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José Navarro-Salas+
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A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation.

We point out that this field-theory effect can be derived, for any dimension higher than two, without

actually invoking very high energy physics. This supports the view that this phenomenon is robust against

Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.
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I. INTRODUCTION

The fact that the notion of particles is ambiguous in a
general curved spacetime plays a crucial role to derive
gravitational particle production. In cosmology this was
first exploited in [1], and for black holes in [2]. The
expansion of a field in two different sets of positive fre-
quency modes, uinj ðxÞ (usually defined at past infinity) and

uoutj ðxÞ (defined at future infinity), leads to a relation for the
corresponding creation and annihilation operators, aouti ¼P

jð��
ija

in
j � ��

ija
iny
j Þ. When the coefficients �ij do not

vanish the vacuum states jini and jouti do not coincide
and, therefore, the number of particles measured in the ith
mode by an ‘‘out’’ observer in the state jini is given by
hinjNout

i jini ¼ P
kj�ikj2. This general framework leads to

two important predictions: particle creation in an expand-
ing universe and in a gravitational collapse.

However, even in Minkowski space, the existence of two
inequivalent quantizations leading to different concepts of
particles was first pointed out in [3], continued in [4], and
crucially understood in terms of particle detectors in [5]. In
short, the standard Minkowski vacuum state is perceived
by an accelerated observer as a thermal bath of particles at
the temperature T ¼ @a

2�ckB
, where a is the acceleration.

This effect shares some physical and mathematical aspects

with the one discovered by Hawking (for a complete
account see [6]). However, they are indeed distinct. For
instance, in the Hawking effect there is an out-going ther-
mal energy flux at future infinity, as perceived by an
inertial observer there. In contrast, in the acceleration
radiation there is no net energy flux at infinity. Only a
thermal bath of radiation exists for the uniformly acceler-
ated observer.
On the other hand, the derivation of the Hawking effect

seems to invoke Planck-scale physics (see, for instance
[7]). Any out-going Hawking quanta will have an expo-
nentially increasing frequency when propagated back-
wards in time and measured by a free-falling observer.
Accordingly, any microscopic structure of a quantum grav-
ity theory could leave some imprint or signal in the spec-
trum of radiation. However, the results of string theory
agree with Hawking’s prediction (for low emission fre-
quencies) [8]. The string theory microscopic description
of black hole emission can also be extended to the super-
radiance regime of some extremal rotating black holes [9],
which can be obtained at the semiclassical level as a
limiting case T ! 0 of the general Hawking radiation
formula [2]. All the above suggests that a quantum gravity
theory, with new degrees of freedom at the Planck scale,
should not necessarily modify the bulk of the semiclassical
effects, at least for low emission frequencies. This is
essentially the conclusion of the investigation of [10],
which argued, within a purely field-theory framework,
that ultrashort distances do not significantly contribute to
the Hawking effect, if Lorentz invariance is somehow
respected. Only at high emission frequencies could an
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underlying theory of quantum gravity potentially predict
important deviations from semiclassical results.

In [10] we derived (gravitational) particle production
rates in terms of the two-point function of the matter field.
Within this new approach we have studied the role of the
Planck scale in the spectrum of Hawking radiation. The
aim of this paper is to extend our analysis focusing now on
the acceleration radiation. We find that the acceleration
radiation is more insensitive to trans-Planckian physics
than is the Hawking radiation, at least in four dimensions.

In Sec. II we briefly review the basics of the acceleration
radiation. In Sec. III we show how the acceleration radia-
tion (Fulling-Davies-Unruh effect) can be obtained easily
in terms of correlation functions. Section IV is devoted to a
discussion of the role of Lorentz invariance in generating
the Planckian spectrum. We point out that this effect can be
derived, for any dimension higher than two, without ac-
tually invoking very high energy physics. This suggests
that this phenomenon is robust against Planck-scale phys-
ics and, therefore, that it should persist when microscopic
degrees of freedom are considered.

