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The Hawking effect can be rederived in terms of two-point functions and in such a way that it makes it
possible to estimate, within the conventional semiclassical theory, the contribution of ultrashort distances
at I� to the Planckian spectrum. The analysis shows that, for Schwarzschild astrophysical black holes, the
Hawking radiation (for both bosons and fermions) is very robust up to very high frequencies (typically two
orders above Hawking’s temperature). Below this scale, the contribution of ultrashort distances to the
spectrum is negligible. We argue, using a simple model with modified two-point functions, that the above
result seems to have a general validity and that it is related to the observer independence of the short-
distance behavior of the corresponding two-point function. The above suggests that only at high emission
frequencies could an underlying quantum theory of gravity potentially predict significant deviations from
Hawking’s semiclassical result.
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I. INTRODUCTION

Semiclassical gravity predicts the radiation of quanta by
black holes [1,2]. The emission rate is given by the product
of the Planckian factor times the gray-body coefficient
�lmp�w�

 

dNlmp�w�

dwdt
�

1

2�
�lmp�w�

1

e2���1�w�m�H�q�H� � 1
; (1)

where �, �H, and �H are the surface gravity, angular
velocity and the electric potential of the black hole horizon.
The signs � in the denominator account for the Bose or
Fermi statistics, and m, p, and q are the corresponding
axial angular momentum, helicity, and charge of the radi-
ated particle.

The deep connection of this result with thermodynamics
[3] and, in particular, with a generalized second law [4]
strongly supports its robustness [5–7]. However, as
stressed in Ref. [8], a crucial ingredient in deriving
Hawking radiation via semiclassical gravity is the fact
that any emitted quanta, even those with very low fre-
quency at future infinity, will suffer a divergent blueshift
when propagated backwards in time and measured by a
freely falling observer. Also, in the derivation of
Fredenhagen and Haag [9], the role of the short-distance
behavior of the two-point function is fundamental. All

derivations seem to invoke Planck-scale physics. The ex-
ponential blueshift effect of the horizon of the black hole
could thus be regarded as a magnifying glass that makes
visible the ultrashort-distance physics to external observ-
ers. According to this reasoning the microscopic structure
offered by string theory (or any other underlying theory)
could leave some imprint or signal in the emission rate.
However, the results of string theory seem to agree with
Hawking’s prediction. For the emission of low-energy
quanta (with wavelength large compared to the black
hole radius), and for some particular near-extremal charged
black holes, the prediction of string theory [10,11] coin-
cides with the rate (1). This agreement is complete, despite
the fact that the two calculations are very different. For
instance, whereas in semiclassical gravity one can natu-
rally split the emission rate into two factors (pure
Planckian black-body term and gray-body factor), in the
D-brane derivation one gets directly the final answer with-
out the above mentioned splitting.

While the calculation of string theory requires low fre-
quencies for the emitted particles, in the arena of semiclas-
sical gravity the result is valid for all wavelengths, even
those smaller than the size of the black hole. The thermo-
dynamic picture strongly suggests the robustness of
Hawking’s prediction and its interpretation as a low-energy
effect, not affected by the particular underlying theory
of quantum gravity (see also Ref. [12]), and expected
to be valid for a large range of frequencies. How-
ever, from the perspective of quantum field theory in
curved spacetime, it is unclear how to introduce a cut-
off in the scheme (parameterizing our ignorance on
trans-Planckian physics) in such a way that, for low-
energy emitted quanta, the decay rate (1) is kept un-
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altered. The aim of this work is to study this issue in some
detail.1

In Sec. II we will review the standard derivation of black
hole radiation emphasizing the role of ultrahigh frequen-
cies to get the Planckian spectrum. In Sec. III we rederive
the Hawking effect in terms of two-point functions, instead
of Bogolubov transformations (for a general reference see
Ref. [15]), for both massless scalar and spin-1=2 fields. The
new derivation of the black hole decay rate offers an
explicit way to evaluate the contribution of ultrashort
(Planck-scale) distances to the thermal Hawking spectrum.
This is the subject of Sec. IV. In Sec. V we present a simple
model, where the two-point functions are deformed with a
Planck-length parameter, to show how the previous results
emerge in this new scenario and support their robustness.
We point out that a generalized Hadamard condition plays
a fundamental role to keep unaltered the bulk of the
Hawking effect. Finally, in Sec. VI, we summarize our
conclusions and make some speculative comments. In the
Appendices we give details of some calculations used in
the body of the text.

II. BOGOLUBOV COEFFICIENTS AND BLACK
HOLE RADIANCE

Let us consider the formation process of a
Schwarzschild black hole, as depicted in Fig. 1, and a
massless real scalar field � propagating in this back-
ground. The equation of motion obeyed by the field is
�� � 0 and the Klein-Gordon scalar product is given by

 ��1; �2� � �i
Z

�
d����1@���2 ��

�
2@��1�; (2)

where � is a suitable ‘‘initial data’’ hypersurface. A natural
choice for � is the past null infinity I� and therefore one
can express the field in a set of modes uin

j �x�, which have
positive frequency in I�

 � �
X
i

�ain
i u

in
i � a

iny
i uin�

i �: (3)

Alternatively, we can choose � as � � I� [H�, where I�

is the future null infinity and H� is the event horizon.
According to this we can then expand the field in an
orthonormal set of modes uout

i �x�, which have positive
frequency with respect to the inertial time at I� and have
zero Cauchy data in H�, together with a set of modes
uint
i �x� with null outgoing component at I�. Therefore we

can write

 � �
X
i

�aout
i uout

i � a
outy
i uout�

i � � �a
int
i u

int
i � a

inty
i uint�

i �:

(4)

The particular choice of modes uint
i does not affect the

computation of particle production at I�, so we leave
them unspecified.

The modes uout
j �x� can be expressed in terms of the basis

uin
i

 uout
j �x� �

X
i

�jiu
in
i �x� � �jiu

in�
i �x�; (5)

where the coefficients �ji and �ji are the so-called
Bogolubov coefficients and are given by the scalar prod-
ucts

 �ij � �u
out
i ; uin

j �; �ij � ��u
out
i ; uin�

j �: (6)

The above expansion leads to an analogous relation for the
creation and annihilation operators:

 aout
i �

X
j

���ija
in
j � �

�
ija

iny
j �: (7)

When the coefficients �ij do not vanish the vacuum states
jini and jouti, defined as ain

i jini � 0 and aout
i jouti � 0, do

not coincide and, as a consequence, the number of particles
measured in the ith mode by an ‘‘out’’ observer, Nout

i �

@
�1aouty

i aout
i , in the state jini is given by

 hinjNout
i jini �

X
k

j�ikj
2: (8)

Let us now briefly summarize the main steps of
Hawking’s derivation. Assuming for simplicity that the
background is spherically symmetric we can choose the
following basis for the ingoing and outgoing modes

Ι

Ι

+   

−

r= 0

Η

vH

+   

FIG. 1. Penrose diagram of a collapsing body producing a
Schwarzschild black hole.

