtonian correction is not correctly identified if we just
take the function in front of d~r2. It is necessary to trans-
form to isotropic coordinates using

 ~r � r�
C2

2

�
1�

e�mcr

3

�
�
Vc
12
r3 (36)

to find the correct expression. Nonetheless, in the limit
mcr
 1 considered in [25–27] and neglecting the Vcr2

terms, the change of coordinates is trivial (d~r=dr � 1) and
(35) agrees with (32). This is, however, just an accident
that leads to the desired result. In general, one should use
isotropic coordinates for the correct identification of the
post-Newtonian parameters and take into account the in-
teraction with the background cosmology for the right
interpretation of the limit to General Relativity (see next
subsection).

B. Discussion of the linearized solutions

We see from (33) and (34) that the parameters G and �
that characterize the linearized metric depend on the ef-
fective mass mc (or inverse length scale m�1

c ). Newton’s
constant, in addition, also depends on f0c. Since the value of
the background cosmic curvature Rc changes with the
cosmic expansion, it follows that f0c and mc will also
change. The variation in time of f0c will induce a time
variation in the effective Newton’s constant analogous to
the well-known time dependence that arises in Brans-
Dicke theories. Actually, if we use the scalar-tensor repre-
sentation, the analogy becomes an identity. The length
scale m�1

c , characteristic of f�R� theories, does not appears
in Brans-Dicke theories because in the latter the scalar
potential is V�
� 	 0, in contrast with (8).

Let us now review how the cosmic expansion proceeds
in f�R� models with curvature terms that grow at low
curvatures (see also [18,24,43] for more details). During
the matter dominated era, the cosmic expansion takes place
as in GR. This is so because Rc and Tc are well above the
characteristic scale R� of the nonlinear terms in the
Lagrangian. In this situation, we find Rc � ��2Tc, as
discussed in the paragraph following Eq. (14). At later
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times, the sources become very diluted and Rc approaches
the scale R� in which the left hand side of (14) can no
longer be neglected. The scalar curvature then becomes a
fully dynamical object and the theory gets into the scalar-
tensor dynamical regime, which triggers the cosmic
speedup. Therefore, the cosmic expansion drives the theory
from a General Relativistic (decelerated) phase to a scalar-
tensor (accelerated) phase. Let us now consider what hap-
pens in the solar system. During the General Relativistic
phase, characterized by Rc � R�, f0c ! 1, f00c ! 0, we find
that mc � 1, which leads to e�mcr ! 0 rapidly (very short
scalar interaction range). During this period of time, we
have �! 1, which coincides with the General Relativistic
result and agrees with current observations. At later cosmic
times, when Rc  R�, f00c > 0, the effective mass mc be-
comes finite, decays with time as f00c grows, and eventually
leads to e�mcr � 1 over solar system scales (very long
scalar interaction range). We then find �! 1=2, which
coincides with the value corresponding to the w � 0
Brans-Dicke theory and is ruled out by observations.

The change of dynamical regime in local systems can
also be seen by looking at the value of R. To illustrate this
point, we will use the solutions found in [24], which are
also valid within the sources. To lowest order, we find

 R � Vc �
m2
c�

2

4�f0c

Z
d3x0

��t; ~x0�
j ~x� ~x0j

e�mcj ~x� ~x0j (37)

It is not difficult to show (considering a small volume
centered about j ~x� ~x0j ! 0 and integrating by parts) that
this expression becomes R � �2��t; ~x� in the limit of
General Relativity (Rc � R�, f0c ! 1, f00c ! 0, m2

c ! 1,
and Vc ! 0). As the cosmic expansion takes place and Rc
approaches the scale R� of the scalar-tensor dynamical
regime (f0c � 1, f00c > 0 and growing, m2

c ! finite and
decreasing) the dependence of R on the local matter den-
sity is softened by the integration in (37). At a given point
~x, R is then an average over nearby sources with weight
e�mcj ~x� ~x0j=j ~x� ~x0j. This shows that the dependence ofR on
the local matter density is less and less important as m2

c
decreases, or equivalently, as the interaction range lc �
m�1
c of the scalar field grows due to the cosmic expansion.

Note that though the magnitude of R is reduced at the
location of the sources, with respect to the value �2� in
the limit of GR, it becomes nonzero at farther distances
from them. In fact, away from the sources, (37) can be
approximated by

 R � Vc �
m2
c�2

4�f0c

M�e�mcr

r
(38)

which has a smooth 1=r decay whenmcr
 1. Note that in
the limit of infinite range,mc ! 0, the curvature R does not
depend on the local sources. This shows explicitly that the
philosophy that motivated the design of f�R� models (see
the introduction) was wrong, since R not always behaves as
in GR.