II. ACCELERATION RADIATION

We shall present in this section the main physical aspects
of the standard derivation of the acceleration radiation. Let
us consider an observer with a uniformly accelerated tra-
jectory (from now on we take c ¼ 1), known as a Rindler
observer,

T ¼ ea�

a
sinhat; X ¼ ea�

a
coshat;

Y ¼ Y0; Z ¼ Z0;
(1)

and a massless scalar field propagating in the Minkowskian
background spacetime. The wave equation h�ðxÞ ¼ 0 in
the coordinates of the accelerated observer becomes

ðe�2a�ð�@2t þ @2�Þ þ @2Y þ @2ZÞ�ðt; �; Y; ZÞ ¼ 0: (2)

The Y, Z dependence can be trivially integrated using plane
waves �ðt; �; Y; ZÞ ¼ �ðt; �ÞeikYYeikZZ. Introducing this
ansatz in the equation, we find

½ð�@2t þ @2�Þ � e2a�ðk2Y þ k2ZÞ��ðt; �Þ ¼ 0: (3)

This equation indicates that the free scalar field of the
Minkowski observer appears like a scalar field in a repul-

sive potential Vð�Þ / e2a� ~k2?, where ~k2? ¼ k2Y þ k2Z, for the
uniformly accelerated observer. The exact form of the
normalized modes, with natural support on the accessible
region for the accelerated observer (right-hand Rindler
wedge), can be expressed as

uR
w; ~k?

¼ e�iwt

2�2
ffiffiffi
a

p sinh1=2
�
�w

a

�
Kiw=a

�j ~k?j
a@

ea�
�
ei

~k?� ~X? : (4)

The important point is that the above positive frequency
modes cannot be expanded in terms of the standard purely
positive frequency modes of the inertial observer

uM
kX; ~k?

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þ3k0

p e�ik0TþiðkXXþ ~k?� ~X?Þ; (5)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2X þ ~k2?

q
. The detailed analysis requires one

to compute the corresponding Bogolubov coefficients.
They are found to be [3,11]

�w~k?;k0X ~k0?
¼ �½2�ak00ðe2�w=a � 1Þ��1=2

�
�
k00 þ k0X
k00 � k0X

��iw=2a
�ð ~k? � ~k0?Þ: (6)

The mean number of Rindler particles in the Minkowski
vacuum is obtained as the integral

Z þ1

�1
d ~k0�w1

~k?; ~k
0��

w2
~k?; ~k

0 : (7)

The integration in k0X reduces to

Z þ1

�1
dk0Xð2�ak00Þ�1

�
k00 þ k0X
k00 � k0X

��iðw1�w2Þ=2a

¼ �ðw1 � w2Þ; (8)

and taking into account the remaining terms one easily gets

Z þ1

�1
d ~k0�w1

~k?1; ~k
0��

w2
~k?2; ~k

0 ¼ 1

e2�w1=a � 1
�ðw1 � w2Þ

� �ð ~k?1 � ~k?2Þ: (9)

The final outcome becomes then extremely simple. A
uniformly accelerated observer feels himself immersed in
a thermal bath of radiation at temperature kBT ¼ a@=2�.
This result is reinforced by Unruh’s operationalism in-

terpretation [5]. In short, the particle content of the vacuum
perceived by an accelerated observer with motion x ¼ xð�Þ
can be described by the response function FðwÞ of an ideal
quantum mechanical detector (see also [12])

FðwÞ ¼
Z þ1

�1
d�1

Z þ1

�1
d�2e

�iwð�1��2Þh�ðxð�1ÞÞ�ðxð�2ÞÞi;
(10)

where

h�ðx1Þ�ðx2Þi ¼ @

4�2ð�ðT1 � T2 � i�Þ2 þ ðX1 � X2Þ2 þ ðY1 � Y2Þ2 þ ðZ1 � Z2Þ2Þ
; (11)
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is the two-point function of the field evaluated in the
Minkowski vacuum. For a uniformly accelerated trajectory
the above response function, or better, the rate _FðwÞ turns
out to be

_FðwÞ ¼
Z þ1

�1
d��e�iw��h�ðxð�1ÞÞ�ðxð�2ÞÞi: (12)

Performing the integral one obtains

_FðwÞ ¼ 1

2�

@w

e2�w=a � 1
: (13)

It is important to note that in either approach the thermal
spectrum seems to depend crucially on the validity of
relativistic field theory on all scales. In the former, the
intermediate integral (8) involves an unbounded integra-
tion in arbitrary large Minkowskian momentum k0X. If one
introduces an ultraviolet cutoff � for jk0Xj in the above
integral, which particularizes a given Lorentz frame, the
resulting thermal spectrum is largely truncated. In the
detector model approach, the role of high energy scale
emerges in the evaluation of the integral (12), which cru-
cially depends on the short-distance behavior of the
Wightman function (11).