1We note that this sort of problem has already been addressed
in the context of acoustic black holes by modifying the disper-
sion relation of the wave equation obeyed by sonic disturbances
[13,14]. This is naturally justified as an effect of the atomic
microscopic structure of the fluid, and requires a breakdown of
Lorentz invariance. The rest frame of the atoms of the fluid plays
a privileged role. In this paper we follow an alternative route.
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 uin
wlmjI� �

1����������
4�w
p

e�iwv

r
Yml ��;��; (9)

 uout
wlmjI� �

1����������
4�w
p

e�iwu

r
Yml ��;��: (10)

Here Yml ��;�� are the spherical harmonics. One can evalu-
ate the coefficients �wlm;w0l0m0 according to previous ex-
pressions by making the convenient choice � � I�

 �wlm;w0l0m0 � i
Z
I�
dvr2d��uout

wlm@vu
in
w0l0m0

� uin
w0l0m0@vu

out
wlm�: (11)

The angular integration is straightforward and leads to
delta functions �ll0 �m;�m0 for the � coefficients. The
relevant point is to realize that the coefficients can be
evaluated and have a unique answer, which turns out to
be independent of the details of the collapse, if uout

i repre-
sents a late-time wave-packet mode (i.e., centered around
an instant u with u! �1 along I�). When these modes
are propagated backwards in time they are largely blue-
shifted when they approach the event horizon. After pass-
ing through the collapsing body they are scattered to I� in
a very small interval just before vH. To know how they
behave on I� (as needed to evaluate the scalar product with
uin
wlm) one can apply the geometrical optics approximation

since the effective frequency, as measured by freely falling
observers, is very large. The (late-time) mode uout

wlm, which
is of the form (10) at I�, evolves and arrives at I� with the
form

 uout
wlmjI� � �

tl�w�����������
4�w
p

e�iwu�v�

r
Yml ��;����vH � v�; (12)

where tl�w� is the transmission coefficient for the
Schwarzschild metric. And the relation between null iner-
tial coordinates u at I� and v at I� is typically given by the
logarithmic term

 u � vH � �
�1 ln�jvH � vj; (13)

where, for the Schwarzschild black hole, � � 1=4M and
vH represents the location of the null ray that will form the
event horizon H� (see Fig. 1). One has then all ingredients
to work out the (late-time) Bogolubov coefficients
 

�wlm;w0l0m0 �
����mtl�w�

2�

�����
w0

w

s Z vH

�1
dv

	 e�iw�vH��
�1 ln�jvH�vj��iw0v�ll0�m�m0 : (14)

They can be evaluated explicitly
 

�wlm;w0l0m0 �
����mtl�w�

2��

�����
w0

w

s
e�i�w�w

0�vH

����1w0i� 	�1��
�1wi

	 ��1� ��1wi��ll0�m�m0 ; (15)

where we have introduced a negative real part (� 	) into
the exponent of Eq. (14) to ensure convergence of the
corresponding integrals. To compute the particle produc-
tion at I�, one has to evaluate the integral (from now on in
this section we shall omit, for simplicity, the subscripts l,
m)

 

Z �1
0

dw0�w1w0�
�
w2w0

: (16)

The integration in w0 reduces to

 

Z �1
0

dw0

w0
e��

�1w1i ln����1w0�i	�e�
�1w2i ln���1w0�i	�

� 2��e���
�1w1��w1 � w2�; (17)

from which we finally get

 

Z �1
0

dw0�w1w0�
�
w2w0
�

jtl�w1�j
2

e2���1w1 � 1
��w1 � w2�; (18)

where the coefficient in front of ��w1 � w2� represents a
steady thermal flow of radiation of frequency w � w1

 

dNlm�w�
dwdt



1

2�
hinjNout

wlmjini �
1

2�
�l�w�

e2���1w � 1
; (19)

and the gray-body factor is given by �l�w� 
 jtl�w�j
2. For a

generic collapse the result leads to formula (1).
It is important to remark at this point that a basic step to

exactly obtain the Planckian spectrum is (17), which cru-
cially requires an unbounded integration in all frequencies
w0. In fact, if we introduce an ultraviolet cutoff � forw0 we
should replace (17) by

 

Z ��

0

dw0

w0
e��

�1w1i ln����1w0�i	�e�
�1w2i ln���1w0�i	�

� e���
�1w1 2��
���1�w1 � w2��; (20)

where we have defined

 �
��
�1�w1 � w2�� �

sin��
�1�w1�w2�


 �

���1�w1 � w2�
; (21)

 
 �
1

ln���1��
: (22)

Note that in the limit as
 goes to zero �
 turns into Dirac’s
delta function and we recover (17). The new expression is,
however, qualitatively different from the previous one. To
evaluate the new emission rate requires making use of
normalized wave-packet modes. Introducing the standard
ones [1]

 uout
jnlm �

1���
	
p

Z �j�1�	

j	
dwe2�iwn=	uout

wlm; (23)

where j 
 0 and n are integers, representing wave-packets
peaked around the retarded time un � 2�n=	 and cen-
tered, with width 	, around the frequency wj 

�j� 1=2�	; and, accordingly, defining
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 �jn;w0 �
1���
	
p

Z �j�1�	

j	
dwe2�iwn=	�ww0 ; (24)

the emission rate results (see Appendix A):

 hinjNout;

jn jini �

jtl�wj�j
2

e2���1wj � 1

sin��2�n	 � vH�
��


2 �

��2�n	 � vH�
��


2 �
: (25)

From this expression2 we see that the rate of emitted
particles depends on the retarded time un � 2�n=	 and
decays with time for any small but nonzero value of 
 �
1= ln��=��. Only when � goes to infinity (no high fre-
quency cutoff) do we recover the steady thermal flux of
radiation.

In conclusion, the above discussion shows that the ra-
diation is now time-dependent and decays for all finite
values of �. The decay in time would also occur at low
frequencies, where string theory agrees with Hawking’s
prediction. Therefore, as expected from conventional argu-
ments, the mathematical role of the ultrahigh frequencies is
very important for the late-time behavior. Nevertheless,
since they only enter as virtual quanta, their actual status
is unclear [16]. A derivation of the Hawking effect based
on quantities defined on the asymptotically flat region,
where physical observations are made, would be prefer-
able. This turns out to be possible if, instead of working
with Bogolubov coefficients, one uses two-point functions.
They are defined in the I� region where a Planck-length
cutoff in ‘‘distances’’ can be naturally introduced. This is
the task of the next sections.

III. TWO-POINT FUNCTIONS AND BLACK HOLE
RADIANCE

This section will be devoted to rederive Hawking radia-
tion by means of two-point functions. Intuitively the idea is
simple. In the conventional analysis in terms of Bogolubov
coefficients, we first perform the integration in distances
(to compute the scalar product required for the � coeffi-
cients) and leave to the end the integration in frequencies
w0. In contrast, we can invert the order and perform first the
integration in frequencies (which naturally leads to intro-
duce the two-point function of the matter field) and per-
form the integration in distances at the end.

Let us rewrite the basic expression (8), or more pre-
cisely, the expectation values of the operator Nout

i1i2



@
�1aouty

i1
aout
i2

, as follows:

 

hinjNout
i1i2
jini �

X
k

�i1k�
�
i2k
� �

X
k

�uout
i1
; uin�

k ��u
out�
i2
; uin

k �

�
X
k

�Z
�
d��

1 u
out
i1
�x1�@

$
�u

in
k �x1�

�

	

�Z
�
d��

2u
out�
i2
�x2�@

$
�u

in�
k �x2�

�
: (26)

If we now consider the sum in modes before making the
integrals of the two scalar products, and take into account
that

 hinj��x1���x2�jini � @

X
k

uin
k �x1�u

in�
k �x2�; (27)

we obtain a simple expression for the particle production
number in terms of the two-point function
 

hinjNout
i1i2
jini � @

�1
Z

�
d��

1 d��
2�u

out
i1
�x1�@

$
���uout�

i2
�x2�@

$
��

	 hinj��x1���x2�jini: (28)

In the above expression the two-point function should be
then interpreted in the distributional sense. The ‘‘i	 pre-
scription’’ (see Eq. (35) below) is therefore assumed for the
two-point distribution hinj��x1���x2�jini and it verifies the
Hadamard condition3 [5,17]. Alternatively, taking into ac-
count the trivial identity houtjaouty

i1
aout
i2
jouti � 0 we can

rewrite the above expression as [18]
 

hinjNout
i1i2
jini � @

�1
Z

�
d��

1 d��
2�u

out
i1
�x1�@

$
���u

out�
i2
�x2�@

$
��

	 hinj:��x1���x2�:jini; (29)

where hinj:��x1���x2�:jini 
 hinj��x1���x2�jini �
houtj��x1���x2�jouti. Now the Hadamard condition for
both jini and jouti states ensures that hinj:��x1���x2�:jini
is a smooth function.

