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We show that the metric in f�R� theories of gravity in Palatini formalism can be solved as the product of
a rank-two tensor times a scalar function which is very sensitive to the local energy-momentum densities.
This local dependence of the metric generates new gravitationally-induced microscopic interactions,
which eventually would lead to self-accelerated test body trajectories. These facts make very unlikely the
viability of Palatini f�R� models designed to change the late-time cosmic evolution.
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Modified theories of gravity have been the object of
intense study in recent years due to their ability to predict
cosmic acceleration [1] without the need for sources of
dark energy. In this sense, special attention has been re-
ceived by those theories of the f�R� type, where f is a
nonlinear function of the scalar curvature R, with nonlinear
terms relevant at low (cosmic) curvatures. For a given
Lagrangian f�R�, such theories can be formulated in two
inequivalent ways, namely, in metric and in Palatini for-
malism. In the former case, the connection is defined as the
usual Levi-Cività connection. In the latter, the connection
is regarded as independent of the metric and, therefore,
must be determined by solving its corresponding field
equations. According to this, the metric formalism leads
to a system of fourth-order partial differential equations for
the metric, whereas the Palatini formalism leads to second-
order equations. Only for the linear Lagrangian, f�R� �
R� 2�, do the two formalisms lead to the same equations
of motion, which are those of general relativity (GR).
Though much has been written about the properties of
f�R� theories in cosmological applications (see [2–5] for
metric and Palatini formalism, respectively), we do not yet
have a clear understanding of their properties in other
regimes. Let us focus on Palatini theories. It is easy to
verify (see below for details) that, for arbitrary f�R�,
Palatini theories have the same type of vacuum equations
as GR with a cosmological constant. In particular, for a
spherically symmetric star such as the sun, the metric
outside the star can be written as a Schwarzschild–
de Sitter (SdS) solution

 ds2
SdS � g��dx

�dx� � �A�r�dt2 �
dr2

A�r�
� r2d�2 (1)

with A�r� � 1� 2GM�=r��r2=3, where �, G, and M�
represent a cosmological constant, Newton’s constant and
the mass of the star, respectively. The well-known model
f�R� � R��4=R of Carroll et al. [2], like any other f�R�
model, admits such solutions and leads to a tiny ���2.
One is then tempted to conclude that this model, and any
other model with a small �, is compatible with solar
system observations [4,6,7] since, for sufficiently small

�, (1) is virtually undistinguishable from the
Schwarzschild solution of GR, which passes all observa-
tional tests. However, though the vacuum solutions are
very well known, the equations in the presence of matter
have not been studied in detail yet. The relation of the
integration constant M� with the matter sources, for in-
stance, is still unknown. And this is an important aspect,
since Palatini theories only depart from GR in the presence
of sources, as is well known in cosmology. Some results in
this direction were found in the study of the Newtonian
and/or post-Newtonian limits in [8,9]. All those works
agree, with small differences, in that in addition to the
usual Newtonian potential M=r, the Newtonian limit has
a density-dependent term. Such a term was considered
irrelevant and negligible in some of those works. How-
ever, it was remarked in [9] that it could be potentially
dangerous. The reason being that it generates accelerations
which depend on the gradient of the local matter density
and which do not decay with distance. Furthermore, when
an atomic/microscopic description of matter is considered,
that density-dependent term seems to break the perturba-
tive approach itself, which is a disturbing property. These
facts suggest that further work is needed in order to fully
understand the dynamics of Palatini theories.

In this work we study and solve the equations of motion
of Palatini f�R� theories in the presence of matter in some
cases of interest, namely, spherically symmetric distribu-
tions and very weak sources without any particular sym-
metry. From our analysis it follows that strong gravitational
effects arise at microscopic scales which are in conflict
with the theoretical foundations of these theories and with
the experimental evidence supporting the Einstein equiva-
lence principle and our knowledge of elementary-particle
physics. These facts strongly suggest that f�R� models
designed to modify the gravitational interaction at low
curvatures should be ruled out.