III. ACCELERATION RADIATION AND
TWO-POINT FUNCTIONS

Wewill now present the formalism used in [10] and then
will apply it to the calculation of the acceleration radiation.

A. Particle creation and two-point functions

Let us suppose that � is a scalar field propagating in an
arbitrary spacetime. We can rewrite the expectation values

of the operator Nout
i � @

�1aoutyi aouti , in terms of the corre-
sponding scalar product for the field

hinjNout
i jini ¼ X

k

�ik�
�
ik ¼ �X

k

ðuouti ; uin�k Þðuout�i ; uink Þ

¼ X
k

�Z
�
d�

	
1 u

out
i ðx1Þ@$	u

in
k ðx1Þ

�

�
�Z

�
d�


2u
out�
i ðx2Þ@$
u

in�
k ðx2Þ

�
; (14)

where � is an initial Cauchy hypersurface. If we now
consider the sum of in modes before making the integrals
of the two scalar products, and take into account that

hinj�ðx1Þ�ðx2Þjini ¼ @

X
k

uink ðx1Þuin�k ðx2Þ; (15)

we obtain a simple expression for the particle production
number in terms of the two-point function

hinjNout
i jini ¼ @

�1
Z
�
d�

	
1 d�



2½uouti ðx1Þ@$	�½uout�i ðx2Þ@$
�

� hinj�ðx1Þ�ðx2Þjini: (16)

The above expression requires one to interpret the two-
point function in the distributional sense. The ‘‘ i� pre-
scription’’ and the Hadamard condition1 should be as-
sumed for hinj�ðx1Þ�ðx2Þjini, as in (11). However, taking

into account the trivial identity houtjaoutyi aouti jouti ¼ 0 we
can rewrite the above expression as

hinjNout
i jini ¼ 1

@

Z
�
d�	

1 d�


2½uouti ðx1Þ@$	�½uout�i ðx2Þ@$
�

� ½hinj�ðx1Þ�ðx2Þjini
� houtj�ðx1Þ�ðx2Þjouti�: (17)

Now the Hadamard condition for both jini and jouti states
ensures that the difference of the above two-point distri-
butions is a smooth function.
Intuitively the idea behind the above manipulations is

simple. In the conventional analysis in terms of Bogolubov
coefficients, we first perform the integration in distances
and leave to the end the sum of in modes. In contrast, we
can invert the order and perform first the sum of in modes,
which naturally leads to introduce the two-point function
of the matter field, and leave the integration in distances to
the end. Despite this simple technicality, one should not
underestimate the physical content of expression (17). The
existence of different correlations h�ðx1Þ�ðx2Þi between in
and out observers, weighted by the form of the modes of
the detected quanta, is at the root of the phenomenon of
particle production. Moreover, the relevant correlations are
those with support in the region where the wave-packet
modes are peaked.
One of the advantages of expression (17), as compared

with (16), is that it displays clearly the possible symmetries
of the problem. For instance, for a conformal field theory
and for in and out modes related by spacetime conformal
transformations, the integrand (17) is manifestly zero. In
contrast, it is the full integral (16) which vanishes.
The ‘‘ i�-prescription’’ described above, when applied to

a gravitational collapse turns out to be somewhat parallel to
the approach of [13]. Here, as in [10], we want to put
forward expression (17) to evaluate the particle production
rate and to analyze the role of the Planck scale.

B. Rederiving the acceleration radiation

We shall now explain with some detail how the Fulling-
Davies-Unruh effect can be derived using the two-point
functions of the field. We denote the Rindler modes (‘‘out’’

in the above notation) by uRi ¼ �wðt; �Þe�i ~k? ~x? , where i �
ðw; ~k?Þ, and the Rindler vacuum by j0Ri (jouti in the above
notation). The Minkowski vacuum will be denoted by j0Mi
(jini in the above notation). Now that the notation of this