A. Thermal spectrum for a scalar field

Let us now apply this scheme in the formation process of
a spherically symmetric black hole and restrict the out
region to I�. The ‘‘in’’ region is, as usual, defined by I�.
At I� we can consider the conventional radial plane-wave
modes

 uout
wlm�t; r; �; ��jI� � u

out
w �u�

Yml ��;��
r

; (30)

where uout
w �u� �

e�iwu�������
4�w
p . We shall now evaluate the matrix

coefficients hinjNout
i1i2
jini where i1;2 
 �w1;2; l1;2; m1;2�.

Taking as the initial value hypersurface I� and integrating
by parts we obtain

2We note that the oscillatory behavior in Eq. (25) is an artifact
of the particular way we have introduced the cutoff. If the cutoff
is introduced in a different way, see Appendix A, the oscillatory
term disappears but the decay with time is maintained as
�e���2�n=	�vH����
=2��2 .

3The two-point distribution should have, for all physical states,
a short-distance structure similar to that of the ordinary vacuum
state in Minkowski space: �2���2�
� 2i	t� 	2��1, where

�x1; x2� is the squared geodesic distance.
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hinjNout
i1i2
jini �

4

@

Z
I�
r2

1dv1d�1

Z
I�
r2

2dv2d�2uout
w1
uout�
w2

	
Ym1
l1
��1; �1�

r1

Ym2�
l2
��2; �2�

r2

	 @v1
@v2
hinj��x1���x2�jini: (31)

The two-point function above can be now expanded at I�

as
 

hinj��x1���x2�jini � @

Z 1
0
dw

X
l;m

e�iwv1����������
4�w
p

Yml ��1; �1�

r1

	
eiwv2����������
4�w
p

Ym�l ��2; �2�

r2
: (32)

Recall that the radial part of the late-time out modes uout
wlm,

when they are propagated backward in time and reach I�,
takes the form

 uout
w jI� � tl�w�

e�iwu�v�����������
4�w
p ��vH � v�; (33)

where u�v� � vH � �
�1 ln��vH � v�. Performing now

angular integrations and taking into account that

 @v1
@v2

Z 1
0
dw

e�iw�v1�v2�

4�w
� �

1

4�
1

�v1 � v2 � i	�
2 ;

(34)

we get
 

hinjNout
i1i2
jini � �

tl1�w1�t
�
l2
�w2�

4�2 ������������
w1w2
p

Z vH

�1
dv1dv2

	
e�iw1u�v1��iw2u�v2�

�v1 � v2 � i	�
2 �l1l2�m1m2

; (35)

where the limit 	! 0� is understood. Alternatively, since
we are interested in quantities measured at � � I�, we
could use this latter hypersurface to carry out the calcu-
lations. In this case, the expression for the particle produc-
tion rate becomes
 

hinjNout
i1i2
jini � �

tl1�w1�t
�
l2
�w2�

4�2 ������������
w1w2
p

Z 1
�1

du1du2

	
dv
du �u1�

dv
du �u2�

�v�u1� � v�u2� � i	�
2

	 e�iw1u1�iw2u1�l1l2�m1m2
; (36)

and leads to
 

hinjNout
i1i2
jini �

�tl1�w1�t
�
l2
�w2�

4�2 ������������
w1w2
p

Z �1
�1

du1du2

	
��2�

2e�iw1u1�iw2u2

�sinh�2 �u1 � u2 � i	��2
�l1l2�m1m2

: (37)

This last expression is more convenient for computational

purposes. Since the function in the integral depends only
on the difference z 
 u2 � u1, the integral in u2 � u1 can
be performed immediately and leads to a delta function in
frequencies

 hinjNout
i1i2
jini � �

tl1�w1�t
�
l2
�w2���w1 � w2�

2�
������������
w1w2
p

	
Z �1
�1

dze�i��w1�w2�=2�z �
�
2�

2�l1l2�m1m2

�sinh�2 �z� i	��
2 ;

(38)

Performing the integration in z we recover the Planckian
spectrum and the particle production rate

 hinjNout
wlmjini �

jtl�w�j
2

e2���1w � 1
: (39)

This derivation of black hole radiation is somewhat
parallel to the one given in Ref. [9]. The emphasis is in
the two-point function of the quantum state, instead of the
usual treatment in terms of Bogolubov transformations. It
is worth noting that (35) displays an apparent sensitivity to
ultrashort distances due to the highly oscillatory behavior
of the modes in a small region before vH. A similar
conclusion can be obtained from (38) when z! 0. The
sensitivity to short distances is, however, less apparent if
we repeat the above calculations using the expression (29)
instead of Eq. (28). In this case, we find

 

hinjNout
i1i2
jini � �

tl1�w1�t�l2�w2�

4�2 ������������
w1w2
p

Z vH

�1
dv1dv2

	 e�iw1u�v1��iw2u�v2�

�
1

�v1 � v2�
2

�
du
dv �v1�

du
dv �v2�

�u�v1� � u�v2��
2

�
�l1l2�m1m2

; (40)

where we have dropped the i	 terms since they are now
redundant. Note that the short-distance divergence of
1=�v1 � v2�

2 in Eq. (40) is exactly cancelled by
du
dv�v1�

du
dv�v2�

�u�v1��u�v2��
2 for any smooth choice of the function u�v�.

This cancellation is a consequence of the Hadamard con-
dition that verify both in and out vacuum states. It is also
important to remark that the above formula exhibits the
absence of particle production under conformal-type
(Möbius) transformations

 v �
au� b
cu� d

; (41)

where ab� cd � 1.4

4This leads, immediately, to the expected result that there is no
particle production under Lorentz transformations.
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If the calculation is performed using � � I�, one finds
 

hinjNout
i1i2
jini � �

tl1�w1�t
�
l2
�w2�

4�2 ������������
w1w2
p

Z
I�
du1du2e

�iw1u1�iw2u2

	

� dv
du �u1�

dv
du �u2�

�v�u1� � v�u2��
2 �

1

�u1 � u2�
2

�
	 �l1l2�m1m2

; (42)

which leads to
 

hinjNout
i1i2
jini � �

tl1�w1�t
�
l2
�w2���w1 � w2�

2�
������������
w1w2
p

Z �1
�1

dz

	 e�i��w1�w2�=2�z
�
��2�

2

�sinh�2 z�
2 �

1

z2

�
	 �l1l2�m1m2

: (43)

The integral in distances z also leads, as expected, to the
Hawking formula5

 

hinjNout
wlmjini � �

jtl�w�j2

2�w

Z �1
�1

dze�iwz
�
��2�

2

�sinh�2 z�
2 �

1

z2

�

�
jtl�w�j2

e2�w��1
� 1

: (44)

B. Thermal spectrum for a s � 1=2 field

In this subsection we shall extend the analysis of the
scalar field to a fermionic s � 1=2 field. For simplicity we
take a massless Dirac field, obeying the wave equation

 ��r� � 0; (45)

where �� � V�a �a are the curved space counterparts of the
Dirac matrices �a (see Appendix B for calculations omit-
ted in this section). The Klein-Gordon scalar product (2) is
now replaced by

 � 1;  2� �
Z

�
d�� � 1�� 2: (46)

Therefore the expression for the expectation values (28) is
replaced by

 hinjNout
i1i2
jini � @

�1
Z

�
d��

1 d��
2� �u

out
i2
�x2����b���u

out
i1
�x1��

a

	hinj � a�x1� b�x2�jini:

(47)