Let us begin by defining the action of Palatini theories

 S�g;�;  m	 �
1

2�2

Z
d4x

�������
�g
p

f�R� � Sm�g��;  m	: (2)

Here f�R� is a function of R 
 g��R�����, with R�����
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given by R����� � �@����� � @����� � �������� �

��������, where ���� is the connection. The matter action
Sm depends on the matter fields  m, the metric g�� and its
derivatives, but not on ����. Note that ���� is regarded as a
field of the gravity sector and, therefore, cannot appear in
the matter sector, since only the metric is allowed to couple
to matter according to the postulates of metric theories of
gravity [10]. Varying (2) with respect to the metric we
obtain

 f0�R�R����� �
1

2
f�R�g�� � �2T��; (3)

where f0�R� 
 df=dR. Note that the trace of (3)

 f0�R�R� 2f�R� � �2T; (4)

implies an algebraic relation between R and the trace T.
The solution to this algebraic equation will be denoted by
R �R�T�. The variation of (2) with respect to ���� must
vanish independently of (3) and gives

 r�

� �������
�g
p

�
���f

0g�� �
1

2
��� f

0g�� �
1

2
���f

0g��
��
� 0;

(5)

where f0 
 f0�R�T�� is also a function of the matter terms.
Using an auxiliary tensor t�� 
 f0g��, (5) can be readily
solved [11]. The solution states the compatibility between
���� and the metric t��. In other words, ���� can be written
as the Levi-Cività connection of t��

 ���� �
t��

2
�@�t�� � @�t�� � @�t���: (6)

Inserting this solution for ����, written in terms of g�� and
f0�R�T��, in (3) we obtain
 

R���g��
1

2
g��R�g��

�2

f0
T���

Rf0 �f
2f0

g��

�
3

2�f0�2

�
@�f0@�f0 �

1

2
g���@f0�2

�

�
1

f0
�r�r�f

0 �g���f0	; (7)

where R���g� and R�g� are computed in terms of the Levi-
Cività connection of the metric g��; i.e., they represent the
usual Ricci tensor and scalar curvature. To make our
notation clearer, since t�� and g�� are conformally related,
it follows that R�T� � g��R����� and R�g� � g��R���g�
are related by

 R �T� � R�g� �
1

f0

�
3

2
@�f0�T�@�f0�T� � 3�f0�T�

�
; (8)

where, recall, f0 
 f0�T� 
 f0�R�T�� is a function of T,
which means that the f0�T� terms in (7) act as additional
matter sources. The matter terms @�f

0�T� and �f0�T�
make difficult the analysis of (7) to obtain g��. In this
sense, we find it very useful to shift the problem and find

solutions for the conformally related metric �g�� � �g��,
where � 
 f0�T�=f0�0� is a dimensionless factor which
becomes unity in vacuum, T � 0. The equations of motion
for �g�� boil down to

 G�
�� �g� �

�2

f00�
2�T�

�
T�� �

V�T�

2�2 �
�
�

�
; (9)

where f00 
 f0�0� and we have used the shorthand notation
V�T� 
Rf0�T� � f�R�. The above equations of motion
for �g�� are considerably simpler than those for g��, which
makes our task easier. In particular, for spherically sym-
metric systems we can use the ansatz ds2 � g��dx�dx� �
��1 �g��dx

�dx� with

 ds2 �
1

�

�
�A�r�e2��r�dt2 �

1

A�r�
dr2 � r2d�2

�
; (10)

which leads to

 

2

r

d�

dr
�

�2

f00�
2

�
Trr � Ttt
A

�
(11)

 �
1

r2

d�r�1� A	�
dr

�
�2

f00�
2

�
Ttt �

V�T�

2�2

�
: (12)

Defining now A�r� � 1–2GM�r�=r in (12), we can rewrite
M�r� and ��r� as

 M�r� � �
�2

2Gf00

Z r

0
dxx2

�
Ttt � V�T�=�2�

2�

�2

�
; (13)

 ��r� �
�2

2f00

Z r

0
dxx

�
Trr � Ttt
�2A

�
: (14)

Outside of the sources, (T�� � 0, � � 1) the above equa-
tions can be readily integrated leading to

 M�r� � M� �
V�0�r3

12Gf00
; (15)