1The two-point distribution should have (for all physical
states) a short-distance structure similar to that of the ordinary
vacuum state in Minkowski space: ð2�Þ�2ð�þ 2i�tþ �2Þ�1,
where �ðx1; x2Þ is the squared geodesic distance [6].
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section has been fixed, we will explain how to choose a
suitable Cauchy hypersurface to evaluate the integrals of
(17). To compute the number of particles for the acceler-
ated observer in the Minkowski vacuum j0Mi, one can
naturally choose a hyperplane T � �X ¼ constant, with
j�j< 1, as the initial Cauchy surface. However, it is con-
venient to consider the limiting case � ¼ 1 and the null
plane Hþ

0 , defined as U � T � X ¼ U0 < 0 (or the analo-

gous null plane H�
0 , defined as V � T þ X ¼ V0 > 0) as

our initial data hypersurface. As emphasized in [6]
(Sec. 5.1), any solution of the massless Klein-Gordon
equation in Minkowski space, having any dimension
greater than two, is uniquely determined by its restriction
to the hyperplane Hþ

0 alone (or H�
0 alone). So Hþ

0 (or H�
0 )

is enough to characterize the field configuration2 and can
be used as the initial value surface �. Therefore, we con-
vert (17) into (we introduce two indices i1 and i2 since we
are using plane wave type modes instead of wave-packets)

hM0jNR
i1;i2

j0Mi ¼ 4

@

Z
Hþ

0

dv1d~x?1dv2d~x?2u
R
i1
ðx1ÞuR�i2 ðx2Þ

� @v1
@v2

½hM0j�ðx1Þ�ðx2Þj0Mi
� hR0j�ðx1Þ�ðx2Þj0Ri�: (18)

Since the accelerated modes uRi ðxÞ have support on the
right-handed Rindler wedge, the above integral is naturally
restricted to the right wedge part of Hþ

0 . The relevant

derivatives of the two-point functions in the Minkowski
vacuum can be expressed, using the inertial null coordi-
nates V, U, as

hM0j@V1
�ðx1Þ@V2

�ðx2Þj0Mi ¼ 1

4�2

Z
d ~k?GM

~k?
ðx1; x2Þ

� e�i ~k? ~x? ; (19)

where, at the region Hþ
0

GM
~k?
ðx1; x2ÞjHþ

0
¼ @V1

@V2

@

2�

� K0ðj ~k?j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðV1 � V2ÞðU1 �U2Þ

q
ÞjHþ

0

¼ � @

4�

1

ðV1 � V2Þ2
; (20)

where K0ðxÞ is a modified Bessel function. Therefore,

hM0j@V1
�ðx1Þ@V2

�ðx2Þj0MijHþ
0

¼ � @

4�

1

ðV1 � V2Þ2
�ð ~x?1 � ~x?2Þ: (21)

It is now convenient to perform the calculation on the null
plane Hþ, obtained by the limiting case U0 ! 0. As ap-
proaching to Hþ (� ! �1), the potential decays expo-

nentially and the (right-) Rindler modes can be
approximated as

uRi ¼ ei
ðw;j ~k?jÞ

ð2�Þ3=2 ffiffiffiffiffiffiffi
2w

p ðe�iwu þ re�iwvÞei ~k? ~x? ; (22)

where v ¼ tþ �, u ¼ t� �, ei
ðw;j ~k?jÞ ¼ �½1þ i wa��1 �
ðj ~k?j2a Þiðw=aÞ, and rðw; ~k?Þ ¼ e�i2
ðw;j ~k?jÞ is the reflection

amplitude.
Moreover, the two-point function in the accelerated

Rindler vacuum can also be worked out as

hR0j@v1
�ðx1Þ@v2

�ðx2Þj0RijHþ

¼ 1

4�2

Z
d ~k?GR

~k?
ðx1; x2ÞjHþe�i ~k? ~x?