At I� we can consider the normalized radial plane-wave
modes6

 uout
w�jmj

�t; r; �;��jI� �
e�iwu�������

4�
p

r


�r̂�
mj
�j

�r̂ ~
�
�r̂�
mj
�j

 !
; (48)

where 
�r̂�
mj
�j are two-component spinor harmonics (see

Appendix B). Note that the angular momentum quantum
number j is uniquely determined by the relation �j �
��j� 1=2�. The above modes, when propagated back-
wards in time and reach I�, turn into
 

uout
w�jmj

�t; r; �; ��jI� � t�j�w�
e�iwu�v��������

4�
p

r


�r̂�
mj
�j

��r̂ ~
�
�r̂�
mj
�j

0@ 1A

	��vH � v�

������������
du�v�
dv

s
; (49)

where the last term
���������������������
du�v�=dv

p
appears due to the fermi-

onic character of the field.7 Proceeding as in the bosonic
case we can expand the two-point function as

 hinj � a�x1� b�x2�jini � @
X
k

�vin
k;a�x1�v

in;b
k �x2�; (50)

where vin
k are negative-energy solutions which in I� take

the form

 vin
k ! vin

w�jm�t; r; �; ��jI� �
eiwv�������
4�
p

r


�r̂�
mj
�j

��r̂ ~
�
�r̂�
mj
�j

 !
;

(51)

Performing first the angular integrations and taking into
account the orthonormality relations of the spinor harmon-
ics 
�r̂�

mj
�j , the above formulas get simplified and become

 

hinjNout
i1i2
jini � �i

t�j1 �w1�t��j2 �w2�

4�2 �mj1
mj2
��j1�j2

	
Z vH

�1
dv1dv2

������������������������������
du�v1�

dv
du�v2�

dv

s

	
e�iw1u�v1��iw2u�v2�

�v1 � v2 � i	�
: (52)

As in the bosonic case, we rewrite this expression as an
integral over I�
 

hinjNout
i1i2
jini � �i

t�j1 �w1�t
�
�j2
�w2�

4�2 �mj1
mj2
��j1�j2

	
Z 1
�1

du1du2e
�iw1u1�iw2u2

	
��2�

sinh��2 �u1 � u2 � i	��
: (53)

We can also split the integral in a product of a function
dependent on u2 � u1 and another function which depends

5For Kerr-Newman black holes the calculation is similar up to
a shift in the wave function e�iwz, which should be now replaced
by e�i�w�m�H�q�H�z, as an effect of wave propagation through
the corresponding potential barrier.

6On physical grounds we should use left-handed spinors
uout
L;wjmj


 1��
2
p �uout

wj�jjmj
� uout

w�j�jjmj
�. The final result is not

changed. See Appendix B.

7The vierbein fields needed to properly write the field equation
in a curved spacetime have been trivially fixed in the asymptotic
flat regions, so its transformation law under change of coordi-
nates is then translated to the spinor itself (see also Appendix B).
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on z 
 u2 � u1. The former leads to a delta function in
frequencies and we are left with
 

hinjNout
i1i2
jini � �

i
2�

t�j1 �w1�t��j2 �w2��mj1
mj2
��j1�j2

	 ��w1 � w2�
Z �1
�1

dze�i��w1�w2�=2�z

	
��2�

sinh��2 �z� i	��
: (54)

Performing now the integration in z

 

�i
2�

Z �1
�1

dze�iwz
��2�

sinh��2 �z� i	��
�

1

e2�w��1
� 1

; (55)

we recover the Planckian spectrum, with the Dirac-Fermi
statistics, and the corresponding particle production rate

 hinjNout
wmj�j jini �

jt�j�w�j
2

e2���1w � 1
: (56)

Analogously as in the bosonic case, if we use the
normal-ordering prescription instead of the i	 one we find
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jini � �i
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q
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35
	 ��j1�j2�mj1

mj2
: (57)

Changing the integration surface to I� we get
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q
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35
	 ��j1�j2�mj1

mj2
: (58)

Note again that the short-distance divergence of the two-
point function of the out state 1

�u1�u2�
is exactly cancelled by

the corresponding one of the in state
���������������
dv�u1�
du

dv�u2�
du

p
�v�u1��v�u2��

, since both
vacua are Hadamard states. After some algebra we get
 

hinjNout
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jini � �i
jt�j�w�j

2

2�

Z �1
�1

dze�iwz
�
��2�

sinh��2 z�
�

1

z

�
;

(59)

and taking into account

 

�i
2�

Z �1
�1

dze�iwz
�
��2�

sinh��2 z�
�

1

z

�
�

1

e2�w��1
� 1

; (60)

we newly recover the fermionic thermal spectrum.

IV. SHORT-DISTANCE CONTRIBUTION TO THE
PLANCKIAN SPECTRUM

A. Bosons

We have seen in the previous section that it is possible to
rederive the Hawking effect in terms of two-point func-
tions. Either via expressions (28) and (36), or, equivalently,
via expressions (29) and (42). Both prescriptions are
equivalent and lead to the Planckian spectrum modulated
by gray-body factors. The advantage of the final expression
(44) is that it offers an explicit evaluation of the contribu-
tion of distances to the Planckian spectrum. To be more
explicit, the integral8

 IB�w��1; ��� � �
1

2�w

Z ��
��

dze�iwz
�
��2�

2

�sinh�2 z�
2 �

1

z2

�
;

(61)

can be interpreted as the contribution of short-distances
z 2 ���;�� to the (bosonic) thermal spectrum when � is
close to the Planck length lP. One could, alternatively, be
tempted to propose, according to (36), the integral

 IBi	�w�
�1; ��� 


�1

2�w

Z ��
��

dze�iwz
��2�

2

�sinh�2 �z� i	��
2

(62)

as a legitimate expression to account for the short-distance
contributions. However, this interpretation is not physi-
cally sound. In the absence of a black hole, when there is
no radiation at all, the above expression becomes

 

�1

2�w

Z ��
��

dze�iwz
1

�z� i	�2
: (63)

For �! �1 this expression vanishes, as expected due to
the absence of radiation. However, for finite � it is non-
vanishing. In contrast, the proposed expression (61), does
not suffer from this weird behavior, due to the presence of
the second term.

In conclusion, the calculation of black hole radiation
using the prescription (29) offers the possibility to reeval-
uate Hawking radiation by removing the range of distances
where physics can be dominated by an underlying theory
beyond field theory. We shall now work out explicitly the
short-distance contribution to Hawking radiation to see
whether it is fundamental or not in order to obtain the
thermal spectrum. The integral (61) can be worked out

8We have intentionally omitted the gray-body factors jtl�w�j2

in (61) because they are irrelevant for the discussion of this
section.
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analytically
 

IB�w��1; ��� � �
Si��w�
�

�
�

4�w
fei�w�F�1;�iw��1; 1� iw��1; e���� � F�1; iw��1; 1� iw��1; e����

� e�i�w�F�1; iw��1; 1� iw��1; e���� � F�1;�iw��1; 1� iw��1; e����g

�
1

2��w
cos��w�

�
��
�1� e���
�e�� � 1�

� 2
�

(64)

where F is a hypergeometric function and Si�x� �R
x
0 dt

sint
t . To get some insight about the properties of this

formula, we find useful to expand it in powers of w��1 and
��. The expansion in �� assumes that the microscopic
length scale �� lP is much smaller than the typical emis-
sion wavelength ���1 of the black hole, whose (macro-
scopic) temperature is TH � �=2�. For a Solar-mass black
hole ��� 10�40 and for a primordial black hole of 1015 g
��� 10�21. The expansion in w��1 means that we are
looking at frequencies below the typical emission fre-
quency, wtypical � TH, of the black hole. The result is as
follows:
 

IB�w��1; ��� �
�

1

12�
���

1

720�
����3 �O�����5�

�
�
w

�

�
1

72�
����3 �O�����5�

�
w
�

� �O�����5��
�
w
�

�
3
� . . . : (65)

From this expansion we conclude that the contribution of
short distances to the spectrum is completely negligible in
the very low-energy regime w=�� 1 since

 lim
w��1!0

IB�w��1; ���

�e2�w��1
� 1��1

�
��
6
� 1: (66)

Moreover, due to the smallness of ��, we find that
IB�wtypical�

�1; ��� can be well approximated by (65)
even for frequencies close to the typical emission fre-
quency, which leads to

 

IB�wtypical�
�1; ���

�e2�wtypical��1
� 1��1

� 0:3��� 1: (67)

Again, since ��� 1, we find a negligible contribution at
wtypical � TH. To be precise, for a Schwarzschild black hole
of three solar masses, when � is around the Planck length
lP � 1:6	 10�33 cm, the relative contribution to the
Planckian distribution IB�w��1;���

�e2�w��1
�1��1

is, for w � wtypical, of
order 10�38%. For primordial black holes,M� 1015 g, the
relative contribution is still insignificant: 10�19%. Even
more, using the expansion (65) we easily get

 

IB�w��1; ���

�e2�w��1
� 1��1

�
���e2�w��1

� 1�

12�w��1 ; (68)

and we find that, for a black hole of three solar masses, we

need to look at the high frequency region, w=wtypical � 96,
to find that the contribution of Planck distances
IB�w��1; lP�� is of order of the total spectrum itself.9

For primordial black holes we find w=wtypical � 52. The
same numerical estimates can be found using the exact
analytical expressions.