 ��r� � �0; (16)

and we recover the Schwarzschild–de Sitter solution (1),
with 2� � V�0�=f00 and �0 � const can be eliminated by
a convenient redefinition of the time coordinate. Note that
the constantM� must be fixed by matching the interior and
exterior solutions. Now, since the interior solutions depend
on the details of T�� and the particular f�R� Lagrangian
considered through ��T� and V�T�, the value of M� (and
also �0) will depend on the internal structure and compo-
sition of the object (for a recent example see [12]). In other
words, a given amount of matter energy,

R
drr2Ttt , can lead

to different external gravitational fields. This contrasts with
general relativity, where the external field generated by a
spherically symmetric system only depends on the total
matter energy and not on the structure or composition [in
GR� � 1, V�T� � 0]. This behavior was already reported
in [9] within the post-Newtonian regime.
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We have just seen that outside of the sources (10) turns
into (1). Let us consider what happens if we place a test
body with m� M� within the external field of M�. This
test body could be anything from a laboratory-sized object
to a single atom. The metric nearby this body is given by
(1). However, the metric inside of the test body, where T �

0, is given by (10) with ��T� � 1. In the 1=R model, for
instance, we find � � 1� 1

2�1�
���������������
1�12=�2
p

	
, where � 


�T=Tc and Tc � �2=�2 � ��c with �� �
10�26 g=cm3. When T drops below Tc (outside the body)
we have �! 1. For T above Tc (inside the body) we get
�! 3=4. We then see that the line element (10) changes
suddenly from ds2 � ds2

SdS to ds2 � 4
3ds

2
SdS when going

from the outside to the inside of the test body. Actually, this
happens in general when going from the outside to the
inside of atoms, which leads to strong oscillations in the
metric at microscopic scales both within the test body and
within the central object characterized by M�. This un-
usual and highly nonperturbative behavior, which has no
precedent in the literature on alternative theories of gravity,
is due to the dependence of the metric on the factor ��T�,
which is a function of the local energy-momentum density
T. Any theory in which the Lagrangian f�R� be sensitive to
some low curvature scale will lead to a ��T� characterized
by two limiting values,�! 1 for small T and�! �c for
large T, as compared to the characteristic scale Tc.
Therefore, the strong jumps in the metric discussed here
for the 1=R model occur in all f�R� models aimed at
changing the late-time cosmic expansion.

To see in more detail the effects of the factor ��T�, we
will consider a portion of space-time containing the above
test body. Assume that we can take coordinates in which
the line element (1) becomes Minkowskian away from the
body, i.e., ds2 � 	��d
�d
�. This choice of coordinates
eliminates the external field generated by M�. We could
also have assumed no external field for simplicity. The
metric g�� in the region close to our test body can then
be computed using again the decomposition �g�� � �g��.
For a sufficiently light test body, such as an atom, the
metric �g�� can be well approximated by 	��. This is so
because �g�� is governed by (9), which is dynamically very
similar to general relativity. In fact, the term �2=�f00�

2� can
be seen as an effective (density-dependent) Newton’s con-
stant, and V�T� as some (density-dependent) cosmological
constant. For Lagrangians of the form f�R� � R� �g�R�,
with � some small parameter, we find that V�T� � �. Thus
V�T� is very small (of cosmological order) and can be
neglected in the region of interest. Like in GR, the con-
tribution of T�� is also negligible for weak sources.
Therefore, (9) becomes G�

�� �g� � 0 and leads to �g�� �
	��. The metric generated by our test body (atom) is then

 g���x� � ��1�T�x�		��: (17)

Note that the factor ��1�T�x�	 is due to the derivatives of
f0�T� on the right-hand side of (7) which, unlike T�� and

V�T�, cannot be neglected. We thus see that the metric in
the neighborhood of any small physical system, described
by a certain probability density distribution, is not in
general the Minkowski metric. This result is very impor-
tant and leads to a number of inconsistencies and patho-
logical effects, which must be added to those discussed
above. Let us first focus on the theoretical inconsistencies.
The action (2) was constructed according to the postulates
of metric theories of gravity, namely, (i) space-time is
endowed with a symmetric metric g��, (ii) the world lines
of test bodies are geodesics of that metric, and (iii) in local
freely falling frames the nongravitational laws of physics
are those of special relativity. These postulates tell us how
to introduce matter in a theory of gravity based on geome-
try: we must take the Minkowskian theory and change 	��
by g�� and @� by r�, with r�g�� � 0. This prescription
should guarantee that the nongravitational laws of physics
of Minkowski space were recovered in local freely falling
frames. In our case, however, even in local frames in which
external gravitational fields have been screened, we do not
recover the Minkowskian metric, which violates postulate
(iii).