¼ � @

4�

1

ðv1 � v2Þ2
�ð ~x?1 � ~x?2Þ: (23)

With this, Eq. (18) becomes

hM0jNR
i1;i2

j0Mi ¼ � jrj2
4�2 ffiffiffiffiffiffiffiffiffiffiffiffi

w1w2
p

Z
V1;V2>0

e�iw1v1þiw2v2

�
�

dV1dV2

ðV1 � V2Þ2
� dv1dv2

ðv1 � v2Þ2
�

� �ð ~k?1 � ~k?2Þ; (24)

where the transversal ðY; ZÞ dependence has been trivially
integrated, producing the delta function. We would like to
emphasize again the physical meaning of the above ex-
pression. The particle content of the Minkowski vacuum,
as perceived by the accelerated observer, is displayed as an
integral measuring the different vacuum correlations of
inertial and accelerating observers, weighted by the form
of the modes of the accelerated observer.
Taking into account that the relation between the null

inertial coordinate V and the accelerated one v is V ¼
a�1eav we then have

hM0jNR
i1;i2

j0Mi ¼ � jrj2
4�2 ffiffiffiffiffiffiffiffiffiffiffiffi

w1w2
p

Z 1

�1
dv1dv2e

�iw1v1eiw2v2

�
� ða=2Þ2
sinh2 a

2 ðv1 � v2Þ
� 1

ðv1 � v2Þ2
�

� �ð ~k?1 � ~k?2Þ: (25)

Note that jrj ¼ 1 because the reflection amplitude r is a
pure phase. Integrating over v1 þ v2 we are left with (we
define �v � v1 � v2)

2In two dimensions Hþ
0 is not enough and we need Hþ

0

S
H�

0
to have a proper initial surface.
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hM0jNR
i1;i2

j0Mi ¼ � 1

4�2w1

Z 1

�1
dð�vÞe�iw1�v

�
� ða=2Þ2
sinh2 a

2 �v
� 1

ð�vÞ2
�

� �ðw1 � w2Þ�ð ~k?1 � ~k?2Þ
¼ 1

e2�w1=a � 1
�ð ~k1 � ~k2Þ: (26)

Alternatively, we can choose the null hypersurface H�
(defined as V0 ¼ 0), instead of Hþ, as our initial hyper-
surface. Then one finds

hM0jNR
i1;i2

j0Mi ¼ � 1

4�2 ffiffiffiffiffiffiffiffiffiffiffiffi
w1w2

p
Z
U1;U2<0

e�iw1u1þiw2u2

�
�

dU1dU2

ðU1 �U2Þ2
� du1du2

ðu1 � u2Þ2
�

� �ð ~k?1 � ~k?2Þ; (27)

where now U ¼ �a�1e�au. This leads again to the same
Planckian spectrum.

Note that, since the Rindler modes (22) have a reflection
amplitude of unit module, we get a null net flux of radiation
but a nonvanishing thermal energy density able to excite an
accelerated particle detector. In contrast, because in two
spacetime dimensions the left and right modes are inde-
pendent and one needsHþ [H� to have a complete initial
surface, both expressions (24) and (27) would then be
needed to properly obtain the acceleration radiation.

IV. ACCELERATION RADIATION, LORENTZ
INVARIANCE AND THE PLANCK SCALE

Let us now examine with more detail the basic formulas
(24) and (27) leading to the thermal spectrum. As remarked
above, those formulas tell us that particles in a given mode
stem from the different two-point correlations seen by
inertial and accelerated observers. In this sense, one could
think that the Fulling-Davies-Unruh effect seems to require
the validity of special relativity for arbitrarily large and
unbounded boosts. This is so because the affine distance
jV1 � V2j along the null plane Hþ in the direction of the
acceleration can be made arbitrarily small

ðV1 � V2Þ2 � e2av1ðv1 � v2Þ2; (28)

as perceived by the accelerated observer as v1 � v2 !
�1. As a consequence, even if jv1 � v2j � j�vj is well
above the Planck length lP, jV1 � V2j involves sub-
Planckian distances when v1 � v2 ! �1 due to the ex-
treme length contraction. And this ultrahigh length con-
traction seems fundamental in (24) for getting the exact
thermal result. Wewill show next, however, that the bulk of
the Fulling-Davies-Unruh effect does not require the con-
sideration of sub-Planckian lengths.