We can also naturally ask about the contribution to the
spectrum of large distances. This question is immediately
answered using our analytical expression (64). The con-
tribution of distances up to � � 20rg, where rg is the
gravitational radius, represents 90% of the thermal peak
at wtypical. For � � 200rg we obtain 99.7% and for � �
2	 104rg the percentage is around 99.999 98%.

Summarizing, we have provided a quantitative estimate
of how much of Hawking radiation is actually due to
Planckian distances. It turns out that the contribution of
ultrashort distances is negligible and thermal radiation is
very robust up to frequencies of order 96TH (for
Schwarzschild black holes of three solar masses) or 52TH
(for primordial black holes). In parallel and dual to this, the
contribution of large distances is also insignificant.

It is interesting to repeat the same calculations with the
i	 prescription. As we have already stressed with this
prescription one cannot expect a meaningful result. The
outcome is completely different. The contribution of dis-
tances in the interval z 2 ���;��� is now

 

IBi	!0�w�
�1; ��� �

e���1�iw�
�1� � ei�w

2�w��1�e�� � 1�
�

1

2��i� w��1�

	 fe���1�iw��F�1; 1� iw��1; 2

� iw��1; e��� � e����1�iw��

	 F�1; 1� iw��1; 2� iw��1; e����g

(69)

Here, even in the very low-energy regime, the contribution
of short distances is not negligible. In fact, it is much
bigger than the thermal spectrum itself. To see this we
can approximate IBi	�w�

�1; ��� as

9The exponential behavior in frequencies of the ratio (68)
explains why potential deviations from thermality arise at fre-
quencies much lower than w� 1=lP.
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Note that in this case the dominant term is of order 1=��,
therefore

 lim
��1w!0

IBi	�w�
�1; ���

�e2�w��1
� 1��1

�
2

��
� 1: (71)

A similar behavior can be found for w � wtypical.

We illustrate the difference between both calculations in
Fig. 2. With the normal-ordering prescription the short-
distance contribution is small, in contrast with the i	
prescription. We have chosen a large surface gravity and
different values of � to better show the effect in the
drawings. We clearly observe that, although both prescrip-
tions lead to the thermal result when �!�1, they do the
job in very different ways.

B. Fermions

We shall extend the previous analysis to fermions. The
integral involved is
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See Fig. 3 for a graphical representation. Taking into account that ��� 1 we can expand IF�w��1; ��� as

 IF�w��1; ��� �
�
����3

72�
�O�����5�

�
w
�
�O�����5�

�
w
�

�
3
� . . . : (73)

Note that the term proportional to �=w, appearing in the bosonic case, has disappeared. Therefore, for very low frequencies
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FIG. 2. Plot comparing the Planckian spectrum N�w; �� � �e2�w��1
� 1��1 (solid line) with the contributions IB (dashed line) and IBi	

(dotted line) coming from distances jzj & � according to the normal-ordering prescription and the i	 prescription, respectively. We
have taken � � 0:1 and � � 1, 10, 30, and 100 (in Planck units), respectively.

SHORT-DISTANCE CONTRIBUTION TO THE SPECTRUM . . . PHYSICAL REVIEW D 76, 044018 (2007)

044018-9



 

IF�w��1; ���

�e2�w��1
� 1��1

�
����3

36�
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This shows that the contribution of ultrashort distances is
negligible, like in the bosonic case. Moreover, for typical
Hawking frequencies, wtypical � TH, we have

 

IF�wtypical�
�1; ���

�e2�wtypical��1
� 1��1

� 3 � 10�3����3 � 1: (75)

This rate is again very small, but the above expressions
unravel the fact that the short-distance contribution for
fermions seems to be smaller than that of bosons. For the
latter the contribution of short distances is proportional to
the first power of �� while for fermions it is the third
power.

Finally, let us give numerical estimates for relevant
astrophysical black holes using the expansion (73)

 

IF�w��1; ���

�e2�w��1
� 1��1

�
�3w�2�e2�w��1

� 1�

72�
: (76)

For a black hole of three solar masses, the relative contri-
bution to the total Planckian spectrum is, for w � wtypical,
of order 10�118% and one must go to frequencies of order
w=wtypical � 270 to find contributions IF�w��1; lP�� of the
same order as the total spectrum. For primordial black
holes, M� 1015 g, the relative contribution is 10�62% at
wtypical and we have to reach frequencies of order
142wtypical to get a short-distance contribution of order of
the thermal distribution. In addition to the conclusions
stressed in the bosonic case, namely, the robustness of
Hawking thermal radiation for wavelengths of order of

the size of the black hole, we have a new result.
Fermions seem to be less sensitive to ultrashort-distance
physics than (spinless) bosons.

V. MODIFYING THE TWO-POINT FUNCTIONS AT
SHORT-DISTANCES

In the previous section, we have investigated the con-
tribution to the Hawking spectrum coming from distances
z < lP at I� assuming that the physical laws are not
modified at such scales. We found that potential deviations
from thermality only manifest themselves at high frequen-
cies. One can legitimately wonder, however, why we
looked at distances at I� instead of at I�, where the
sensitivity of the in state to short distances is more appar-
ent. In fact, imposing naively a cutoff at I� has dramatic
effects on the radiation due to the enormous redshift caused
by the horizon (see Sec. II). We were motivated to impose
the cutoff at I� in order to find agreement with the view
offered by string theory. The purpose of this section is to
shed light on the roles played by distances at I� and I� by
using a simple model with a modified two-point function.
We shall investigate the potential effects on the radiation
due to the modified short-distance behavior of the matter
field, supposedly coming from unknown physics at the
Planck scale. We shall see how our model maintains the
robustness of the Hawking thermal spectrum at I�, while at
the same time being insensitive to sub-Planckian distances
at I�.

Let us assume that the standard two-point function for
the spin zero in and out vacuum states at I� and I�,
respectively, gets modified by new physics at very short
distances and becomes
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FIG. 3. Plot comparing the Dirac-Fermi distribution (solid line) N�w; �� � �e2�w��1
� 1��1 with the contribution IF coming from

distances jzj<� according to the normal-ordering prescription (dashed line). For completeness we have also plotted the result
obtained with the i	 prescription (dotted line). We have taken � � 0:1 and � � 1, 40, 103, and 104 (in Planck units), respectively.
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(77)

where � is a parameter of order of the Planck length: ��
lP. With this modification the expression (40) for the black
hole particle production becomes (we omit the transmis-
sion coefficients tl�w� and the angular delta functions
�l1l2�m1m2

since they are also irrelevant for the discussion
of this section)
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; (78)

where uout
w and Gout

� jI� are understood to be the out modes
and the out two-point function, respectively, propagated
back to I�. Since, according to the standard derivation, the
propagation to I� implies a strong blueshift, the uout

w modes
andGout

� might manifest some dependence on the particular
details of the modified theory, which are unknown to us.
Thus, we see no simple way to estimate the form of the uout

w
modes at I�. For this reason, it is preferable to evaluate the
particle production as an integral on I�, as in Eq. (42),
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(79)

where Gin
� jI� is understood to be the in two-point function

propagated to I�. In this region we can use the standard
form of the out modes uout

w1
�u1� �

e�iw1u1�������
4�w
p since we are con-

sidering emission frequencies much lower than the Planck
frequency wP � 1=lP. We still have to unravel the evolu-
tion of Gin

� to evaluate the above expression. The modified
short-distance physics near the horizon could dramatically
modify the evolution of the two-point function, so that its
form at I� could be rather different from the standard one
GinjI� . However, we can make the reasonable assumption
that the propagation to I� is affected by new physics in
such a way that the short-distance behavior of dv1

du1

dv2

du2
Gin
� at

I� is identical to that of the two-point function for the out
state

 lim
u1!u2

dv
du
�u1�

dv
du
�u2�G

in
� jI� � lim

u1!u2

Gout
� �u1; u2�jI� : (80)

The above condition can be seen as a natural generalization
of the Hadamard condition, i.e., universality of the short-
distance behavior for all quantum states. The Hadamard
condition, which plays a pivotal role in the algebraic for-
mulation of QFT in curved spacetime [5], ensures the
regularity of expression (29) to evaluate the Hawking
radiation.