On the other hand, since these postulates assume that the
Einstein equivalence principle (EEP) is valid, it follows
that Palatini f�R� theories must be in conflict with the
experimental evidence supporting the EEP (see [10] for
details). Let us thus focus on the weak equivalence princi-
ple (also known as universality of free fall, and a key piece
of the EEP), which states that the trajectory of a freely
falling test body in a local inertial frame is unaccelerated
and independent of the internal structure and composition
of the body. From (17) we see that the geodesic equation

 

d2
�

d
2
� C����g�

d
�

d

d
�

d

� 0; (18)

where C����g� �
g��

2 �@�g�� � @�g�� � @�g���, leads to

 

dvi

dt
�

1

2
�1� j ~vj2��vi@t ln�� @i ln�	; (19)

where vi � d
i=dt. This equation shows that if @���T� �

0, the test body will feel self-accelerations which, in addi-
tion, will depend on its own internal structure and compo-
sition. Now, the deep dependence of ��T� on the
microscopic structure does not allow us to use an averaged
description of matter (perfect fluid) to study the behavior of
(19). One should use a microscopic description for the
matter sources, as pointed out in [13]. Let us then consider
the action of a free Dirac field in Minkowski space and use
the EEP to construct the corresponding curved-space the-
ory to be put in (2). The result is

 Sm �
Z
d4x

�������
�g
p

� � ��r� � im �  	; (20)

wherer� � �@� � ��� , �� is the spin connection, and
f��; ��g � 2g�� are the curved-space counterparts of
Dirac’s constant matrices f�a; �bg � 2	ab. Though the
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Minkowskian theory should be recovered in a freely falling
frame, where external gravitational fields have been
screened, from (17) and (20) we find
 

Sm �
Z
d4
��2�T�




�
�1=2�T� � �a@a �

3

2
@a�

1=2�T� � �a � im �  
�
;

(21)

where T depends on all the sources present, including  
itself, and @a�1=2 is due to �� [14]. It is quite evident that
(21) is not the Minkowski space theory we started with and
that new gravitationally induced (first-order) interactions
arise [15] via the various ��T� terms in (21). This modi-
fication of the microscopic interactions is what eventually
leads to the macroscopic violations of the universality of
free fall observed in (19). Note that this effect is different in
nature from the Nordtvedt effect [16], which is due to the
coupling of the gravitational self-energy of a massive body
to external gravitational fields (second-order gravity-
gravity interaction). On the other hand, since in models
relevant for the late-time cosmology ��T� is sensitive to
low energy-density scales, it seems difficult (or perhaps
impossible) that a perturbative expansion of (21) in powers
of T might be used to quantitatively study the predictions
of particular models. This means that the nongravitational
laws of physics of Minkowski space are strongly modified
and might even lose their predictive power. This problem
also affects the gravitational laws, since the metric is
sensitive to the microscopic structure of T��, and we
must solve the microscopic matter field equations to get
T��. This fact, by the way, invalidates all cosmological
applications of Palatini theories considered so far [4,5], in
which an averaged description of matter (perfect fluid) has
been assumed.

In summary, we have shown that the gravitational sector
in Palatini f�R� theories has dramatic effects on the matter
sector. When the gravitational interaction is turned on, the
Minkowskian laws of physics are completely lost due to
the sensitivity of the space-time metric to the local energy-
momentum densities. This fact, besides being a theoretical
inconsistency, implies observable effects such as violations
of the EEP and new interactions among elementary parti-
cles. Furthermore, if the theory is sensitive to very low
density scales, it might be impossible to use the theory to
extract quantitative predictions (see [17] for an example).
All this suggests that Palatini f�R� theories, at least in their
current form, should be ruled out. Only those models in
which ��T� is only sensitive to very high energy densities,
above the currently accessible experimental limits, might
have a chance to survive.
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