Let us first note that we work in a Lorentz invariant
framework. Despite this fact, in the evaluation of (24) we
explicitly used a particular inertial observer related to the
accelerated observer by the change of coordinates (1) [see
(25)]. In a fully Lorentz invariant framework, however, this
choice of inertial observer is arbitrary, since the outcome of
(24) is actually independent of the particular inertial ob-
server chosen.3 In such a framework, the only variable that
can be naturally distinguished in (24) is the affine distance
�v, which is measured in the instantaneous rest frame of
the accelerated observer. To study how short distances
affect the particle spectrum seen by the accelerated ob-
server, we restrict in (26) the integration over �v to
distances greater than �� lP 	 a�1. The result is

� 1

4�2w

Z
j�vj>�

dð�vÞe�iw�v

� ða=2Þ2
sinh2 a

2 �v
� 1

ð�vÞ2
�

� 1

e2�w=a � 1
� �a

12�w=a
þOð�3a3Þ; (29)

which shows that the spectrum is not sensitive to a micro-
scopic (Planckian) cutoff4 � for j�vj.
Let us now assume that Eq. (24) is referred to a particu-

lar inertial frame. This raises a problem, since the two-
point function of the inertial observer, in the region v !
�1, would involve sub-Planckian distances, as discussed
above in Eq. (28). One should, therefore, consider the
effect of removing from (24) the contribution of the two-
point function of the inertial observer coming from sub-
Planckian scales. In doing this, one sees that the particle
spectrum turns out to be extremely sensitive to a micro-
scopic cutoff for j�Vj, since then j�vj is macroscopic and
much bigger than a�1. In fact, for such �v, the expansion
(29) is no longer valid, which casts doubts on the robust-
ness of the Planckian spectrum. However, even if a short-
distance cutoff is assumed for this (arbitrary) inertial ob-
server, there is an additional argument supporting the
robustness of the acceleration radiation. Instead of Hþ,
one can alternatively use the H� hypersurface for the
calculation of the number of particles [see (27)]. Because
of the existence of the completely reflecting potential

Vð�Þ / e2a� ~k2? for the accelerated observer, the Rindler

3The proof of this claim is simple. We just need to look at the
relation between inertial and accelerated observers given in (1),
and consider another inertial observer related to the first one by
T0 ¼ 
ðT þ �XÞ, X0 ¼ 
ðXþ �TÞ. The relation between the
null inertial coordinates of the new inertial observer and the
accelerated observer is given by V0 � T0 þ X0 ¼ 
ð1þ �Þ 1a eav
and U0 � T0 � X0 ¼ �
ð1� �Þ 1a e�au. Using these relations,
we can evaluate the terms dV1dV2=ðV1 � V2Þ2 and
dU1dU2=ðU1 �U2Þ2 of (24) and (27), respectively, and find
that all � and 
 factors disappear.

4Note that this result is still valid even if the two-point function
is modified at short distances but the principle of relativity,
equivalence of all inertial frames, is preserved (see the
Appendix).
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(wave-packet) modes with support at ½v1; v2� ! �1 have
necessary support at ½u1; u2� ! �1 (see Fig. 1). In this
situation we have instead

ðU1 �U2Þ2 � e�2au1ðu1 � u2Þ2: (30)

A Planckian cutoff jU1 �U2j>�� lP for the inertial
affine distance in the region ½u1; u2� ! �1 will now
remain sub-Planckian for the accelerated observer. One
can, therefore, restrict the integral in (27) to distances
j�uj 
 �, which always imply �U >�, and get an ex-
pression identical to (29) without ever invoking sub-
Planckian scales. This shows that the Fulling-Davies-
Unruh effect can be derived, in dimensions greater than
two, without ever invoking sub-Planckian distances (or
extreme high energy scales). This strongly suggests that
the acceleration radiation is indeed a low-energy phenome-
non and that it should persist even if a Planck-length cutoff
is introduced in the theory. Note also that this reasoning
cannot be used in black holes due to the absence of a
completely reflecting potential. For the Hawking radiation,
extra physical inputs are needed, as argued in [10,14]. It
appears, therefore, that the acceleration radiation is, in any
case, more robust to trans-Planckian physics than Hawking
radiation is.