Let us see now how (80) constraints the evolution of Gin
�

from I� to I�. Note that Gin
� can be rewritten as

 Gin
� �

Gin

1� �2Gin
; (81)

where Gin is the unmodified two-point function. Since, at
late times, Gin evolves according to geometrical optics
approximation

 

~G injI� 

dv
du
�u1�

dv
du
�u2�GinjI�

� �
1

4�

dv1

du1

dv2

du2

�v�u1� � v�u2��
2 ; (82)

expression (81) suggests the following evolution for Gin
�

 

~G in
� jI� 


dv
du
�u1�

dv
du
�u2�G

in
� jI�

� �
1

4�

dv�u1�
du

dv�u2�
du

�v1 � v2�
2 � �2 dv1

du1

dv2

du2

: (83)

This expression guarantees immediately the Hadamard
condition (80). We should stress, however, that the evolu-
tion of the modified two-point function itself is not equiva-
lent, at least for very small point separations
�u2 � u1�

2 � �2, to the ray tracing (or geometrical optics
approximation), which would produce instead (91) (see
later) and violate the Hadamard condition. For larger sep-
arations �u2 � u1�

2 � �2 the propagation agrees, as it
must, with standard relativistic field theory and is driven
by the large redshift (implying then the usual geometrical
optics approximation). Plugging this expression in Eq. (79)
we obtain
 

hinjNout
i1i2
jini �

�1

4�2 ������������
!1!2
p

Z
I�
du1du2e�i�w1u1�w2u2�

	

� dv�u1�
du

dv�u2�
du

�v1 � v2�
2 � �2 dv�u1�

du
dv�u2�
du

�
1

�u1 � u2�
2 � �2

�
: (84)

It is worth noting that the modified term

 � 4� ~Gin
� jI� 


dv1

du1

dv2

du2

1

�v1 � v2�
2 � �2 dv1

du1

dv2

du2

; (85)

which can also be regarded as a transformation law under
the change v � v�u�, guarantees the absence of particle
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production under the same group of symmetry transforma-
tions (Möbius rescalings) as those of the theory with
� � 0.10 Assuming that the geometry remains classical
(the black hole scale � is well above the Planck scale �),
we can use in (84) the expression v�u� � vH � ��1e��u,
which represents the relation between the in and out iner-
tial coordinates. Performing then the integration in u2 �
u1, we are left with (z 
 u2 � u1)
 

hinjNout
wlmjini � �

1

2�w

Z �1
�1

dze�iwz

	

�
��2�

2

�sinh�2 z�
2 � ��2�

2�2 �
1

z2 � �2

�
: (86)

Finally, performing the integration in the complex plane,
the particle production rate becomes
 

hinjNout
wlmjini �

1

�e2�w��1
� 1�

1

2w�
�������������������������
1� �2�2=4

p
	 �ew�

�1� � ew�
�1�2����� �

e�w�

2�w
; (87)

where

 � � arctan
��

�������������������������
1� �2�2=4

p
�1� �2�2=2�

: (88)

The thermal Planckian spectrum is smoothly recovered in
the limit �! 0. Moreover, for �� lP, the deviation to the
thermal spectrum is negligible for small values of w��1.
This deviation can be expanded as

 

hinjNout
wlmjini

�e2�w��1
� 1��1

� 1�
���e2�w��1

� 1�

16w��1 : (89)

For astrophysical black holes, ��� 1, the second factor is
negligible for frequencies up to �102wtypical, in complete
agreement with the results obtained in Sec. IV [compare,
for instance, with (68)].

The above discussion shows that, despite the apparent
sensitivity of Hawking radiation to high energy physics
(see Sec. II), a Planck-scale modification of the two-point
function does not necessarily imply a substantial change of
the Planckian spectrum. This is so, at least, if the modified
two-point function obeys a modified Hadamard-type con-
dition. The simplest realization of this condition turns out
to be equivalent to the preservation of the powerful con-
formal (Möbius) symmetry existing in the unmodified
theory. This seems an unavoidable requirement if the cor-
rections to the Planckian spectrum are to be in agreement
with the results of string theory in the low-frequency limit
w! 0. The effect of the generalized Hadamard condition
is to constrain the short-distance behavior of the propa-
gated in two-point function, ~Gin

� jI� , in such a way that it
remains close to �1=�4��2� through its evolution to I�,
despite the large blueshift. In fact, ~Gin

� jI� is an observer-

independent quantity in the limit x1 ! x2, i.e., it tends to
�1=�4��2� for any function v � v�u�. Note in passing
that this condition is somewhat related to approaches to
quantum gravity aimed at deforming Lorentz symmetry
while keeping the principle of relativity [19].

To conclude, we note that if the deformed two-point
function at I�

 Gin
� jI� 
 �

1

4�
1

�v1 � v2�
2 � �2 ; (90)

is naively propagated (i.e., by ray tracing) to I� as

 

~G in
� jI� � �

1

4�

dv1

du1

dv2

du2

�v�u1� � v�u2��
2 � �2 ; (91)

where ~Gin
� jI� 


dv
du �u1�

dv
du �u2�Gin

� jI� , the particle produc-
tion rate is now time-dependent and the thermal spectrum
is lost for any nonvanishing �.

VI. CONCLUSIONS AND FINAL COMMENTS

It is highly nontrivial [8] to truncate Hawking’s deriva-
tion of black hole radiance to account for unknown physics
at the Planck scale. A simple estimate of the contribution of
virtual high frequencies apparently shows that they are
essential to produce the thermal outcome. One can then
change strategy and try to evaluate the contribution of
Planckian physics in position space, which requires a re-
derivation of the Hawking calculation in terms of two-
point functions, as we have explicitly shown in Sec. III.
When these two-point functions are treated in the distribu-
tional sense, with the usual i	 prescription, one reproduces
exactly the thermal result. However, one can equivalently
handle the divergence of the two-point function by trivially
taking normal ordering. The consistency of this procedure
is guaranteed by the Hadamard condition: the short-
distance behavior is universal for all physical states. The
advantage of this second option is that it offers a natural
way to evaluate the contribution of short distances at I� to
Hawking radiation.

We have found that the contribution of short-distances at
low frequencies w� � is negligible. Our analysis allows
us to go further and investigate the short-distance contri-
bution for frequencies of order the Hawking temperature
TH and beyond. We find that the contribution of ultrashort
distances is also negligible for frequencies of order TH. In
fact, for a black hole of three solar masses we need to look
at high frequencies, w=wtypical � 96 (for bosons) or
w=wtypical � 270 (for fermions), to find that the contribu-
tion of Planck distances is of order of the total spectrum
itself. This suggests that Hawking thermal radiation is very
robust, as it has been confirmed in completely different
analyses based on black hole analogues; in string theory
(for large wavelength) in near-extremal charged black
holes; and also in some models of canonical quantum
gravity [20].