In summary, we have seen that any theory characterized
by nonlinear terms that grow at low curvatures will evolve
from GR during the matter dominated era to a scalar-tensor
theory at later times. This transformation takes place at
both large (cosmic) and short (solar sytem) scales.
Therefore, if the cosmic speedup were due to the growth
of nonlinear corrections in the Lagrangian, today we
should be in the scalar-tensor phase, which is characterized
by �! 1=2. This fact is in conflict with solar system
observations (�exp � 1� �2:1� 2:3� � 10�5, [44]) and
makes it very unlikely that the cosmic speedup be due to
such corrections in the gravity Lagrangian.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied two aspects of modified
f�R� theories of gravity, namely, their equivalence with
w � 0 Brans-Dicke theories and the weak field solutions in
systems with spherical symmetry using the f�R� represen-
tation. We found that the equivalence between f�R� theo-
ries and ! � 0 Brans-Dicke theories only requires
invertibility of the functions f0�R� and dV=d
. This result
puts forward that other well-known derivations of the
scalar-tensor representation [22,23,36] introduce an artifi-
cial condition, f00�R� � 0, that may lead to wrong conclu-
sions [34] in the limit �! 0 in models of the form
f�R� � R� �g�R�. We explicitly showed that such limit
is smooth and that one recovers GR from the scalar-tensor
theory.

We then worked out the spherically symmetric solutions
of the linearized field equations. We carried out the analy-
sis independently using two different sets of coordinates,
namely, isotropic and also Schwarzschild coordinates. The
results are in perfect agreement when one transforms from
one coordinate system to the other, which confirms the
validity of our results. We have also made emphasis on the
adiabatic interaction between local systems and the back-
ground cosmology via boundary conditions. We have seen
that the parameters that characterize the linearized solu-
tions depend on the form of the Lagrangian and on the
value of the cosmic curvature Rc at a given cosmic time. It
is then straightforward to see that the GR solution is
recovered in the limit Rc � R�, where R� represents the
characteristic low curvature scale of the Lagrangian. When
Rc, driven by the cosmic expansion, approaches the scale
R�, there is a change of dynamical regime and the theory
becomes closer to a scalar-tensor theory than to GR. This
change makes the predictions of the theory incompatible
with solar system observations, since � goes from � 1 in
the GR phase to �! 1=2 in the late stages of the scalar-
tensor phase. Therefore, since the same mechanism that
predicts cosmic speedup is also responsible for the running
of the parameter �, it seems very unlikely that this type of
f�R� theories may be responsible for the observed cosmic
acceleration.
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APPENDIX: SCHWARZSCHILD COORDINATES

Using a line element of the Schwarzschild form

 ds2 � �B�~r�dt2 �
1

D�~r�
d~r2 � ~r2d�2 (A1)

the equations that follow from (6), assuming a perfect fluid,
are
 �

2

~r
�
f0~r
f0

�
D~r

2
�

1�D

r2 � �

�
�2

f0
��

Rf0 � f�R�
2f0

�
D
f0

�
f0~r ~r �

2

r
f0~r

��
(A2)

 

D
2

�
2

~r
�
f0~r
f0

�
B~r

B
�

1�D

r2 �
�2

f0
P�

Rf0 � f�R�
2f0

�
2D
~r
f0~r
f0

(A3)

where f0 � f0c � ’, and the subscripts in D~r, B~r, f0~r, f
0
~r ~r

denote derivation with respect to the radial coordinate.
Note also that f0~r � ’~r and f0~r ~r � ’~r ~r. The equation for
’ is, according to (16) and (A1),
 

D’~r ~r � �D
�

2

~r
�
B~r

2B
�
D~r

2D

�
’~r �

W�f0c � ’� �W�f
0
c�

3

�
�2

3
�3P� �� (A4)

For weak sources it is convenient to expand (A2)–(A4)
assuming j’j 
 f0c, D�~r� � 1� 2M�~r�=~r, with
2M�~r�=~r
 1, and B�~r� � 1���~r�, with ��~r� 
 1. The
result is

 

2

~r2
M~r �

�2

f0c
�� Vc �

1

f0c

�
’~r ~r �

2

~r
’~r

�
(A5)

 �~r � �
2M�~r�

~r2 � Vc~r�
2’~r

f0c
(A6)

 ’~r ~r � �
2

~r
’~r �m

2
c’�

�2

3f0c
� (A7)

where Vc and m2
c have the same definitions as in the

isotropic case. The solutions to the above equations lead to

 ’�~r� �
~C1e�mc~r

~r
(A8)

 M�r� � ~C2 �
~C1

2f0c
�1�mc~r�e

�mc~r �
Vc
6

~r3 (A9)

 ��~r� �
2 ~C2

~r

�
1�

~C1

2 ~C2f0c
e�mc~r

�
�
Vc
3

~r2 (A10)

Comparing the Newtonian potential ��~r�with the isotropic
solution, we identify C2 � 2 ~C2, C1 � ~C1. A transforma-
tion from Schwarzschild to isotropic coordinates [see (36)]
shows that this identification is consistent with the first
post-Newtonian correction, and confirms the validity of our
calculations.
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