It is important to note that if the above argument,
namely, the interchangeable role of Hþ or H�, were not
correct, as applied to a modified theory with a Planck-
length cutoff, one would find a nonvanishing net flux of

radiation. This can be seen as follows. In the full relativistic
theory (without any cutoff), the accelerated observer per-
ceives an energy flux to the right as well as an (opposite)
energy flux to the left. Summing up both contributions the
observer gets a null net flux of radiation but a nonvanishing
energy density. On physical grounds, this can be seen as a
consequence of parity symmetry in our physical scenario.
If this symmetry is maintained in the presence of a micro-
scopic cutoff only a bath of radiation seems to be physi-
cally acceptable.5 We have seen that for the calculation of
the flux to the left (integration along Hþ) at v ! �1
ultrashort affine distances are required. However, for the
calculation of the flux to the right (integration along H�)
when u ! �1, we do not need ultrashort affine distances
to generate the thermal spectrum. So both right and left
fluxes should be equal, and approximately thermal, to
produce the bath of radiation. The opposite argument
applies at the trajectory points u ! þ1. In this case,
ultrashort distances are apparently needed (for the inertial
observer) in the computation of the flux to the right, but not
for the computation of the flux to the left.
In conclusion, we have pointed out that the acceleration

radiation effect can de rederived without actually invoking
very high energy physics. This supports the view that the
acceleration radiation is robust against Planck-scale phys-
ics and suggests that any theory of quantum gravity, with
new microscopic degrees of freedom, should also repro-
duce this relativistic field-theory effect. We believe that our
analysis of the acceleration radiation effect in Minkowski
space can also be extended to curved spacetimes. In par-
ticular, for de Sitter space that would imply that the semi-
classical Gibbons-Hawking effect [15] would remain
robust against microscopic physics. In addition, the elegant
kinematic method of connecting the acceleration, de Sitter,
and black hole radiation given in [16] may support our
view that all these semiclassical thermal effects do not
depend on ultra-high-energy physics.
After completion of this work, wewere informed that M.

Rinaldi [17] has recently reanalyzed the Unruh effect in
terms of modified dispersion relations. Conclusions similar
to the present paper are also displayed.
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APPENDIX

Let us now illustrate the discussion of the last section in
terms of a particle detector. To this end we shall modify the
relativistic theory by deforming6 the two-point function
ab initio. This has the advantage of going directly to the
point of interest to us, since it is just the form of the two-
point function that is relevant in the evaluation of the
detector response function. Obviously one could recon-
struct the underlying field theory to generate equations of
motion, inner product, etc; but all that is not necessary in
the analysis below.

For simplicity we shall consider the case of a massless
scalar field in four dimensions. The simplest deformation
of the two-point function is

h�ðx1Þ�ðx2Þi ¼ @

4�2ðx1 � x2Þ2 þ l2P
: (A1)

The rate _FðwÞ can be now worked out, according to (12), as

_FlPðwÞ ¼ � @

4�2

Z þ1

�1
d��e�iw��

� 1
4
a2
sinh2ða2 ��Þ þ l2P=4�

2
: (A2)

The result is

@

2�

we�w=a

ðe2�w=a � 1Þ
sinh½wa ð�� �Þ�

w
a sin�

; (A3)

where � � 2 arcsinðlPa4�Þ. This largely departs from the ther-

mal spectrum. However it is not physically sound since, for
an inertial observer a ¼ 0, the response rate does not
vanish, as one should expect according to the principle of
relativity. To produce a meaningful expression one should
subtract the naive ‘‘inertial’’ contribution, replacing (A2)
by

_FlPðwÞ ¼ � @

4�2

Z þ1

�1
d��e�iw��

�
�

1
4
a2
sinh2ða2 ��Þ þ l2P=4�

2
� 1

ð��Þ2 þ l2P=4�
2

�
:

(A4)

The final result is then

_F lPðwÞ ¼
@

2�

�
we�w=a

ðe2�w=a � 1Þ
sinh½wa ð�� �Þ�

w
a sin�

þ �e�wlP=2�

lP

�
: (A5)

The thermal Planckian spectrum is smoothly recovered in
the limit � � lPa=2� ! 0. In fact, the rate _FlPðwÞ can be

expanded as

_F lP ðwÞ �
@w

2�

�
1

e2�w=a � 1
� lPa

32�w=a
þOðl3Pa3Þ

�
:

(A6)

This result is in agreement with the estimation (29). Note
that the crucial ingredient to preserve the thermal spectrum
is the requirement of having a vanishing detector response
for all inertial observers.
Thermality is maintained until a certain frequency scale

�, which can be estimated by requiring positivity of
_FlPðwÞ in the above approximated expressions. A simple

calculation leads to the condition 32��e�2��=a � lPa
2.

Planck-scale effects could potentially emerge at the scale
�, which is roughly a few orders above T ¼ a=2�, if the
acceleration is not very high.
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