10Even more, it is what exactly guarantees the invariance of the
production rate, up to a shift on the emission frequency, under a
radial boost with rapidity �: u! �u � e�u, v! �v � e��v.
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One can legitimately ask why, in Sec. IV, we evaluate
distances at I�, instead of just at I�, where the sensitivity
of the in state to high energy scales is more apparent, as we
showed in Sec. II. Our heuristic motivation is based on the
view offered by string theory, where the Hawking radiation
is obtained as the result of collisions between open string
excitations. In that approach, the standard large blueshift of
low-energy gravity theory does not seem to play the pivotal
role that it does in the pure semiclassical treatment. The
fact that we consider the fundamental Planck scale at I�

does not immediately guarantee that the Hawking radiation
is kept unaltered from Planck-scale physics. As we show in
Sec. IV, with the standard i	 prescription the short-distance
contribution to Hawking radiation is not negligible. In
contrast, with the normal-ordering prescription the bulk
of the Hawking effect is maintained at low frequencies, in
agreement with the results of string theory.

In addition to the above arguments we have approached
the problem in section V in a different way. We have
considered an explicit modification of the two-point func-
tion at the Planck scale. Motivated by the crucial role
played by the Hadamard condition in the ordinary relativ-
istic theory, we have assumed that the short-distance be-
havior of the modified theory should also satisfy a sort of
generalized Hadamard condition (universal short-distance
behavior). The simplest realization of this idea turns out to
be equivalent to the preservation of the powerful conformal
(Möbius) symmetry existing in the unmodified theory.
Armed with this condition, the contribution to the particle
production rate of the in and out two-point functions in
Eq. (84) is similar when they are compared in the same
ultrashort range of distances, despite the large blueshift
horizon effect. As a result, the two contributions compen-
sate each other and lead to an emission spectrum very
insensitive to trans-Planckian physics. The generalized
Hadamard condition, therefore, seems to be necessary to
maintain the bulk of the Hawking effect. Moreover, it is in
this context that the apparent tension between I� and I� to
measure separations is elliminated since in both we find the
same finite short-distance limit.

A last comment is now in order. In the string theory
analysis one has, at least, two relevant parameters: the
surface gravity � and the radius rg of the supersymmetric,
charged black hole. The surface gravity is assumed to be
small, in comparison with the inverse of the size of the
black hole, i.e., �� 1=rg. The emission frequency can
reach �, but can never reach 1=rg (or become larger) to
guarantee the validity of the string theory calculation.
Obviously the analysis of string theory excludes astrophys-
ical black holes of the Schwarzschild type (for which ��
1=rg). Our results, however, suggest that one could also
expect string theory to predict in this case, in some subtle
way, agreement with Hawking’s results for frequencies
around 1=rg and, at least, a few orders beyond. This is so
because we do not observe any significant contribution to

the thermal spectrum coming from the short-distance re-
gion, where new physics could arise, up to such high
frequencies. This fact offers a very nontrivial challenge
for any quantum theory of gravity having computational
rules very different from those of semiclassical gravity (as
in string theory or background-independent approaches),
since when w� 1=rg the gray-body factors �i�w� cannot
be computed analytically. They are only known numeri-
cally [21], as a result of solving field wave equations in the
black hole background. String theory manages to account
for the grey-body factors in the low-energy regime, where
they admit an analytic expression. In fact, for all spheri-
cally symmetric black holes, the low-energy absorption
cross section is proportional to the area of the horizon
[22,23]. But for typical Hawking frequencies the gray-
body factors remain elusive for any analytic treatment.
Reobtaining them from such a different computation
would be extremely impressive.
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APPENDIX A

We will complete here the steps missing in the derivation
that led to the emission rate (25). Using the wave packets
(23) we can express it as
 

hinjNout;

j1n1;j2n2

jini �
Z �

0
dw0�j1n1;w0�

�
j2n2;w0

�
1

	

Z �j1�1�	

j1	
dw1

Z �j2�1�	

j2	
dw2e

2�iw1n1=	

	 e�2�iw2n2=	
Z �

0
dw0�w1w0�

�
w2w0

: (A1)

Using (20) we get
 

hinjNout;

j1n1;j2n2

jini �
1

	

Z �j1�1�	

j1	
dw1

Z �j2�1�	

j2	
dw2

	 ei�2�w1n1=	�e�i�2�w2n2=	�tl�w1�t�l �w2�

	
e�i�w1�w2�vH

2�
������������
w1w2
p e���

�1!1i�i�
�1�w1�w2�

	 ��1� i��1w1���1� i�
�1w2�

	 �
��
�1�w1 � w2��: (A2)

This integral can be estimated explicitly when the width 	

SHORT-DISTANCE CONTRIBUTION TO THE SPECTRUM . . . PHYSICAL REVIEW D 76, 044018 (2007)

044018-13



of the frequency interval �j	; �j� 1�	� is assumed, as
usual, small. In this case, the integral is essentially as
follows:
 

hinjNout;

j1n1;j2n2

jini � �j1j2

jtl�wj�j
2j��1� i��1wj�j

2

2�wj

	 e���
�1wje�2��n1�n2�wj=	�In1n2

�
� (A3)

where
 

In1n2
�
� �

1

	

Z 	=2

�	=2
dx1

Z 	=2

�	=2
dx2

	 ei��2�n1=	��vH�x1�i��2�n2=	��vH�x2����1�x1�x2�=2

	 �
���1�x1 � x2�� (A4)

and x1;2 
 w1;2 � �j� 1=2�	. The factor �j1j2
in Eq. (A3)

is due to the role of �
, which selects frequencies on a very
narrow band of order jw1 � w2j � �
. For this reason, it is
also convenient to introduce a new variable y � x1 � x2

and rewrite In1n2
�
� as follows:

 

In1n2
�
� �

1

	

Z 	=2

�	=2
dx1e

�2��n1�n2�x1=	�

	
Z x1�	=2

x1�	=2
dyei��2�n2=	��vH�y�
���1y�: (A5)

In writing this we have neglected the term e��
�1�x1�x2�=2

which is almost constant (unity) over the integral. We can
now estimate the integral over y having in mind that �
 is
very well approximated by a square step of width ��
 and
height 1=��
� centered at y � 0. This means that the main
contribution comes from the interval �� ��


2 ; ��
2 �. This
fact makes the outcome of the integral independent of x1,
which also allows us to perform the integral in x1. Putting
all together we find

 In1n2
�
� � ��n1n2

sin��2�n2

	 � vH�
��


2 �

��2�n2

	 � vH�
��


2 �
: (A6)

Plugging this result back into Eq. (A3) we find (25).
We will now briefly consider the effect of introducing

the cutoff in frequencies in a different way. The cutoff was
introduced in Eq. (20) in the form

 

Z 1
�1

d log�w=��e�i�
�1�w1�w2� log�w=��

!
Z log��=��

� log��=��
d log�w=��e�i�

�1�w1�w2� log�w=��: (A7)

We will now consider the change
 Z log��=��

� log��=��
d�e�i�

�1�w1�w2��

!
Z 1
�1

d�e�i�
�1�w1�w2��e���=

~��2 ; (A8)

where ~� must be of order � log��=��. This modification

leads to a redefinition of �


 � ~
��
�1�w1 � w2�� �

exp����
�1�w1�w2�

2 ~
 �2�

2 ~

����
�
p ; (A9)

which in the limit 2 ~
! 0 also becomes Dirac’s delta
function. One can then proceed as above and define the
corresponding function In1n2

�~
�, which this time can be
evaluated extending up to infinity the limits of integration
over the variable y � x1 � x2. This leads to

 In1n2
�~
� � ��n1n2

e����2�n2=	��vH��~
�2 : (A10)

The corresponding emission rate is now

 hinjNout;

j1n1;j2n2

jini��j1j2
�n1n2

jtl�wj�j
2

e2���1wj�1
e����2�n2=	��vH��~
�2 :

(A11)

This expression is always positive definite and exhibits the
same decay rate as Eq. (25) if we identify 2 ~
with
, which
in fact is the right choice for the definition of Eq. (A9).

APPENDIX B

We will proceed now to solve the massless Dirac equa-
tion in a curved background with spherical symmetry. The
equation to solve is11

 ��r� � 0; (B1)

where �� � �aV�a �x� satisfy f��; ��g � 2g��, f�a; �bg �
2
ab and V�a V�b


ab � g�� represent the vierbeins.12 Note
that r� � �@� � ��� where �� � �

1
4�

b�cV�br�V�c
represents the spin connection. We will take the curved
space line element ds2 � e2�dx�dx� � r2d�2, with
dx�dx� � dt2 � dr�2, and 
ab � diag�1;�1;�1;�1�.
Introducing the ansatz  � e��=2

r � and making the sim-
plest choice for vierbeins (i.e., to be parallel to the unit
vectors in t, r�, �, � directions), the Dirac Eq. (B1) be-
comes

 �aVia@i��
1

r

�
�2

sin1=2�
@�sin1=2��

�3

sin�
@�

�
� � 0;

(B2)

where the index i runs over the nonangular variables. Since
for x� � t� r� we have �aVia@i � e����0@t � �1@r� �,
(B2) can be written in the more familiar form

11For earlier references see Ref. [24], and for a more advanced
treatment (no needed for the purposed of this paper) see
Ref. [25].

12Due to our convention for the metric signature the �a matri-
ces should verify the conditions ��0�2 � �I, ��i�2 � I.
However, to agree with the standard notation for Dirac matrices
in this Appendix we have flipped the metric signature to
��;�;�;��. This is, however, irrelevant for the computations
carried out in the body of this paper.
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 @t����
0�1

�
@r� �

e�

r

�
�2�1

sin1=2�
@�sin1=2��

�3�1

sin�
@�

��
�:

(B3)

The angular part of this equation can be reexpressed as
e��0K=r:

 @t� � ��
0�1

�
@r� �

e�

r
�0K

�
�; (B4)

where the operator K

 K � �0

�
�1�2

sin1=2�
@�sin1=2��

�1�3

sin�
@�

�
(B5)

commutes with the Dirac equation as well as ~J2 and J3 and,
therefore, its eigenvalues can be used to characterize the
angular part �mj�j of the modes: K�mj�j � ���j��mj�j ,
with �2

j � �j�
1
2�

2. Moreover the eigenfunctions �mj�j

admit the following decomposition �mj�j � c���mj�j �

c���mj�j , with

 ��mj�j �

�r̂�

mj
�j

0

" #
; (B6)

 ��mj�j �
0


�r̂�
mj
�j

" #
: (B7)

Therefore, in a stationary spacetime, � � ��r�, a general
solution can then be expressed as

  w�jmj
�x� �

e��=2e�iwt

r

Gw�j�r�
�r̂�
mj
�j

�iFw�j�r�

1
�r̂�

mj
�j

" #
; (B8)

where we have used that 
1
�r̂�
mj
�j � 
�r̂�

mj
��j and the

functions Fw�j�r
�� andGw�j�r

�� satisfy the following equa-
tions (see also Ref. [23])

 @r�Gw�j � �
e�

r
�jGw�j � wFw�j; (B9)

 @r�Fw�j �
e�

r
�jFw�j � wGw�j : (B10)

Adding the time-dependent part, the above equations lead
to plane-wave solutions �e�iw�t�r

�� � e�iwx
�

for all �j as
r! 1.

We note that the form of the eigenfunctions �mj�j can be
worked out immediately if the vierbeins are chosen to be
parallel to unit vectors in the standard t, x, y, z directions.13

The bispinors 
mj�j can be constructed, as it is well-
known, using the Clebsch-Gordon rules for addition of
angular momentum in terms of spherical harmonics and

two-component spinors, and the result is

 
�r̂�
mj

�j<0 �

���������
j�mj

2j

q
Y
mj�1=2

j�1=2 ��;�����������
j�mj

2j

q
Y
mj�1=2

j�1=2 ��;��

264
375 (B11)

and

 
�r̂�
mj

�j>0 �

��������������
j�1�mj

2j�2

q
Y
mj�1=2

j�1=2 ��;��

�
��������������
j�1�mj

2j�2

q
Y
mj�1=2

j�1=2 ��;��

264
375: (B12)

With the modes given in Eq. (B8) conveniently normal-
ized, the quantized Dirac field can be expanded in modes as

  �x� �
X
�jmj

Z
dw�aw�jmj

uw�jmj
�x� � byw�jmjvw�jmj

�x��;

(B13)

where uw�jmj
�x� and vw�jmj

�x� represent positive and
negative-energy solutions, respectively. On the other
hand, since we are dealing with massless spinors, it is
necessary, on physical grounds, to use states with well
defined helicity. In particular, left-handed spinors can be
obtained from Eq. (B8) by projecting with PL �

1
2 	

�I � �5�, where �5 � i�0�1�2�3. We will therefore be
working with the (normalized) modes  Lwjmj

� 1��
2
p 	

� wj�jjmj
�  w�j�jjmj

�.
We will now carry out the calculations that lead to

Eq. (52) (adapted now for chiral spinors). First thing to
note is that the propagated backwards mode (49) contains a
term of the form

���������������������
du�v�=dv

p
. A simple way to realize why

this term arises is that it is necessary to ensure the invari-
ance of the scalar product under time evolution. Putting
aside backscattering effects, the Dirac scalar product for
out modes can be written, equivalently, as

 

Z
I�
d�dur2 �uout��uout �

Z
I�
d�r2dv �uout��uout:

(B14)

The above equality requires, up to relative signs in the
spinor components, that

 uout�v�jI� �
���������������������
du�v�=dv

p
��vH � v�uout�u�jI� : (B15)

Note that the factor e��=2 in Eq. (B8) also signals this
behavior. Since the spinor  �x� does behave as a scalar
under general changes of coordinates, it follows that the
functions F and G must somehow compensate the change
in e��=2 under conformal transformations.

Let us now focus on the integration over the angular
variables prior to Eq. (52). This integration can be readily
performed if we put the result of Eq. (50) into Eq. (47). We
then find

13With this orientation for the vierbeins K can be written as
K � �0�I � 2 ~S � ~L�, which is the standard form of this operator
in Minkowski space.
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 hinjNi1i2 jini �
X
k

Z
I�
dv2r

2
2d�2

�
�uout;L
i2
�x2�

	
��0 � �1�

2
vin;L
k �x2�

�

	
Z
I�
dv1r2

1d�1

�
�vin;L
k �x1�

	
��0 � �1�

2
uout;L
i1
�x1�

�
; (B16)

where the indices i1, i2 and k denote �w; j;mj�. Using the
modes of Eqs. (49) and (51) it is immediate to verify that

 

Z
d�2 �uout;L

i2
�x2�
��0 � �1�

2
vin;L
k �x2�

�
t�j2
�w2�

2�r2
2

������������
du�v�
dv

s
��vH � v�e

iw2u�v2��iwv2�mj2
mk
�j2jk ;

(B17)

where we have used that
R
d�


mjy
�j �r̂�


mj0

�j0 �r̂� �

�mjmj0
��j�j0 . An analogous calculation applies to the sec-

ond factor in Eq. (B16). Plugging these results back into
Eq. (B16) we obtain

 

hinjNi1i2 jini � �mj1
mj2
�j1j2

tj1
�w1�t

�
j2
�w2�

4�2

	
Z vH

�1
dv1dv2

������������������������������
du�v1�

dv
du�v2�

dv

s

	 e�iw1u�v1��iw2u�v2�
Z 1

0
dwe�iw�v1�v2�:

(B18)

There remains to perform the integration in w, which
yields

 

Z 1
0
dwe�iw�v1�v2� � lim

	!0

�i
�v1 � v2 � i	�

(B19)

and leads to the sought-after result.
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